
Stacks

© 2019 Shermer, after
Goodrich, Tamassia, Mount 1Stacks

Section 5.1

Stacks 2

Abstract Data Types (ADTs)

❑ An abstract data
type (ADT) is an
abstraction of a
data structure and
operations on it.

❑ An ADT specifies:

◼ Data stored

◼ Operations on the data

◼ Error conditions associated
with operations

© 2019 Shermer

Stacks 3

The Stack ADT

❑ The Stack ADT stores
arbitrary objects

❑ Insertions and deletions
follow the last-in first-out
(LIFO) scheme

❑ Main stack operations:
◼ void push(object): inserts an

element on the top.

◼ void pop(): removes the top
element. Gives a
StackEmpty error if there is
no element to remove.

❑ Auxiliary stack
operations:

◼ object top(): returns the
element at the top
without removing it.
Gives a StackEmpty error
if the stack is empty.

◼ integer size(): returns the
number of elements
stored.

◼ boolean empty():
indicates whether no
elements are stored.

© 2019 Shermer

Stacks 4

TIMTOWTDI
◼ void push(object): inserts an

element on the top.

◼ void pop(): removes the top
element.

◼ object top(): returns the
element at the top without
removing it.

◼ integer size(): returns the
number of elements stored.

◼ boolean empty(): indicates
whether no elements are
stored.

◼ void push(object): inserts
an element on the top.

◼ object pop(): removes and
returns the top element.

◼ integer size(): returns the
number of elements
stored.

◼ boolean empty(): indicates
whether no elements are
stored.

© 2019 Shermer

Stacks 5

Stack Interface

❑ Pseudo-C++
interface
corresponding to
our Stack ADT

❑ Uses an exception
class StackEmpty

❑ Different from the
built-in C++ STL
class stack

template <typename E>

class Stack {

public:

int size() const;

bool empty() const;

const E& top() const

throw(StackEmpty);

void push(const E& e);

void pop() throw(StackEmpty);

}

© 2010 Goodrich, Tamassia

Stacks 6

STL stack class

❑ The Standard Template Library (STL)
provides an implementation of a stack.

❑ To declare a stack of integers:
#include <stack>

std::stack<int> myStack;

❑ STL’s stack interface is basically the same as the one
we just saw, except that executing pop or top on an
empty stack results in undefined behavior. This
generally means your program crashes.

© 2010 Goodrich, Tamassia

Stacks 7

Array-based Stack
Implementation

❑ A simple way of
implementing the
Stack ADT uses an
array

❑ We add elements
from left to right

❑ A variable t keeps
track of the index of
the top element

S

0 1 2 t

…

Algorithm size()

return t + 1

Algorithm pop()

if empty() then

throw StackEmpty

else

t  t − 1

return S[t + 1]

© 2010 Goodrich, Tamassia

Stacks 8

Array-based Stack

❑ The array storing the
stack elements may
become full

❑ A push operation will
then throw a StackFull
exception
◼ Limitation of the simple

array-based
implementation

◼ Not intrinsic to the
Stack ADT

S
0 1 2 t

…

Algorithm push(o)

if t = capacity − 1 then

throw StackFull

else

t  t + 1

S[t]  o

© 2010 Goodrich, Tamassia

Stacks 9

Performance and Limitations

❑ Performance

◼ Let n be the number of elements in the stack

◼ The space used is at least n

◼ Each operation runs in time O(1)

❑ Limitations

◼ The maximum size of the stack must be defined a
priori and cannot be changed

◼ Trying to push a new element into a full stack
causes an implementation-specific exception

© 2010 Goodrich, Tamassia

Stacks 10

Array-based Stack in C++

template <typename E>

class ArrayStack {

private:

E* S; // array holding the stack

int cap; // capacity

int t; // index of top element

public:

// constructor given capacity

ArrayStack(int c) :

S(new E[c]), cap(c), t(-1) { }

void pop() {

if (empty()) throw StackEmpty

(“Pop from empty stack”);

t--;

}

void push(const E& e) {

if (size() == cap) throw

StackFull(“Push to full stack”);

S[++ t] = e;

}

© 2010 Goodrich, Tamassia

Stacks 11

Array-based Stack in C++

const E& top() {

if (empty()) throw StackEmpty

(“Top from empty stack”);

return S[t];

}

int size() {

return t+1;

}

bool empty() {

return t < 0;

}

} // end of class body

© 2019 Shermer

Book shows this
implementation outside
of the class body, like in
a .cpp file. It also
includes proper
templating for that case,
and the proper throw
declarations.

© 2006 Goodrich, Tamassia Linked Lists 12

Linked List-based Stack

We can implement a stack with a singly linked list

The top element is stored at the first node of the list

The space used is O(n) and each operation of the
Stack ADT takes O(1) time

No restrictions on the number of elements

t

elements

Stacks 13

Example use in C++

ArrayStack<int> A; // A = [], size = 0

A.push(7); // A = [7*], size = 1

A.push(13); // A = [7, 13*], size = 2

cout << A.top() << endl; A.pop(); // A = [7*], outputs: 13

A.push(9); // A = [7, 9*], size = 2

cout << A.top() << endl; // A = [7, 9*], outputs: 9

cout << A.top() << endl; A.pop(); // A = [7*], outputs: 9

ArrayStack<string> B(10); // B = [], size = 0

B.push("Bob"); // B = [Bob*], size = 1

B.push("Alice"); // B = [Bob, Alice*], size = 2

cout << B.top() << endl; B.pop(); // B = [Bob*], outputs: Alice

B.push("Eve"); // B = [Bob, Eve*], size = 2

© 2010 Goodrich, Tamassia

* indicates top

Stacks 14

Applications of Stacks

❑ Direct applications
◼ Page-visited history in a Web browser

◼ Undo sequence in a text editor

◼ Chain of method calls in the C++ run-time
system

❑ Indirect applications
◼ Auxiliary data structure for algorithms

◼ Component of other data structures

© 2010 Goodrich, Tamassia

Stacks 15

C++ Run-Time Stack
❑ The C++ run-time system

keeps track of the chain of
active functions with a stack

❑ When a function is called, the
system pushes on the stack a
frame containing
◼ Local variables and return value

◼ Program counter, keeping track of
the statement being executed

❑ When the function ends, its
frame is popped from the stack
and control is passed to the
function on top of the stack

❑ Allows for recursion

main() {

int i = 5;

foo(i);

}

foo(int j) {

int k;

k = j+1;

bar(k);

}

bar(int m) {

…

}

bar
PC = 1
m = 6

foo
PC = 3
j = 5
k = 6

main
PC = 2
i = 5

© 2010 Goodrich, Tamassia

Stacks 16

Parentheses Matching

❑ Each “(”, “{”, or “[” must be paired with
a matching “)”, “}”, or “]”

◼ correct: ()(()){([()])}

◼ correct: ((()(()){([()])}

◼ incorrect:)(()){([()])}

◼ incorrect: ({[])}

◼ incorrect: (

© 2010 Goodrich, Tamassia

Stacks 17

Parentheses Matching Algorithm
Algorithm ParenMatch(X,n):

Input: An array X of n tokens, each of which is either a grouping symbol, a

variable, an arithmetic operator, or a number

Output: true if and only if all the grouping symbols in X match

Let S be an empty stack

for i=0 to n-1 do

if X[i] is an opening grouping symbol then

S.push(X[i])

else if X[i] is a closing grouping symbol then

if S.empty() then

return false {nothing to match with}

if S.pop() does not match the type of X[i] then

return false {wrong type}

if S.empty() then

return true {every symbol matched}

else return false {some symbols were never matched}
© 2010 Goodrich, Tamassia

Stacks 18

Computing Spans (not in book)
❑ Using a stack as an auxiliary

data structure in an algorithm

❑ Given an an array X, the span
S[i] of X[i] is the maximum

number of consecutive
elements X[j] immediately
preceding X[i] and such that
X[j]  X[i]

❑ Spans have applications to
financial analysis

◼ E.g., stock at 52-week high 6 3 4 5 2

1 1 2 3 1

X

S

0

1

2

3

4

5

6

7

0 1 2 3 4

© 2010 Goodrich, Tamassia

Stacks 19

Quadratic Algorithm

Algorithm spans1(X, n)

Input array X of n integers

Output array S of spans of X #

S  new array of n integers n

for i  0 to n − 1 do n

s  1 n

while s  i  X[i − s]  X[i] 1 + 2 + …+ (n − 1)

s  s + 1 1 + 2 + …+ (n − 1)

S[i]  s n

return S 1

Algorithm spans1 runs in O(n2) time

© 2010 Goodrich, Tamassia

Stacks 20

Computing Spans with a Stack

❑ We keep in a stack the
indices of the elements
visible when “looking
back”

❑ We scan the array from
left to right

◼ Let i be the current index

◼ We pop indices from the
stack until we find index j
such that X[i]  X[j]

◼ We set S[i]  i − j

◼ We push i onto the stack

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

© 2010 Goodrich, Tamassia

Stacks 21

Linear Algorithm

Algorithm spans2(X, n) #
S  new array of n integers n

A  new empty stack 1

for i  0 to n − 1 do n

while (A.empty() 

X[A.top()]  X[i]) do n

A.pop() n

if A.empty() then n

S[i]  i + 1 n

else

S[i]  i − A.top() n

A.push(i) n

return S 1

Each index of the
array
◼ Is pushed into the

stack exactly
once

◼ Is popped from
the stack at most
once

The statements in
the while-loop are
executed at most
n times overall

Algorithm spans2
runs in O(n) time

© 2010 Goodrich, Tamassia

Stacks 22

Linear Algorithm

Algorithm spans2(X, n)

S  new array of n integers O(1)

A  new empty stack O(1)

for i  0 to n − 1 do n
while (A.empty()  wi

X[A.top()]  X[i]) do

A.pop() O(1)

if A.empty() then O(1)

S[i]  i + 1 O(1)

else

S[i]  i − A.top() O(1)

A.push(i) O(1)

return S O(1)

© 2019 Shermer

O(1)

wi * O(1)

O(n)

