Data Link Layer

Textbook & (edited) slides: *Computer Networking: A Top-Down Approach*. James F. Kurose, Keith W. Ross

Reference: *Computer Networks: A Systems Approach*. Larry Peterson, Bruce Davie, Morgan Kaufmann
Link Layer

- **Error detection, correction**
 - Multiple access protocols
 - LANs
 - Addressing, ARP
 - Ethernet
 - Switches
 - VLANs
 - Link virtualization: MPLS
 - Data center networking
Error Detection

• EDC = Error Detection and Correction bits (redundancy)
• D = Data protected by error checking, may include header fields
• Error detection not 100% reliable!
 • Protocol may miss some errors, but rarely
 • Larger EDC field yields better detection and correction
Parity Checking

Single bit parity:
Detect single bit errors

Two-dimensional bit parity:
Detect and correct single bit errors

0111000110101011 0

101011
111100
011101
001010
no errors

101011
101100
011101
010100
parity error
correctable single bit error
Internet Checksum

Goal: Detect errors (e.g. flipped bits) in transmitted packet
(note: used at transport layer only)

Sender:
- Treat segment contents as sequence of 16-bit integers
- Checksum: addition (1’s complement sum) of segment contents
- Sender puts checksum value into UDP checksum field
Cyclic Redundancy Check

- More powerful error-detection coding
- View data bits, D, as a binary number
- Choose $r+1$ bit pattern (generator), G
- Goal: choose r CRC bits, R, such that
 - $<D,R>$ exactly divisible by G (modulo 2)
 - Receiver knows G, divides $<D,R>$ by G. If non-zero remainder: error detected!
 - Can detect all burst errors less than $r+1$ bits
- Widely used in practice (Ethernet, 802.11 WiFi, ATM)
Example: CRC

Want: \(D.2^r \text{ XOR } R = nG \)

Equivalently: \(D.2^r = nGXOR R \)

Equivalently: If we divide \(D.2^r \)

By \(G \), want remainder \(R \) to satisfy:

\[
R = \text{remainder}\left[\frac{D.2^r}{G}\right]
\]
Link Layer

• Error detection, correction
✓ Multiple access protocols
• LANs
 • Addressing, ARP
 • Ethernet
 • Switches
 • VLANS
• Link virtualization: MPLS
• Data center networking
Multiple Access Links & Protocols

Two types of links

- **Point-to-point**
 - PPP for dial-up access
 - Point-to-point link between Ethernet switch, host
- **Broadcast (shared wire or medium)**
 - Old-fashioned Ethernet
 - Upstream HFC
 - 802.11 wireless LAN
Multiple Access Protocols

• Single shared broadcast channel
• Two or more simultaneous transmissions by nodes: interference
 • Collision if node receives two or more signals at the same time

Multiple access protocol
• Distributed algorithm that determines how nodes share channel
 i.e. determine when node can transmit
• Communication about channel sharing must use channel itself
 • No out-of-band channel for coordination
Ideal Multiple Access Protocol

Given: broadcast channel of rate R bps

Desiderata

- When one node wants to transmit, it can send at rate R.
- When M nodes want to transmit, each can send at average rate R/M.
- Fully decentralized
 - No special node to coordinate transmissions
 - No synchronization of clocks, slots
- Simple
MAC Protocols: Taxonomy

Three broad classes

• **Channel partitioning**
 • Divide channel into smaller pieces (time slots, frequency, code)
 • Allocate piece to node for exclusive use

• **Random access**
 • Channel not divided, allow collisions
 • Recover from collisions

• **Taking turns**
 • Nodes take turns, but nodes with more to send can take longer turns
Channel Partitioning MAC Protocols: TDMA

TDMA: time division multiple access

- Access to channel in rounds
- Each station gets fixed length slot (length = packet transmission time) in each round
- Unused slots go idle
- Example: 6-station LAN, 1,3,4 have packets to send, slots 2,5,6 idle
Channel Partitioning MAC Protocols: FDMA

FDMA: frequency division multiple access
- Channel spectrum divided into frequency bands
- Each station assigned fixed frequency band
- Unused transmission time in frequency bands go idle
- Example: 6-station LAN, 1,3,4 have packet to send, frequency bands 2,5,6 idle
Random Access Protocols

- When node has packet to send
 - Transmit at full channel data rate R
 - No a priori coordination among nodes
- Two or more transmitting nodes \rightarrow collision
- **Random access MAC protocol** specifies:
 - How to detect collisions
 - How to recover from collisions (e.g., via delayed retransmissions)
- Examples of random access MAC protocols:
 - Slotted ALOHA
 - ALOHA
 - CSMA, CSMA/CD, CSMA/CA
Slotted ALOHA

Assumptions

• All frames same size

• Time divided into equal size slots (time to transmit one frame)

• Nodes start to transmit only slot beginning

• Nodes are synchronized

• If two or more nodes transmit in slot, all nodes detect collision
Slotted ALOHA

Operation

• When node obtains fresh frame, transmits in next slot
 • **If no collision:** Node can send new frame in next slot
 • **If collision:** Node retransmits frame in each subsequent slot with probability p
 until success
Slotted ALOHA

Pros
• Single active node can continuously transmit at full rate of channel
• Highly decentralized: only slots in nodes need to be in sync
• Simple

Cons
• Collisions, wasting slots
• Idle slots
• Nodes may be able to detect collision in less than time to transmit packet
• Clock synchronization
Slotted ALOHA: Efficiency

- **Efficiency**: long-run fraction of successful slots
 (many nodes, all with many frames to send)

- **Suppose**: N nodes with many frames to send, each transmits in slot with probability p

- Probability that given node has success in a slot $= P(1 - P)^{n-1}$

- Probability that any node has a success $= NP (1 - p)^{n-1}$
Slotted ALOHA: Efficiency

• Max efficiency: find p^* that maximizes $NP(1-P)^{N-1}$
• For many nodes, take limit of $NP^*(1-P^*)^{N-1}$
• As N goes to infinity, gives: $\frac{1}{e} = .37$

• At best: channel used for useful transmissions 37% of time!
Pure ALOHA

- Unslotted Aloha: simpler, no synchronization
- When frame first arrives
 - Transmit immediately
- Collision probability increases:
 - Frame sent at t_0 collides with other frames sent in $[t_0-1,t_0+1]$

Pure ALOHA Efficiency

\[P(\text{success by given node}) = P(\text{node transmits}) \]
\[P(\text{no other node transmits in } [t_0-1,t_0]) = p \cdot (1-p)^{2(N-1)} \]

… choosing optimum \(p \) and then letting \(n \to \infty \)
\[= 1 / (2e) = 0.18 \]

even worse than slotted Aloha!
CSMA (Carrier Sense Multiple Access)

CSMA: listen before transmit:

- **If channel sensed idle:** transmit entire frame
- **If channel sensed busy,** defer transmission
- Human analogy: do not interrupt others
CSMA Collisions

• Collisions can still occur
 • Propagation delay means two nodes may not hear each other’s transmission

• Collision
 • Entire packet transmission time wasted
 • Distance & propagation delay play role in determining collision probability
CSMA Collision Detection

CSMA/CD: carrier sensing, deferral as in CSMA
- Collisions **detected** within short time
- Colliding transmissions aborted, reducing channel wastage

Collision detection
- Easy in wired LANs: measure signal strengths, compare transmitted, received signals
- Difficult in wireless LANs: received signal strength overwhelmed by local transmission strength
CSMA Collision Detection

- Human analogy
 - The polite conversationalist
 Ethernet CSMA/CD Algorithm

• NIC receives datagram from network layer, creates frame
• If NIC senses channel idle, starts frame transmission. If NIC senses channel busy, waits until channel idle, then transmits.
• If NIC transmits entire frame without detecting another transmission, NIC is done with frame!
• If NIC detects another transmission while transmitting, aborts and sends jam signal
• After aborting, NIC enters **binary (exponential) backoff**:
 • after mth collision, NIC chooses K at random from $\{0, 1, 2, \ldots, 2^m - 1\}$.
 • NIC waits $K \cdot 512$ bit times, returns to Step 2
 • Longer backoff interval with more collisions
Taking-Turns MAC Protocols

• Channel partitioning MAC protocols:
 • Share channel **efficiently and fairly** at high load
 • Inefficient at low load: delay in channel access, 1/N bandwidth allocated even if only 1 active node!

• Random access MAC protocols
 • Efficient at low load: single node can fully utilize channel
 • High load: collision overhead

• They look for the best of both worlds!
Taking-Turns MAC Protocols

Polling
• Master node **invites** slave nodes to transmit in turn
• Typically used with dumb slave devices
• Concerns
 • Polling overhead
 • Latency
 • Single point of failure (master)
Taking-Turns MAC Protocols

Token passing

- Control **token** passed from one node to next sequentially.
- Token message
- Concerns
 - Token overhead
 - Latency
 - Single point of failure (token)
Link Layer

• Error detection, correction
• Multiple access protocols
✓ LANs
 ✓ Addressing, ARP
 • Ethernet
 • Switches
 • VLANS
• Link virtualization: MPLS
• Data center networking
MAC Addresses & ARP

• 32-bit IP address:
 • Network-layer address for interface
 • Used for layer 3 (network layer) forwarding

• MAC (or LAN or physical or Ethernet) address:
 • Function: used locally to get frame from one interface to another physically-connected interface (same network, in IP-addressing sense)
 • 48 bit MAC address (for most LANs) burned in NIC ROM, also sometimes software settable
 • E.g.: 1A-2F-BB-76-09-AD
MAC Addresses & ARP

• Each adapter on LAN has unique LAN address
LAN Address

• MAC address allocation administered by IEEE
• Manufacturer buys portion of MAC address space (to assure uniqueness)

• Analogy
 • MAC address: like Social Security Number
 • IP address: like postal address
• MAC flat address → portability
 • Can move LAN card from one LAN to another
• IP hierarchical address not portable
 • Address depends on IP subnet to which node is attached
ARP: Address Resolution Protocol

Question: how to determine interface’s MAC address, knowing its IP address?

ARP table: each IP node (host, router) on LAN has table

- IP/MAC address mappings for some LAN nodes:

 - `< IP address; MAC address; TTL>`

- TTL (Time To Live): time after which address mapping will be forgotten (typically 20 min)
ARP Protocol: Same LAN

• A wants to send datagram to B
 • B’s MAC address not in A’s ARP table.

• A broadcasts ARP query packet, containing B’s IP address
 • Destination MAC address = FF-FF-FF-FF-FF-FF
 • All nodes on LAN receive ARP query

• B receives ARP packet, replies to A with its (B’s) MAC address
 • frame sent to A’s MAC address (unicast)
ARP Protocol: Same LAN

• A caches (saves) IP-to-MAC address pair in its ARP table until information becomes old (times out)
 • Soft state: information that times out (goes away) unless refreshed

• ARP is **plug-and-play**:
 • Nodes create their ARP tables **without intervention from net administrator**
Addressing: Routing to Another LAN

Walkthrough: **Send datagram from A to B via R**
- Focus on addressing – at IP (datagram) and MAC layer (frame)
- Assume A knows B’s IP address
- Assume A knows IP address of first hop router, R (how?)
- Assume A knows R’s MAC address (how?)

![Diagram showing network topology with nodes A, R, and B, and their respective IP and MAC addresses.](image-url)
Addressing: Routing to Another LAN

- A creates IP datagram with IP source A, destination B
- A creates link-layer frame with R’s MAC address as destination address, frame contains A-to-B IP datagram
Addressing: Routing to Another LAN

• Frame sent from A to R
• Frame received at R, datagram removed, passed up to IP
Addressing: Routing to Another LAN

- R forwards datagram with IP source A, destination B
- R creates link-layer frame with B’s MAC address as destination address, frame contains A-to-B IP datagram
Addressing: Routing to Another LAN

• R forwards datagram with IP source A, destination B
• R creates link-layer frame with B's MAC address as dest, frame contains A-to-B IP datagram
Link Layer

• Error detection, correction
• Multiple access protocols
✓ LANs
 • Addressing, ARP
 ✓ Ethernet
 • Switches
 • VLANS
• Link virtualization: MPLS
• Data center networking
Ethernet

• Dominant wired LAN technology
 • Single chip, multiple speeds (e.g., Broadcom BCM5761)
 • First widely used LAN technology
 • Kept up with speed race: 10 Mbps – 10 Gbps

• **Bus**: popular through mid 90s
 • All nodes in same collision domain (can collide with each other)

• **Star**: prevails today
 • Active **switch** in center
 • Each **spoke** runs a (separate) Ethernet protocol (nodes do not collide with each other)
Ethernet: Physical Topology

- **Bus:** popular through mid 90s
 - All nodes in same collision domain (can collide with each other)
- **Star:** prevails today
 - Active *switch* in center
 - Each *spoke* runs a (separate) Ethernet protocol (nodes do not collide with each other)
Ethernet Frame Structure

• Sending adapter encapsulates IP datagram (or other network layer protocol packet) in **Ethernet frame**

Preamble:
• 7 bytes with pattern 10101010 followed by one byte with pattern 10101011
• Used to synchronize receiver, sender clock rates
Ethernet Frame Structure

- **Addresses**: 6 byte source, destination MAC addresses
 - If adapter receives frame with matching destination address, or with broadcast address (e.g. ARP packet), it passes data in frame to network layer protocol
 - Otherwise, adapter discards frame

- **Type**: Indicates higher layer protocol (mostly IP but others possible, e.g., Novell IPX, AppleTalk)
- **CRC**: Cyclic redundancy check at receiver
 - Error detected: frame is dropped
Ethernet: Unreliable, Connectionless

- **Connectionless**: No handshaking between sending and receiving NICs

- **Unreliable**: receiving NIC doesn't send acks or NACKs to sending NIC
 - Data in dropped frames recovered only if initial sender uses higher layer RDT (e.g., TCP), otherwise dropped data lost

- Ethernet’s MAC protocol: Unslotted **CSMA/CD with binary backoff**
802.3 Ethernet Standards: Link & Physical Layers

• Many different Ethernet standards
 • Common MAC protocol and frame format
 • Different speeds: 2 Mbps, 10 Mbps, 100 Mbps, 1Gbps, 10 Gbps, 40 Gbps
 • Different physical layer media: fiber, cable
Link Layer

- Error detection, correction
- Multiple access protocols

✓ **LANs**
 - Addressing, ARP
 - Ethernet

✓ **Switches**
 - VLANS

- Link virtualization: MPLS
- Data center networking
Ethernet Switch

• **Link-layer device: takes an active role**
 - Store, forward Ethernet frames
 - Examine incoming frame’s MAC address, **selectively** forward frame to one-or-more outgoing links when frame is to be forwarded on segment, uses CSMA/CD to access segment

• **Transparent**
 - Hosts are unaware of presence of switches

• **Plug-and-play, self-learning**
 - Switches do not need to be configured
Switch: Multiple Simultaneous Transmissions

- Hosts have dedicated, direct connection to switch
- Switches buffer packets
- Ethernet protocol used on each incoming link, but no collisions; full duplex
 - Each link is its own collision domain
- **Switching**: A-to-A’ and B-to-B’ can transmit simultaneously, without collisions

Switch Forwarding Table

Q: how does switch know A’ reachable via interface 4, B’ reachable via interface 5?

A: each switch has a switch table, each entry:
 • (MAC address of host, interface to reach host, time stamp)
 • Looks like a routing table!

Q: how are entries created, maintained in switch table?
 • Something like a routing protocol?

Switch: Self-Learning

• **Switch learns** which hosts can be reached through which interfaces
 - When frame received, switch “learns” location of sender: incoming LAN segment
 - Records sender/location pair in switch table
Switch: Frame Filtering/Forwarding

When frame received at switch

- Record incoming link, MAC address of sending host
- Index switch table using MAC destination address
- If entry found for destination

```java
then {
  if destination on segment from which frame arrived then drop frame
  else forward frame on interface indicated by entry
}
else flood /* forward on all interfaces except arriving interface */
```
Self-Learning, Forwarding: Example

• Frame destination, A’, location unknown: **flood**
• Destination A location known: **selectively send on just one link**

<table>
<thead>
<tr>
<th>MAC addr</th>
<th>interface</th>
<th>TTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>60</td>
</tr>
<tr>
<td>A’</td>
<td>4</td>
<td>60</td>
</tr>
</tbody>
</table>

Switch table (initially empty)
Interconnecting Switches

• Self-learning switches can be connected together:

Q: sending from A to G - how does S_1 know to forward frame destined to G via S_4 and S_3?
A: self learning! (works exactly the same as in single-switch case!)
Switches vs. Routers

Both are store-and-forward:

- **Routers**: network-layer devices (examine network-layer headers)
- **Switches**: link-layer devices (examine link-layer headers)

Both have forwarding tables:

- **Routers**: compute tables using routing algorithms, IP addresses
- **Switches**: learn forwarding table using flooding, learning, MAC addresses
Link Layer

• Error detection, correction
• Multiple access protocols

✓ **LANs**
 • Addressing, ARP
 • Ethernet
 • Switches

✓ **VLANS**
 • Link virtualization: MPLS
 • Data center networking
VLANs: Motivation

Consider

• CS user moves office to EE, but wants connect to CS switch?

• Single broadcast domain:
 • All layer-2 broadcast traffic (ARP, DHCP, unknown location of destination MAC address) must cross entire LAN
 • Security/privacy, efficiency issues
VLANs

Virtual Local Area Network

• Switch(es) supporting VLAN capabilities can be configured to define multiple virtual LANS over single physical LAN infrastructure.

• Port-based VLAN: switch ports grouped (by switch management software) so that single physical switch
VLANs

... operates as multiple virtual switches
Port-Based VLAN

- **Traffic isolation**: frames to/from ports 1-8 can only reach ports 1-8
 - Can also define VLAN based on MAC addresses of endpoints, rather than switch port

- **Dynamic membership**: ports can be dynamically assigned among VLANs

- **Forwarding between VLANS**: done via routing (just as with separate switches)
 - In practice vendors sell combined switches plus routers

![Diagram of port-based VLAN with traffic flow and router integration]
• **Trunk port**: carries frames between VLANs defined over multiple physical switches
 * Frames forwarded within VLAN between switches can’t be vanilla 802.1 frames (must carry VLAN ID info)
 * 802.1q protocol adds/removed additional header fields for frames forwarded between trunk ports
802.1Q VLAN Frame Format

![Diagram of 802.1Q VLAN Frame Format]

- **preamble**
- **dest. address**
- **source address**
- **data (payload)**
- **CRC**
- **2-byte Tag Protocol Identifier (value: 81-00)**
- **Tag Control Information (12 bit VLAN ID field, 3 bit priority field like IP TOS)**
- **R recomputed CRC**

802.1 frame

802.1Q frame
Link Layer

• Error detection, correction
• Multiple access protocols
• LANs
 • Addressing, ARP
 • Ethernet
 • Switches
 • VLANS

✓ Link virtualization: MPLS
• Data center networking
MPLS

• Multiprotocol Label Switching
• Initial goal: high-speed IP forwarding using fixed length label (instead of IP address)
 • Fast lookup using fixed length identifier (rather than shortest prefix matching)
 • Borrowing ideas from Virtual Circuit (VC) approach
 • But IP datagram still keeps IP address!
MPLS Capable Routers

• A.k.a. label-switched router

• Forward packets to outgoing interface based only on label value (don’t inspect IP address)
 • MPLS forwarding table distinct from IP forwarding tables

• **Flexibility:** MPLS forwarding decisions can differ from those of IP
 • Use destination and source addresses to route flows to same destination differently (traffic engineering)
 • Re-route flows quickly if link fails: pre-computed backup paths (useful for VoIP)
MPLS Versus IP Paths

- **IP routing**: path to destination determined by destination address alone
MPLS Versus IP Paths

- **IP routing**: path to destination determined by destination address alone
- **MPLS routing**: path to destination can be based on source and destination address
 - **Fast reroute**: precompute backup routes in case of link failure
MPLS Signaling

- Modify OSPF, IS-IS link-state flooding protocols to carry info used by MPLS routing
 - E.g., link bandwidth, amount of **reserved** link bandwidth
- Entry MPLS router uses RSVP-TE signaling protocol to set up MPLS forwarding at downstream routers
MPLS Forwarding Tables

<table>
<thead>
<tr>
<th>in label</th>
<th>out label</th>
<th>dest</th>
<th>out interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>A</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>D</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>A</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>in label</th>
<th>out label</th>
<th>dest</th>
<th>out interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>6</td>
<td>A</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>9</td>
<td>D</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>in label</th>
<th>out label</th>
<th>dest</th>
<th>out interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>6</td>
<td>A</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

R6
R5
R4
R3
R2
D
A
Link Layer

- Error detection, correction
- Multiple access protocols
- LANs
 - Addressing, ARP
 - Ethernet
 - Switches
 - VLANs
- Link virtualization: MPLS

✓ Data center networking
Data Center Networks

• 10’s to 100’s of thousands of hosts, often closely coupled, in close proximity
 • E-business (e.g. Amazon)
 • Content-servers (e.g., YouTube, Akamai, Apple, Microsoft)
 • Search engines, data mining (e.g., Google)

• Challenges
 • Multiple applications, each serving massive numbers of clients
 • Managing/balancing load, avoiding processing, networking, data bottlenecks

Inside a 40-ft Microsoft container, Chicago data center
Data Center Networks

- **Load balancer**: application-layer routing
 - Receives external client requests
 - Directs workload within data center
 - Returns results to external client
 (hiding data center internals from client)
Data Center Networks

• Rich interconnection among switches, racks:
 • Increased throughput between racks (multiple routing paths possible)
 • Increased reliability via redundancy
Summary

• Principles behind data link layer services:
 • Error detection, correction
 • Sharing a broadcast channel: multiple access
 • Link layer addressing

• Instantiation and implementation of various link layer technologies
 • Ethernet
 • Switched LANS, VLANs
 • Virtualized networks as a link layer: MPLS

• Synthesis: a day in the life of a web request
Acknowledgements

• The following materials have been used in preparation of this slide set:

7th Edition
James Kurose, Keith Ross
Pearson
2016

5th Edition
Larry Peterson, Bruce Davie
Morgan Kaufmann
2011