Database Systems I

Relational Algebra

Instructor: Ouldooz Baghban Karimi

CMPT 354 - Summer 2019
Relational Algebra (2)

✓ Review Discussed Operators

• More on Derived Operators

• Combining Operators

• Equivalent Expressions

• Operations on Multisets
Relationship Among Operators

- Select: σ
- Project: π
- Union: \bigcup
- Intersection \cap
- Set difference: $-$
- Cartesian product: \times
- Join: \Join
- Rename: ρ
- Division: $/$
Schemas For Results

• **Union, intersection, and difference**: the schemas of the two operands must be the same, so use that schema for the result

• **Selection**: schema of the result is the same as the schema of the operand

• **Projection**: list of attributes tells us the schema.
Schemas for Results

• **Product**: schema is the attributes of both relations. Use R.A, etc., to distinguish two attributes named A.

• **Theta-join**: same as product.

• **Natural join**: union of the attributes of the two relations.

• **Renaming**: the operator tells the schema
Derived Operators

• Intersection \cap

• Join: \Join
 • Natural Join
 • Theta Join
 • Equijoin
 • Inner Join
 • Outer Join

• Rename: ρ

• Divide: $/$
Intersection

• $R \cap S = R - (R - S)$

 • First subtracting S from R to form a relation T consisting of all those tuples in R but not S.

 • Subtract T from R, leaving only those tuples of R that are also in S.
Relational Algebra (2)

• Review Discussed Operators

✓ More on Derived Operators

• Combining Operators

• Equivalent Expressions

• Operations on Multisets
Division

• R/S
 • Find tuples in R that match all tuples in another relation
 \[\frac{R}{S} = \pi_{(R-S)}(R) - \pi_{(R-S)}[(\pi_{(R-S)}(R) \times S) - R] \]

• R relation with attributes \(A_1, \ldots, A_n, B_1, \ldots, B_m \)
• S relation with attributes \(B_1, \ldots, B_m \) (a subset of R’s attributes)
• \(\frac{R}{S} \) with attributes \(A_1, \ldots, A_n \) is a relation with attributes that consist of all tuples that
 • For every tuple with attributes \(A_1, \ldots, A_n \) concatenated with a tuple with attributes \(B_1, \ldots, B_m \) with values in S the concatenated tuple with attributes \(A_1, \ldots, A_n, B_1, \ldots, B_m \) is in R
Division Example

The relation R:

<table>
<thead>
<tr>
<th>Student</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fred</td>
<td>Database1</td>
</tr>
<tr>
<td>Fred</td>
<td>Database2</td>
</tr>
<tr>
<td>Fred</td>
<td>Compiler1</td>
</tr>
<tr>
<td>Eugene</td>
<td>Database1</td>
</tr>
<tr>
<td>Eugene</td>
<td>Compiler1</td>
</tr>
<tr>
<td>Sarah</td>
<td>Database1</td>
</tr>
<tr>
<td>Sarah</td>
<td>Database2</td>
</tr>
</tbody>
</table>

The relation S:

<table>
<thead>
<tr>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Database1</td>
</tr>
<tr>
<td>Database2</td>
</tr>
</tbody>
</table>

The relation R/S:

<table>
<thead>
<tr>
<th>Student</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fred</td>
</tr>
<tr>
<td>Sarah</td>
</tr>
</tbody>
</table>
Division Derivation In Detail

\[\frac{R}{S} = \pi_{(R-S)}(R) - \pi_{(R-S)} \left[(\pi_{(R-S)}(R) \times S) - R \right] \]

- Start with computing a table with attributes \(A_1, \ldots, A_n\) from \(R\): it will be \(\pi_{(R-S)}(R)\)

- Then find the product of that table with table \(S\): it will be \((\pi_{(R-S)}(R) \times S)\)

- This \((\pi_{(R-S)}(R) \times S)\) table will have attributes \(A_1, \ldots, A_n, B_1, \ldots, B_m\) as a result of the product. It’s attributes \(B_1, \ldots, B_m\) will have values from \(S\)
Division Derivation In Detail

• Then we remove from that table, any tuple that is in initial table R: it will be $[((\pi_{(R-S)}(R) \times S) – R]$

• Finally, we remove all tuples $A_I,..., A_n$ that are in that product, but not in the $A_I,..., A_n$ of R, from the R’s projection of $A_I,..., A_n$ with $R/S = \pi_{(R-S)}(R) – \pi_{(R-S)} [((\pi_{(R-S)}(R) \times S) – R]$

• The last two steps are similar to derivation of intersect
Derived Division Example

The relation R:

<table>
<thead>
<tr>
<th>Student</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fred</td>
<td>Database1</td>
</tr>
<tr>
<td>Fred</td>
<td>Database2</td>
</tr>
<tr>
<td>Fred</td>
<td>Compiler1</td>
</tr>
<tr>
<td>Eugene</td>
<td>Database1</td>
</tr>
<tr>
<td>Eugene</td>
<td>Compiler1</td>
</tr>
<tr>
<td>Sarah</td>
<td>Database1</td>
</tr>
<tr>
<td>Sarah</td>
<td>Database2</td>
</tr>
</tbody>
</table>

The relation S:

<table>
<thead>
<tr>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Database1</td>
</tr>
<tr>
<td>Database2</td>
</tr>
</tbody>
</table>

1. The relation $\pi_{(R-S)}(R)$

<table>
<thead>
<tr>
<th>Student</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fred</td>
</tr>
<tr>
<td>Eugene</td>
</tr>
<tr>
<td>Sarah</td>
</tr>
</tbody>
</table>

2. The relation $(\pi_{(R-S)}(R) \times S)$

<table>
<thead>
<tr>
<th>Student</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fred</td>
<td>Database1</td>
</tr>
<tr>
<td>Fred</td>
<td>Database2</td>
</tr>
<tr>
<td>Eugene</td>
<td>Database1</td>
</tr>
<tr>
<td>Eugene</td>
<td>Database2</td>
</tr>
<tr>
<td>Sarah</td>
<td>Database1</td>
</tr>
<tr>
<td>Sarah</td>
<td>Database2</td>
</tr>
</tbody>
</table>
Derived Division Example

3. \[(\pi_{(R-S)}(R) \times S) - R \]

<table>
<thead>
<tr>
<th>Student</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eugene</td>
<td>Database2</td>
</tr>
</tbody>
</table>

4. \(\pi_{(R-S)} [(\pi_{(R-S)}(R) \times S) - R] \)

<table>
<thead>
<tr>
<th>Student</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eugene</td>
</tr>
</tbody>
</table>

5. \(\pi_{(R-S)}(R) - \pi_{(R-S)} [(\pi_{(R-S)}(R) \times S) - R] \)

<table>
<thead>
<tr>
<th>Student</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fred</td>
</tr>
<tr>
<td>Eugene</td>
</tr>
<tr>
<td>Sarah</td>
</tr>
</tbody>
</table>

6. \(R/S = \pi_{(R-S)}(R) - \pi_{(R-S)} [(\pi_{(R-S)}(R) \times S) - R] \)

<table>
<thead>
<tr>
<th>Student</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fred</td>
</tr>
<tr>
<td>Sarah</td>
</tr>
</tbody>
</table>
Theta Join

\[R \bowtie_C S = \sigma_C (R \times S) \]

- Start with the product \(R \times S \)
- Then apply the selection operator with a condition \(C \)
Natural Join

• $R \bowtie S = \pi_L(\sigma_C (R \times S))$

 • Start with the product $R \times S$

 • Then apply the selection operator with a condition C of the form

 $R. A_1 = S. A_1 \ AND \ R. A_2 = S. A_2 \ AND \ R. A_3 = S. A_3 \ldots \ AND \ R. A_n = S. A_n$

 where A_1,\ldots, A_n are all the attributes appearing in the schemas of both R and S

 • Then we project out one copy of each of the equated attributes.

 L: list of attributes in R followed by attributes in S that are not in R
Equijoin

• Theta join
• Join condition C consists only of equalities

\[R \bowtie_C S = \sigma_C (R \times S) \]

• Start with the product \(R \times S \)
• Then apply the selection operator with a condition \(C \)
• \(C \) consists only of equalities
Joins

• Inner Join
 • Includes only those tuples with matching attributes and the rest are discarded in the resulting relation
 • Natural Join
 • Theta Join
 • Equijoin

• Outer Join
 • Include unmatched tuples from the participating relations
 • Full outer join
 • Left outer join
 • Right outer join
Outer Join

• The outer join (full outer join) $R \bowtie^{outer}_C S$

 • Schema contains union of the (possibly renamed) attributes in R and S

 • Tuples consist of
 • The tuples in the regular join
 • The tuples of R that do not join with any tuple in S, and padded with NULL instead
 • The tuples of S that do not join with any tuple in R, and padded with NULL instead
Left Outer Join

• Left outer join $R \bowtie_{C} S$

 • Schema contains union of the (possibly renamed) attributes in R and S

 • Tuples consist of
 • The tuples in the regular join
 • The tuples of R that do not join with any tuple in S, and padded with NULL instead
Right Outer Join

- Right outer join $R \bowtie^\text{right} C S$

- Schema contains union of the (possibly renamed) attributes in R and S

- Tuples consist of
 - The tuples in the regular join
 - The tuples of S that do not join with any tuple in R, and padded with NULL instead
Outer Join Example

The relation R:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

The relation S:

<table>
<thead>
<tr>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

The relation $R \bowtie_{R.B=S.B}^\text{outer} S$:

<table>
<thead>
<tr>
<th>A</th>
<th>R.B</th>
<th>S.B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>NULL</td>
<td>NULL</td>
<td>NULL</td>
</tr>
<tr>
<td>NULL</td>
<td>NULL</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>
Left Outer Join Example

The relation R:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

The relation S:

<table>
<thead>
<tr>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

The relation $R \bowtie_{R.B=S.B}^{left} S$:

<table>
<thead>
<tr>
<th>A</th>
<th>R.B</th>
<th>S.B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>NULL</td>
<td>NULL</td>
<td>NULL</td>
</tr>
</tbody>
</table>
Right Outer Join Example

The relation \(R \):

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

The relation \(S \):

<table>
<thead>
<tr>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

The relation \(R \bowtie_{R.B=S.B}^\text{right} S \):

<table>
<thead>
<tr>
<th>A</th>
<th>R.B</th>
<th>S.B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>NULL</td>
<td>NULL</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>
Relational Algebra as a Constraint Language

• Two ways to express
 • \(R \) is an expression of relational algebra
 \(R = 0 \) is a constraint
 Meaning: The value of \(R \) must be empty (no tuples in the result of \(R \))

 • \(R \) and \(S \) are expressions of relational algebra
 \(R \subseteq S \) is a constraint
 Meaning: Every tuple in the result of \(R \) must also be in the result of \(S \)
 The result of \(S \) may contain additional tuples not produced by \(R \).
Referential Integrity Constraints

• Asserting a value appearing in one context also appears in another, related context

• Example
 • Movies(title, year, length, genre, studioName, producerC#)
 • StarsIn(movieTitle, movieYear, starName)

• If we want to assert that any movie mentioned in the relation StartsIn also appears in the relation Movies

\[\pi_{\text{movieTitle, movieYear}}(\text{StarsIn}) \subseteq \pi_{\text{title, year}}(\text{Movies}) \]
Key Constraint

• Example
 • The relation movie star with name attribute as key
 \text{MovieStar}(\text{name, address, gender, birthdate})

 • If we construct all pairs of \text{MovieStar} tuples \((t_1, t_2)\), we must not find a pair that agree in the name component and disagree in address components
 • To construct the pairs we use a Cartesian product
 • To search for pairs that violate the condition we use a selection
 • We then assert the constraint by equating the result to 0.
Key Constraint

$$\sigma_{MS1.name=MS2.name \text{ AND } MS1.address\neq MS2.address}(MS1 \times MS2)=0$$

- MS1 in the product $MS1 \times MS2$ is shorthand for the renaming:
 $$\rho_{MS1(name, address, gender, birthdate)}(MovieStar)$$
Additional Operators

• There are additional relational algebra operators
 • Usually used in the context of **query optimization**

• Duplicate elimination – δ
 • Used to turn a bag into a set

• Aggregation operators
 • e.g. sum, average

• Grouping – γ
 • Used to partition tuples into groups
 • Typically used with aggregation
Relational Algebra (2)

• Review Discussed Operators

• More on Derived Operators

✓ Combining Operators

• Equivalent Expressions

• Operations on Multisets
Combining Operators to Form Queries

• Expressions by applying operations to the result of other operations.
 • Parentheses and precedence rules

• Three notations
 • Expression trees
 • Expressions with several operators
 • Sequences of assignment statements
Expressions

• Example

What are the titles and years of movies made by **Fox** that are at least **100** minutes long?

1. Select those Movies tuples that have `length>= 100`

2. Select those Movies tuples that have `studioName = ‘Fox’`

3. Compute the intersection of (1) and (2)

4. Project the relation from (3) onto attributes title and year
Tree Expression

• Evaluated bottom-up
 • Applying the operator at an interior node to the arguments, which are the results of its children.
• Example
 • The two selection nodes: steps (1) and (2)
 • The intersection node: step (3)
 • The projection node is step (4)
Linear Expression

• More than one relational algebra expression that represents the same computation

\[\pi_{\text{title,year}}\left(\sigma_{\text{lengh} \geq 100}(Movies) \cap \sigma_{\text{studioName} = \text{‘Fox’}}(Movies)\right) \]

\[\pi_{\text{title,year}}\left(\sigma_{\text{lengh} \geq 100 \ \text{AND} \ \text{studioName} = \text{‘Fox’}}(Movies)\right) \]
Linear Notation

• Names for temporary relations corresponding to interior nodes of the tree

• Sequence of assignments that create value for each temporary relation

• Flexible order as long as value ready
Linear Notation

• A relation name and parenthesized list of attributes for that relation. The name answer will be used conventionally for the result of the final step
 • i.e. the name of the relation at the root of the expression tree

• The assignment symbol (:=)

• Any algebraic expression on the right
Linear Notation

• \(R(t,y,l,i,s,p) := \sigma_{\text{length} \geq 100}(\text{Movies}) \)

• \(S(t,y,l,i,s,p) := \sigma_{\text{studioName} = 'Fox'}(\text{Movies}) \)

• \(\text{Answer}(\text{title}, \text{year}) := \pi_{t,y}(R \cap S) \)
Relational Algebra (2)

• Review Discussed Operators

• More on Derived Operators

• Combining Operators

✓ Equivalent Expressions

• Operations on Multisets
Equivalent Expressions & Query Optimization

• Query based on expressions similar to relational algebra

• Query asked may have many equivalent expressions
 • Some much more quickly evaluated

• Query optimization: replace one expression of relational algebra by an equivalent expression that is more efficiently evaluated
Equivalent Expressions & Query Optimization

• Semantic equivalence: results are always the same

\[\pi_{\text{title,year}}(\sigma_{\text{length} \geq 100}(\text{Movies}) \cap \sigma_{\text{studioName} = 'Fox'}(\text{Movies})) \]

\[\pi_{\text{title,year}}(\sigma_{\text{length} \geq 100 \ \text{AND} \ \text{studioName} = 'Fox'}(\text{Movies})) \]

• Questions to ask
 • Are they equivalent?
 • Which one is more efficient?
 • Can you make it even more efficient?
Relational Algebra (2)

- Review Discussed Operators
- More on Derived Operators
- Combining Operators
- Equivalent Expressions

✓ Operations on Multisets
Operations on Multisets

• A bag (or multiset) is like a set, but an element may appear more than once.

• Example: \(\{1,2,1,3\}\) is a bag.
• Example: \(\{1,2,3\}\) is also a bag that happens to be a set.
Operations on Multisets

• SQL, the most important query language for relational databases, is actually a bag language.

• Some operations, like projection, are more efficient on bags than sets
Operations on Multisets

• Selection applies to each tuple, so its effect on bags is like its effect on sets.

• Projection also applies to each tuple, but as a bag operator, we do not eliminate duplicates.

• Products and joins are done on each pair of tuples, so duplicates in bags have no effect on how we operate.
Bag Union

• An element appears in the union of two bags the sum of the number of times it appears in each bag.

• Example: \(\{1,2,1\} \cup \{1,1,2,3,1\} = \{1,1,1,1,1,2,2,3\} \)
Bag Intersection

• An element appears in the intersection of two bags the minimum of the number of times it appears in either.

• Example: \(\{1,2,1,1\} \cap \{1,2,1,3\} = \{1,1,2\} \).
Bag Difference

• An element appears in the difference $A - B$ of bags as many times as it appears in A, minus the number of times it appears in B.

• But never less than 0 times.

• Example: $\{1,2,1,1\} - \{1,2,3\} = \{1,1\}$.
Bag Laws are not Set Laws

• Some, but not all algebraic laws that hold for sets also hold for bags.

• Example: the commutative law for union \((R \cup S = S \cup R)\) does hold for bags.

• Since addition is commutative, adding the number of times \(x\) appears in \(R\) and \(S\) does not depend on the order of \(R\) and \(S\).
Law that Fails

• Set union is idempotent, meaning that $S \cup S = S$.

• However, for bags, if x appears n times in S, then it appears $2n$ times in $S \cup S$.

• Thus $S \cup S \neq S$ in general.

• e.g., $\{1\} \cup \{1\} = \{1,1\} \neq \{1\}$.
Summary

• Relational Algebra operators
 • Five core operators: selection, projection, cross-product, union and set difference
 • Additional operators are defined in terms of the core operators
 • E.g. Intersection, join, rename

• SQL and Relational Algebra can express the same class of queries

• Multiple Relational Algebra queries can be equivalent
 • Same semantics but difference performance
 • Form basis for optimizations
Acknowledgements

I have used materials from the following resources in preparation of this course:

• Database Systems: The Complete Book (and slides)
• Database Systems (Kifer, Bernstein, Lewis)
• Database System Concepts: https://www.db-book.com
• Course offerings
 • W 4111 (Eugene Wu - Columbia): https://w4111.github.io/
 • CS 245 (Matei Zaharia - Stanford): http://web.stanford.edu/class/cs245/
 • CS 186 (Joe Hellerstein - Berkeley): https://sites.google.com/site/cs186fall17/