Database Systems I

Final Words

Instructor: Ouldooz Baghban Karimi

CMPT 354 - Summer 2019
Database Systems

1970
Navigational DBs
Relational DBs
SQL

2000
Data Warehouses
OLAP & OLTP
No SQL

2019
Big Data
New SQL
Database Systems I

• Challenges of data-intensive systems
 • Reliability
 • Concurrency
 • Performance
 • Accessibility
 • Security

• Relational Databases
 • Basics (Relational Model of Data, Relational Algebra, SQL)
 • Design (ER Model, Design Theory, Normalization, Constraint & Triggers)
 • Operate (Views, Indexing, Query Processing, Transaction Processing, Database Applications)
What to learn next?

• More on Relational DBMSs
 • Concurrency Control
 • Optimizer Implementation
 • Logging and Recovery Control
 • Join Algorithms
 • …

• High-level Trends & Architectures
 • Data Warehouses
 • Parallel Databases
 • Big Data Processing
 • Cloud Databases
 • …
Data Warehouses

• Collecting and organizing historical data from multiple sources

• Semi-structured & unstructured data

• Data Lake & Data Warehouse
Parallel Data Processing

• Multi-cores
 • Most processors have multiple cores
 • This trend will likely increase in the future

• Big data
 • Too large to fit in main memory
 • Distributed query processing on 100x-1000x servers
 • Widely available now using cloud services

• Parallel DBMSs
 • How to evaluate a parallel DBMS? Speedup (more nodes, same data: higher speed), Scaleup (more nodes, more data: same speed)
 • How to architect a parallel DBMS? Shared Memory, Shared Nothing, Shared Disk
 • How to partition data in a parallel DBMS?
 • Round Robin, Range Partitioning, Hash Partitioning (Load balancing vs. query performance)
Big Data Processing

• **Volume**: Data Size

• **Velocity**: Rate of data generation

• **Variety**: Data sources, formats, and workloads

• **Veracity**: Trustworthiness
Cloud Databases

- Internet-based computing
 - Amazon
 - Aurora (relational Database Engine)
 - Redshift (petabyte-scale data warehouse)
 - Microsoft
 - Azure SQL Server
 - Azure SQL Data Warehouse
 - Google
 - Spanner (relational database service)
 - BigQuery

\[
\text{Application} + \text{Cloud} = \text{SaaS} \text{ (Software as a service)}
\]
\[
\text{Platform} + \text{Cloud} = \text{PaaS} \text{ (Platform as a service)}
\]
\[
\text{Infrastructure} + \text{Cloud} = \text{IaaS} \text{ (Infrastructure as a service)}
\]

Picture from: https://azure.microsoft.com/en-ca/overview/what-is-paas/
Acknowledgements

I have used materials from the following resources in preparation of this course:

- **Database Systems: The Complete Book**
- **Database Systems (Kifer, Bernstein, Lewis)**
- **Database System Concepts**: https://www.db-book.com
- **Course offerings**
 - **CMPT 354 (Jiannan Wang - SFU)**: https://sfu-db.github.io/cmpt354/
 - **W 4111 (Eugene Wu - Columbia)**: https://w4111.github.io/
 - **CS 186 (Joe Hellerstein - Berkeley)**: https://sites.google.com/site/cs186fall17/
 - **CSE 344 (Dan Suciu - Washington)**: https://courses.cs.washington.edu/courses/cse344/17au/