
CMPT 882 Assignment 2 
• Due Mar. 8 at 23:59:59 

• Please submit your solution on CourSys via pdf upload 

 

1. Sequential Quadratic Programming. Use Sequential Quadratic Programming to solve the NLP, 

introduced in class. You may use any software to solve the quadratic subproblems. (The solution will 

be given in cvx). 

minimize sin(𝜋𝑥) sin(2𝜋𝑦)  
subject to −1 ≤ 𝑥 ≤ 1  

−1 ≤ 𝑦 ≤ 1  
 

a) Construct a quadratic subproblem that minimizes the quadratic approximation of the objective, 

subject to linearization of the constraints, centred around a given iterate 𝑥𝑘. 

 

b) Write code to solve the above quadratic subproblem using cvx. 

 

c) Write code to solve the entire NLP, starting from several different initial points 𝑥0. Make a plot 

showing several sequences of {𝑥𝑘} starting these initial points. 

  



2. Differential Flatness. Consider the following simple model of the car (that is slightly more complex 

than the one introduced in class: 

�̇� = 𝑣 cos 𝜃 

�̇� = 𝑣 sin𝜃 

�̇� = 𝜔 

�̇� = 𝑎 

The states consist of the position (𝑥, 𝑦), the heading 𝜃, and the longitudinal speed 𝑣. The controls are 

the turn rate 𝜔 and the longitudinal acceleration 𝑎. 

a) Show that the system is differentially flat by letting 𝑧 = (𝑥, 𝑦), and deriving the functions 𝛽 and 

𝛾 such that (𝑥, 𝑦, 𝜃, 𝑣) = 𝛽(𝑧, �̇�, … , 𝑧(𝑞)), (𝜔, 𝑎) = 𝛾(𝑧, �̇�, … , 𝑧(𝑞)). 

 

b) Consider a maneuver given by the following initial condition at 𝑡 = 0 and final condition at 𝑡 =

𝑇 = 10: 

[
 
 
 
𝑥(0)

𝑦(0)

𝜃(0)

𝑣(0)]
 
 
 
= [

0
0
0
1

] ,

[
 
 
 
𝑥(𝑇)

𝑦(𝑇)

𝜃(𝑇)

𝑣(𝑇)]
 
 
 
=

[
 
 
 
 
0
0
𝜋

2
1]
 
 
 
 

 

Using the basis functions 𝜓0(𝑡) = 1,𝜓1(𝑡) = 𝑡, 𝜓2 = 𝑡2, 𝜓3 = 𝑡3, 𝜓4 = 𝑡4, we parameterize the 

flat outputs as follows: 

𝑥(𝑡) = ∑𝑏0𝑖𝜓𝑖(𝑡)

3

𝑖=0

 

𝑦(𝑡) = ∑𝑏1𝑖𝜓𝑖(𝑡)

3

𝑖=0

 

Write a system of equations in terms of the coefficients {𝑏0𝑖} and {𝑏1𝑖} such that the initial and 

final conditions are satisfied. 

c) Solve the above systems of equations using a software of your choice to obtain and plot the 

state and control trajectories.  

 



3. Multiple Shooting with Casadi. Consider a system involving an 

inverted pendulum on a cart. For this system, the state is 

(𝑥, 𝑣, 𝜃, 𝜔), representing the position of the cart, speed of the 

cart, angle of the pendulum, and angular speed of the pendulum, 

respectively. The initial state at time 𝑡 = 0 is (0,0,0,0). 

The problem parameters are as follows: 𝑀 = 0.5 kg is the mass of 

the cart, 𝑚 = 0.2 kg is the mass of the pendulum, 𝑙 = 0.3 m is the 

half-length of the pendulum, 𝐼 = 0.006 kg∙m2  is the moment of 

inertial of the pendulum. 

We would like to apply a force 𝐹(𝑡) such that at time 𝑡 =  5 s, the cart is stopped at the origin, with the 

pendulum being stationary at the upright position, represented by the state (0,0, 𝜋, 0). At the same 

time, we would like to minimize the control effort, given by the integral ∫ 𝐹2(𝑡)𝑑𝑡
5

𝑡=0
, while ensuring 

that the position of the cart stays within 1 m of the origin, |𝑥| ≤ 1. The control is also limited by 

|𝐹(𝑡)| ≤ 0.2 at all times. 

The equations of motion are given by  

(𝑀 + 𝑚)�̈� + 𝑏�̇� + 𝑚𝑙�̈� cos 𝜃 − 𝑚𝑙�̇�2 sin𝜃 = 𝐹 

(𝐼 + 𝑚𝑙2)�̈� + 𝑚𝑔𝑙 sin𝜃 = −𝑚𝑙�̈� cos 𝜃 

where 𝑏 =  0.1 N/m/s is the coefficient of friction, and 𝑔 =  9.81 m/s/s is the acceleration due to 

gravity on Earth. In terms of a first-order ODE, we have �̇� = 𝑣, �̇� = 𝜔. The rest of the system dynamics, 

for (𝑣, 𝜔), can be implicitly written as 

[
𝑀 + 𝑚 𝑚𝑙 cos𝜃
𝑚𝑙 cos 𝜃 𝐼 + 𝑚𝑙2

] [
�̇�
�̇�

] = [
−𝑏𝑣 + 𝑚𝑙𝜔2 sin 𝜃 + 𝐹

−𝑚𝑔𝑙 sin𝜃
] 

a) Write down the associated optimal control problem. 

 

b) Discretize the optimal control problem using the multiple shooting method and write down the 

resulting nonlinear program. Use 𝑁 = 50 time intervals, forward Euler integration, and left 

endpoint first order integration (the same schemes as presented in the lecture). 

 

c) Using the Casadi toolbox, which can be found at https://github.com/casadi/casadi/wiki, solve 

the nonlinear program, and plot (𝑥(𝑡), 𝑣(𝑡), 𝜃(𝑡), 𝜔(𝑡)), and 𝐹(𝑡). A good starting point is the 

direct multiple shooting example at https://github.com/casadi/casadi/wiki/examples. 

  

https://github.com/casadi/casadi/wiki
https://github.com/casadi/casadi/wiki/examples


4. Reachability Analysis. Consider a kinematic model of a fixed-wing aircraft flying in the presence of 

wind, given as follows: 

�̇� = 𝑣 cos 𝜃 + 𝑑𝑥 
�̇� = 𝑣 sin 𝜃 + 𝑑𝑦 

�̇� = 𝑢 + 𝑑𝜃 

The state (𝑥, 𝑦, 𝜃) consists of 𝑥- and 𝑦- position, and heading 𝜃. The aircraft flies at a constant speed 

𝑣 = 0.3 km/s, and controls its turn rate 𝑢, with |𝑢| ≤ 0.5 rad/s. The effect of wind is modeled by the 

disturbance 𝑑 = (𝑑𝑥 , 𝑑𝑦 , 𝑑𝜃) with |𝑑𝑥|, |𝑑𝑦| ≤ 50 m/s, and |𝑑𝜃| ≤ 0.005 rad/s. 

The aircraft aims to arrive at its next waypoint at 𝑥 = 2 km, 𝑦 = 2 km, 𝜃 =
3𝜋

8
, with an acceptable 

tolerance of 200 m in distance and 
𝜋

10
 in heading. We now proceed to compute all possible initial 

states and times that can reach the setpoint within tolerance at time 𝑡 = 0. 

a) What is the target set 𝒯 representing the acceptable set of states for reaching the waypoint 

within the tolerances? What is a suitable function 𝑙(𝑥, 𝑦, 𝜃) such that 𝑙(𝑥, 𝑦, 𝜃) ≤ 0 ⇔ (𝑥, 𝑦, 𝜃) ∈

𝒯? 

 

b) The value function 𝑉(𝑡, 𝑥, 𝑦, 𝜃) representing the set of states from which the aircraft can reach 

the target set within 𝒕 seconds is the solution to the HJI variational inequality 

min {
𝜕𝑉

𝜕𝑡
(𝑡, 𝑥, 𝑦, 𝜃) + min

𝑢∈𝒰
max
𝑑∈𝒟

𝜕𝑉

𝜕𝑥
(𝑡, 𝑥, 𝑦, 𝜃)⊤𝑓(𝑥, 𝑦, 𝜃, 𝑢, 𝑑) , 𝑙(𝑥) − 𝑉(𝑡, 𝑥)} = 0 

where 𝑓(𝑥, 𝑦, 𝜃, 𝑢, 𝑑) is given by the system dynamics. Determine the optimal 𝑢 and 𝑑 optimizes 

the min-max expression. That is find an analytic expression for 𝑢∗ and 𝑑∗, where 

𝑢∗(𝑡, 𝑥, 𝑦, 𝜃) = argmin
𝑢∈𝒰

max
𝑑∈𝒟

∇𝑉(𝑡, 𝑥, 𝑦, 𝜃)⊤𝑓(𝑥, 𝑦, 𝜃, 𝑢, 𝑑) 

𝑑∗(𝑡, 𝑥, 𝑦, 𝜃) = argmax
𝑑∈𝒟

∇𝑉(𝑡, 𝑥, 𝑦, 𝜃)⊤𝑓(𝑥, 𝑦, 𝜃, 𝑢∗, 𝑑) 

and 𝑢 ∈ 𝒰 and 𝑑 ∈ 𝒟 represents the bounds on the control and disturbances. 

 

c) Compute 𝑉(𝑡, 𝑥, 𝑦, 𝜃) from 𝑡 = −10 to 𝑡 = 0 using the helperOC toolbox, which can be found at 

https://github.com/HJReachability/helperOC. A good starting point is tutorial.m. Use the visSetIm 

and proj functions to visualize the following: 𝑉(𝑡 = −10, 𝑥, 𝑦, 𝜃), 𝑉(𝑡 = −5, 𝑥, 𝑦, 𝜃), 𝑉(𝑡 =

−10, 𝑥, 𝑦, 𝜃 = 0), 𝑉(𝑡 = −10, 𝑥, 𝑦 = 0, 𝜃). 

 

For your computation, use the following recommended grid bounds and resolution: 𝑥 ∈ [−2,5] 

with 45 grid points, 𝑦 ∈ [−2.5,4] with 45 grid points, 𝜃 ∈ [−𝜋, 𝜋] with 35 grid points. 

 

https://github.com/HJReachability/helperOC

