Review: Linear Algebra
 CMPT 882
 Jan. 7, 2018

Outline

- Notation
- Linear maps
- Norms
- Diagonalization and Jordan form
- Functions of matrices

Notation

- Sets of numbers: $\mathbb{Z}, \mathbb{R}, \mathbb{R}^{n}, \mathbb{R}^{n \times m}, \mathbb{R}_{+}, \mathbb{C}^{n}$
- Membership and Quantifiers: $\in, \notin, \forall, \exists, \exists$!
- $x \in S, y \notin S$

Notation

- Sets of numbers: $\mathbb{Z}, \mathbb{R}, \mathbb{R}^{n}, \mathbb{R}^{n \times m}, \mathbb{R}_{+}, \mathbb{C}^{n}$
- Membership and Quantifiers: $\in, \notin, \forall, \exists, \exists$!
- $x \in S, y \notin S$
- $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}$ such that $x+y=0$

Notation

- Sets of numbers: $\mathbb{Z}, \mathbb{R}, \mathbb{R}^{n}, \mathbb{R}^{n \times m}, \mathbb{R}_{+}, \mathbb{C}^{n}$
- Membership and Quantifiers: $\in, \notin, \forall, \exists, \exists$!
- $x \in S, y \notin S$
- $\forall x \in \mathbb{R}, \exists!y \in \mathbb{R}, x+y=0$

Notation

- Sets of numbers: $\mathbb{Z}, \mathbb{R}, \mathbb{R}^{n}, \mathbb{R}^{n \times m}, \mathbb{R}_{+}, \mathbb{C}^{n}$
- Membership and Quantifiers: $\in, \notin, \forall, \exists, \exists$!
- $x \in S, y \notin S$
- $\forall x \in \mathbb{R}, \exists!y \in \mathbb{R}, x+y=0$
- $\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, x+y=0$

Notation

- Sets of numbers: $\mathbb{Z}, \mathbb{R}, \mathbb{R}^{n}, \mathbb{R}^{n \times m}, \mathbb{R}_{+}, \mathbb{C}^{n}$
- Membership and Quantifiers: $\in, \notin, \forall, \exists, \exists$!
- $x \in S, y \notin S$
- $\forall x \in \mathbb{R}, \exists!y \in \mathbb{R}, x+y=0$
- $\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, x+y=0$,

This is false

Notation

- Sets of numbers: $\mathbb{Z}, \mathbb{R}, \mathbb{R}^{n}, \mathbb{R}^{n \times m}, \mathbb{R}_{+}, \mathbb{C}^{n}$
- Membership and Quantifiers: $\in, \notin, \forall, \exists, \exists$!
- $x \in S, y \notin S$
- $\forall x \in \mathbb{R}, \exists!y \in \mathbb{R}, x+y=0$
- $\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, x+y=0$
- Implications and negation: $\Rightarrow, \Leftarrow, \Leftrightarrow$, $ᄀ$
$\cdot z \in S_{2} \Rightarrow z \in S, y \notin S \Leftrightarrow \neg(y \in S)$
- $p \Rightarrow q$ and $p \Leftarrow q$ means $p \Leftrightarrow q$

Basis

- Let $v_{1}, v_{2}, \ldots, v_{p}$ be vectors in \mathbb{R}^{n}
- They are linearly independent if and only if

$$
\alpha_{1} v_{1}+\alpha_{2} v_{2}+\cdots+\alpha_{p} v_{p}=0 \Rightarrow \alpha_{1}=\alpha_{2}=\cdots=\alpha_{p}=0
$$

Basis

- Let $v_{1}, v_{2}, \ldots, v_{p}$ be vectors in \mathbb{R}^{n}
- They are linearly independent if and only if

$$
\alpha_{1} v_{1}+\alpha_{2} v_{2}+\cdots+\alpha_{p} v_{p}=0 \Rightarrow \alpha_{1}=\alpha_{2}=\cdots=\alpha_{p}=0
$$

- A set of vectors $B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ is a basis of \mathbb{R}^{n} if and only if
$\cdot \forall v \in \mathbb{R}^{n}, \exists \alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \in \mathbb{R}$ such that $v=\alpha_{1} b_{1}+\alpha_{2} b_{2}+\cdots+\alpha_{n} b_{n}$
- $\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ is a linearly independent set of vectors
- Bases of \mathbb{R}^{2} :
- $\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\},\left\{\left[\begin{array}{l}2 \\ 3\end{array}\right],\left[\begin{array}{c}1 \\ -1\end{array}\right]\right\} \quad \longleftrightarrow$

Linear Maps

- Represented by a matrix $A \in \mathbb{R}^{m \times n}$, if input and output are vectors
- $\mathcal{A}: v \rightarrow A v$
- Operates on a vector $v \in \mathbb{R}^{n}$; outputs $w=A v \in \mathbb{R}^{m}$
- Linearity: $\mathcal{A}\left(a_{1} v_{1}+a_{2} v_{2}\right)=a_{1} \mathcal{A}\left(v_{1}\right)+a_{2} \mathcal{A}\left(v_{2}\right)$
- for all scalars $a_{1}, a_{2} \in \mathbb{R}$, vectors $v_{1}, v_{2} \in \mathbb{R}^{n}$

Linear Maps

- Represented by a matrix $A \in \mathbb{R}^{m \times n}$, if input and output are vectors
- $\mathcal{A}: v \rightarrow A v$
- Operates on a vector $v \in \mathbb{R}^{n}$; outputs $w=A v \in \mathbb{R}^{m}$
- Linearity: $\mathcal{A}\left(a_{1} v_{1}+a_{2} v_{2}\right)=a_{1} \mathcal{A}\left(v_{1}\right)+a_{2} \mathcal{A}\left(v_{2}\right)$
- for all scalars $a_{1}, a_{2} \in \mathbb{R}$, vectors $v_{1}, v_{2} \in \mathbb{R}^{n}$
- Range space: $R(\mathcal{A})=\left\{w \mid w=\mathcal{A}(v), v \in \mathbb{R}^{n}\right\} \subseteq \mathbb{R}^{m}$
- Also known as the image of \mathcal{A}
- Null space: $N(\mathcal{A})=\{v \mid \mathcal{A} v=0\} \subseteq \mathbb{R}^{n}$
- Also known as the kernel of \mathcal{A}

Linear Maps

- Example: $A=\left[\begin{array}{lll}1 & 4 & 2 \\ 1 & 4 & 2\end{array}\right]$
- $R(A)=\operatorname{span}\left(\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)=$ all vectors in the form $\left[\begin{array}{l}t \\ t\end{array}\right], t \in \mathbb{R}$
- In general, the range of a matrix is given by all linear combinations of its columns

Linear Maps

- Example: $A=\left[\begin{array}{lll}1 & 4 & 2 \\ 1 & 4 & 2\end{array}\right]$
- $R(A)=\operatorname{span}\left(\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)=$ all vectors in the form $\left[\begin{array}{l}t \\ t\end{array}\right], t \in \mathbb{R}$
- In general, the range of a matrix is given by all linear combinations of its columns
- $N(A)=\operatorname{span}\left(\left[\begin{array}{c}2 \\ -1 \\ 1\end{array}\right],\left[\begin{array}{c}2 \\ 1 \\ -3\end{array}\right]\right)$

Linear Maps

- Example: $A=\left[\begin{array}{lll}1 & 4 & 2 \\ 1 & 4 & 2\end{array}\right]$
- $R(A)=\operatorname{span}\left(\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)=$ all vectors in the form $\left[\begin{array}{l}t \\ t\end{array}\right], t \in \mathbb{R}$
- In general, the range of a matrix is given by all linear combinations of its columns
- $N(A)=\operatorname{span}\left(\left[\begin{array}{c}2 \\ -1 \\ 1\end{array}\right],\left[\begin{array}{c}2 \\ 1 \\ -3\end{array}\right]\right)$
- Matlab:
- $A=\operatorname{sym}\left(\left[\begin{array}{llllll}1 & 4 & 2 ; & 1 & 2\end{array}\right]\right)$;
- colspace(A)
- null(A)

Linear Maps

- In general, an operator \mathcal{A} may not have vectors as inputs and outputs
- We use \mathcal{A} to denote the map in this case
- These maps may be linear!

Linear Maps

- In general, an operator \mathcal{A} may not have vectors as inputs and outputs
- We use \mathcal{A} to denote the map in this case
- These maps may be linear!
- Consider the map $\mathcal{A}: a s^{2}+b s+c \rightarrow c s^{2}+b s+a$
- Maps quadratic functions to quadratic functions
- Input and outputs are functions

Linear Maps

- In general, an operator \mathcal{A} may not have vectors as inputs and outputs
- We use \mathcal{A} to denote the map in this case
- These maps may be linear!
- Consider the map $\mathcal{A}: a s^{2}+b s+c \rightarrow c s^{2}+b s+a$
- Maps quadratic functions to quadratic functions
- Input and outputs are functions
- Is the above map linear?

Linear Maps

- In general, an operator \mathcal{A} may not have vectors as inputs and outputs
- We use \mathcal{A} to denote the map in this case
- These maps may be linear!
- Consider the map $\mathcal{A}: a s^{2}+b s+c \rightarrow c s^{2}+b s+a$
- Maps quadratic functions to quadratic functions
- Input and outputs are functions
- Is the above map linear?
- Let $v_{1}=a_{1} s^{2}+b_{1} s+c_{1}, v_{2}=a_{2} s^{2}+b_{2} s+c_{2}$
- Check whether $\mathcal{A}\left(\alpha_{1} v_{1}+\alpha_{2} v_{2}\right)=\alpha_{1} \mathcal{A}\left(v_{1}\right)+\alpha_{2} \mathcal{A}\left(v_{2}\right)$

Linear Maps: Example 1

- Consider the map $\mathcal{A}: a s^{2}+b s+c \rightarrow c s^{2}+b s+a$
- Is the above map linear?
- Let $v_{1}=a_{1} s^{2}+b_{1} s+c_{1}, v_{2}=a_{2} s^{2}+b_{2} s+c_{2}$
- Check whether $\mathcal{A}\left(\alpha_{1} v_{1}+\alpha_{2} v_{2}\right)=\alpha_{1} \mathcal{A}\left(v_{1}\right)+\alpha_{2} \mathcal{A}\left(v_{2}\right)$

$$
\mathcal{A}\left(\alpha_{1} v_{1}+\alpha_{2} v_{2}\right)=\mathcal{A}\left(\alpha_{1} a_{1} s^{2}+\alpha_{1} b_{1} s+\alpha_{1} c_{1}+\alpha_{2} a_{2} s^{2}+\alpha_{2} b_{2} s+\alpha_{2} c_{2}\right)
$$

Linear Maps: Example

- Consider the map $\mathcal{A}: a s^{2}+b s+c \rightarrow c s^{2}+b s+a$
- Is the above map linear?
- Let $v_{1}=a_{1} s^{2}+b_{1} s+c_{1}, v_{2}=a_{2} s^{2}+b_{2} s+c_{2}$
- Check whether $\mathcal{A}\left(\alpha_{1} v_{1}+\alpha_{2} v_{2}\right)=\alpha_{1} \mathcal{A}\left(v_{1}\right)+\alpha_{2} \mathcal{A}\left(v_{2}\right)$

$$
\begin{aligned}
\mathcal{A}\left(\alpha_{1} v_{1}+\alpha_{2} v_{2}\right)= & \mathcal{A}\left(\alpha_{1} a_{1} s^{2}+\alpha_{1} b_{1} s+\alpha_{1} c_{1}+\alpha_{2} a_{2} s^{2}+\alpha_{2} b_{2} s+\alpha_{2} c_{2}\right) \\
& =\mathcal{A}\left(\left(\alpha_{1} a_{1}+\alpha_{2} a_{2}\right) s^{2}+\left(\alpha_{1} b_{1}+\alpha_{2} b_{2}\right) s+\left(\alpha_{1} c_{1}+\alpha_{2} c_{2}\right)\right)
\end{aligned}
$$

Linear Maps: Example

- Consider the map $\mathcal{A}: a s^{2}+b s+c \rightarrow c s^{2}+b s+a$
- Is the above map linear?
- Let $v_{1}=a_{1} s^{2}+b_{1} s+c_{1}, v_{2}=a_{2} s^{2}+b_{2} s+c_{2}$
- Check whether $\mathcal{A}\left(\alpha_{1} v_{1}+\alpha_{2} v_{2}\right)=\alpha_{1} \mathcal{A}\left(v_{1}\right)+\alpha_{2} \mathcal{A}\left(v_{2}\right)$

$$
\begin{aligned}
\mathcal{A}\left(\alpha_{1} v_{1}+\alpha_{2} v_{2}\right)= & \mathcal{A}\left(\alpha_{1} a_{1} s^{2}+\alpha_{1} b_{1} s+\alpha_{1} c_{1}+\alpha_{2} a_{2} s^{2}+\alpha_{2} b_{2} s+\alpha_{2} c_{2}\right) \\
& =\mathcal{A}\left(\left(\alpha_{1} a_{1}+\alpha_{2} a_{2}\right) s^{2}+\left(\alpha_{1} b_{1}+\alpha_{2} b_{2}\right) s+\left(\alpha_{1} c_{1}+\alpha_{2} c_{2}\right)\right) \\
& =\left(\alpha_{1} c_{1}+\alpha_{2} c_{2}\right) s^{2}+\left(\alpha_{1} b_{1}+\alpha_{2} b_{2}\right) s+\left(\alpha_{1} a_{1}+\alpha_{2} a_{2}\right)
\end{aligned}
$$

Linear Maps: Example

- Consider the map $\mathcal{A}: a s^{2}+b s+c \rightarrow c s^{2}+b s+a$
- Is the above map linear?
- Let $v_{1}=a_{1} s^{2}+b_{1} s+c_{1}, v_{2}=a_{2} s^{2}+b_{2} s+c_{2}$
- Check whether $\mathcal{A}\left(\alpha_{1} v_{1}+\alpha_{2} v_{2}\right)=\alpha_{1} \mathcal{A}\left(v_{1}\right)+\alpha_{2} \mathcal{A}\left(v_{2}\right)$

$$
\begin{aligned}
\mathcal{A}\left(\alpha_{1} v_{1}+\alpha_{2} v_{2}\right)= & \mathcal{A}\left(\alpha_{1} a_{1} s^{2}+\alpha_{1} b_{1} s+\alpha_{1} c_{1}+\alpha_{2} a_{2} s^{2}+\alpha_{2} b_{2} s+\alpha_{2} c_{2}\right) \\
& =\mathcal{A}\left(\left(\alpha_{1} a_{1}+\alpha_{2} a_{2}\right) s^{2}+\left(\alpha_{1} b_{1}+\alpha_{2} b_{2}\right) s+\left(\alpha_{1} c_{1}+\alpha_{2} c_{2}\right)\right) \\
& =\left(\alpha_{1} c_{1}+\alpha_{2} c_{2}\right) s^{2}+\left(\alpha_{1} b_{1}+\alpha_{2} b_{2}\right) s+\left(\alpha_{1} a_{1}+\alpha_{2} a_{2}\right) \\
& =\alpha_{1} c_{1} s^{2}+\alpha_{1} b_{1} s+\alpha_{1} a_{1}+\alpha_{2} c_{2} s^{2}+\alpha_{2} b_{2} s+\alpha_{2} a_{2}
\end{aligned}
$$

Linear Maps: Example

- Consider the map $\mathcal{A}: a s^{2}+b s+c \rightarrow c s^{2}+b s+a$
- Is the above map linear?
- Let $v_{1}=a_{1} s^{2}+b_{1} s+c_{1}, v_{2}=a_{2} s^{2}+b_{2} s+c_{2}$
- Check whether $\mathcal{A}\left(\alpha_{1} v_{1}+\alpha_{2} v_{2}\right)=\alpha_{1} \mathcal{A}\left(v_{1}\right)+\alpha_{2} \mathcal{A}\left(v_{2}\right)$

$$
\begin{aligned}
\mathcal{A}\left(\alpha_{1} v_{1}+\alpha_{2} v_{2}\right)= & \mathcal{A}\left(\alpha_{1} a_{1} s^{2}+\alpha_{1} b_{1} s+\alpha_{1} c_{1}+\alpha_{2} a_{2} s^{2}+\alpha_{2} b_{2} s+\alpha_{2} c_{2}\right) \\
& =\mathcal{A}\left(\left(\alpha_{1} a_{1}+\alpha_{2} a_{2}\right) s^{2}+\left(\alpha_{1} b_{1}+\alpha_{2} b_{2}\right) s+\left(\alpha_{1} c_{1}+\alpha_{2} c_{2}\right)\right) \\
& =\left(\alpha_{1} c_{1}+\alpha_{2} c_{2}\right) s^{2}+\left(\alpha_{1} b_{1}+\alpha_{2} b_{2}\right) s+\left(\alpha_{1} a_{1}+\alpha_{2} a_{2}\right) \\
& =\alpha_{1} c_{1} s^{2}+\alpha_{1} b_{1} s+\alpha_{1} a_{1}+\alpha_{2} c_{2} s^{2}+\alpha_{2} b_{2} s+\alpha_{2} a_{2} \\
& =\alpha_{1} \mathcal{A}\left(v_{1}\right)+\alpha_{2} \mathcal{A}\left(v_{2}\right)
\end{aligned}
$$

Linear Maps: Example

- Consider the map $\mathcal{A}: a s^{2}+b s+c \rightarrow c s^{2}+b s+a$
- Is the above map linear?
- Let $v_{1}=a_{1} s^{2}+b_{1} s+c_{1}, v_{2}=a_{2} s^{2}+b_{2} s+c_{2}$
- Check whether $\mathcal{A}\left(\alpha_{1} v_{1}+\alpha_{2} v_{2}\right)=\alpha_{1} \mathcal{A}\left(v_{1}\right)+\alpha_{2} \mathcal{A}\left(v_{2}\right)$

$$
\begin{aligned}
\mathcal{A}\left(\alpha_{1} v_{1}+\alpha_{2} v_{2}\right)= & \mathcal{A}\left(\alpha_{1} a_{1} s^{2}+\alpha_{1} b_{1} s+\alpha_{1} c_{1}+\alpha_{2} a_{2} s^{2}+\alpha_{2} b_{2} s+\alpha_{2} c_{2}\right) \\
& =\mathcal{A}\left(\left(\alpha_{1} a_{1}+\alpha_{2} a_{2}\right) s^{2}+\left(\alpha_{1} b_{1}+\alpha_{2} b_{2}\right) s+\left(\alpha_{1} c_{1}+\alpha_{2} c_{2}\right)\right) \\
& =\left(\alpha_{1} c_{1}+\alpha_{2} c_{2}\right) s^{2}+\left(\alpha_{1} b_{1}+\alpha_{2} b_{2}\right) s+\left(\alpha_{1} a_{1}+\alpha_{2} a_{2}\right) \\
& =\alpha_{1} c_{1} s^{2}+\alpha_{1} b_{1} s+\alpha_{1} a_{1}+\alpha_{2} c_{2} s^{2}+\alpha_{2} b_{2} s+\alpha_{2} a_{2} \\
\text { map is linear } & =\alpha_{1} \mathcal{A}\left(v_{1}\right)+\alpha_{2} \mathcal{A}\left(v_{2}\right)
\end{aligned}
$$

Linear Map Properties

- Matrix inverse
- System of equations, $A x=b, A \in \mathbb{R}^{n \times n}$
- Solution: $x=A^{-1} b$, if a solution exists
- However, try not to do this in Matlab. Instead, use $x=A \backslash b$
- If $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, then $A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$
- A is singular if it does not have an inverse
- Columns of A are not linear independent $\Leftrightarrow A$ is singular
- Non-commutative in general
- $\mathcal{A}(\mathcal{B}(x)) \neq \mathcal{B}(\mathcal{A}(x))$

Linear Map Properties

- Matrix determinant
- If $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, then $\operatorname{det} A=a d-b c$

- If $A=\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]$, then $\operatorname{det} A=a \operatorname{det}\left(\left[\begin{array}{ll}e & f \\ h & i\end{array}\right]\right)-b \operatorname{det}\left(\left[\begin{array}{ll}d & f \\ g & i\end{array}\right]\right)+c \operatorname{det}\left(\left[\begin{array}{ll}d & e \\ g & h\end{array}\right]\right)$
- Can be defined recursively
- $\operatorname{det} A=0 \Leftrightarrow A$ is singular

Linear Map Properties

- Let A be a linear map from $\mathcal{U} \rightarrow \mathcal{V}$, and $b \in \mathcal{V}$, then
- $A u=b$ has at least one solution $\Leftrightarrow b \in R(A)$
- If $b \in R(A)$, then
- $A u=b$ has a unique solution $\Leftrightarrow N(A)=\left\{\theta_{u}\right\}$
- Let x_{0} be such that $A x_{0}=b$. Then, $A x=b \Leftrightarrow x-x_{0} \in N(A)$

Norms

- A norm is a map $\|\cdot\|: \mathcal{V} \rightarrow \mathbb{R}_{+}$satisfying
- $\forall v_{1}, v_{2} \in \mathcal{V},\left\|v_{1}+v_{2}\right\| \leq\left\|v_{1}\right\|+\left\|v_{2}\right\|$ (triangle inequality)
- $\forall \alpha \in \mathbb{R}, v \in \mathcal{V},\|\alpha v\|=|\alpha|\|v\|$
- $\forall v \in \mathcal{V},\|v\|=0 \Leftrightarrow v=\theta_{v}$

Norms

- A norm is a map $\|\cdot\|: \mathcal{V} \rightarrow \mathbb{R}_{+}$satisfying
- $\forall v_{1}, v_{2} \in \mathcal{V},\left\|v_{1}+v_{2}\right\| \leq\left\|v_{1}\right\|+\left\|v_{2}\right\|$ (triangle inequality)
- $\forall \alpha \in \mathbb{R}, v \in \mathcal{V},\|\alpha v\|=|\alpha|\|v\|$
- $\forall v \in \mathcal{V},\|v\|=0 \Leftrightarrow v=\theta_{v}$
- Examples in \mathbb{R}^{n}
- $\|x\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|$ (" 1 -norm", or " l_{1} norm")
- $\|x\|_{2}=\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{\frac{1}{2}}$ ("2-norm", or " l_{2} norm")
- $\|x\|_{p}=\left(\sum_{i=1}^{n} x_{i}^{p}\right)^{\frac{1}{p}}$ (" p-norm", or " l_{p} norm")
- $\|x\|_{\infty}=$ max $_{i}\left|x_{i}\right|$ (" ∞-norm", or " l_{∞} norm")

Norms

- A norm is a map $\|\cdot\|: \mathcal{V} \rightarrow \mathbb{R}_{+}$satisfying
- $\forall v_{1}, v_{2} \in \mathcal{V},\left\|v_{1}+v_{2}\right\| \leq\left\|v_{1}\right\|+\left\|v_{2}\right\|$ (triangle inequality)
- $\forall \alpha \in \mathbb{R}, v \in \mathcal{V},\|\alpha v\|=|\alpha|\|v\|$
- $\forall v \in \mathcal{V},\|v\|=0 \Leftrightarrow v=\theta_{\mathcal{V}}$
- Examples in $\mathbb{R}^{m \times n}$
- $\|A\|_{a}=\sum_{i=1}^{m} \sum_{j=1}^{n}\left|a_{i j}\right|$
- $\|A\|_{F}=\left(\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j}^{2}\right)^{\frac{1}{2}}$ ("Frobenius norm")
- $\|A\|_{b}=\max _{i, j}\left|a_{i j}\right|$

Norms

- A norm is a map $\|\cdot\|: \mathcal{V} \rightarrow \mathbb{R}_{+}$satisfying
- $\forall v_{1}, v_{2} \in \mathcal{V},\left\|v_{1}+v_{2}\right\| \leq\left\|v_{1}\right\|+\left\|v_{2}\right\|$ (triangle inequality)
- $\forall \alpha \in \mathbb{R}, v \in \mathcal{V},\|\alpha v\|=|\alpha|\|v\|$
- $\forall v \in \mathcal{V},\|v\|=0 \Leftrightarrow v=\theta_{\mathcal{V}}$
- Examples for continuous functions $f:\left[t_{0}, t_{1}\right] \rightarrow \mathbb{R}^{n}$
- $\|f\|_{1}=\int_{t_{0}}^{t_{1}}\|f(t)\| d t$, where $\|f(t)\|$ is any of the vector norms from before
- $\|f\|_{2}=\left(\int_{t_{0}}^{t_{1}}\|f(t)\|^{2} d t\right)^{\frac{1}{2}}$ (""-norm", or " l_{2} norm")
- $\|f\|_{\infty}=\max \left\{\|f(t)\|, t \in\left[t_{0}, t_{1}\right]\right\}$ (" ∞-norm", or " l_{∞} norm")

Induced Norms

- Let A be a linear operator. Then, the induced norm of \mathcal{A} is defined as

$$
\|A\|_{p, i}=\sup _{x \neq 0} \frac{\|A x\|_{p}}{\|x\|_{p}}
$$

- Properties
- $\|A\|_{1, i}=\max _{j} \sum_{i=1}^{m}\left|a_{i j}\right|$ (maximum column sum)
- $\|A\|_{2, i}=\max _{j} \operatorname{eig}\left(A^{\top} A\right)^{\frac{1}{2}}$ (maximum singular value)
- $\|A\|_{\infty, i}=\max _{i} \sum_{j=1}^{n}\left|a_{i j}\right|$ (maximum row sum)

Eigenvalues and Eigenvectors

- Eigenvalues:
- If there is some vector e and scalar λ such that $A e=\lambda e$, then e is called the eigenvector corresponding to eigenvalue λ of the matrix A
- Example: $A=\left[\begin{array}{ll}3 & 0 \\ 0 & 2\end{array}\right]$
- $\left[\begin{array}{ll}3 & 0 \\ 0 & 2\end{array}\right]\left[\begin{array}{l}1 \\ 0\end{array}\right]=\left[\begin{array}{l}3 \\ 0\end{array}\right]=3\left[\begin{array}{l}1 \\ 0\end{array}\right]$

- $\left[\begin{array}{ll}3 & 0 \\ 0 & 2\end{array}\right]\left[\begin{array}{l}0 \\ 1\end{array}\right]=\left[\begin{array}{l}0 \\ 2\end{array}\right]=2\left[\begin{array}{l}0 \\ 1\end{array}\right]$
- When a matrix is applied to eigenvectors, the effect is simple!

Eigenvalues and Eigenvectors

- Example: $A=\left[\begin{array}{ll}3 & 0 \\ 0 & 2\end{array}\right]$
- $\left[\begin{array}{ll}3 & 0 \\ 0 & 2\end{array}\right]\left[\begin{array}{l}1 \\ 0\end{array}\right]=\left[\begin{array}{l}3 \\ 0\end{array}\right]=3\left[\begin{array}{l}1 \\ 0\end{array}\right]$
- $\left[\begin{array}{ll}3 & 0 \\ 0 & 2\end{array}\right]\left[\begin{array}{l}0 \\ 1\end{array}\right]=\left[\begin{array}{l}0 \\ 2\end{array}\right]=2\left[\begin{array}{l}0 \\ 1\end{array}\right]$
- When a matrix is applied to eigenvectors, the effect is simple!
- What if the matrix is applied to another vector?
$\left[\begin{array}{ll}3 & 0 \\ 0 & 2\end{array}\right]\left[\begin{array}{l}1 \\ 2\end{array}\right]=\left[\begin{array}{ll}3 & 0 \\ 0 & 2\end{array}\right]\left(\left[\begin{array}{l}1 \\ 0\end{array}\right]+2\left[\begin{array}{l}0 \\ 1\end{array}\right]\right)$

Eigenvalues and Eigenvectors

- Example: $A=\left[\begin{array}{ll}3 & 0 \\ 0 & 2\end{array}\right]$
- $\left[\begin{array}{ll}3 & 0 \\ 0 & 2\end{array}\right]\left[\begin{array}{l}1 \\ 0\end{array}\right]=\left[\begin{array}{l}3 \\ 0\end{array}\right]=3\left[\begin{array}{l}1 \\ 0\end{array}\right]$
- $\left[\begin{array}{ll}3 & 0 \\ 0 & 2\end{array}\right]\left[\begin{array}{l}0 \\ 1\end{array}\right]=\left[\begin{array}{l}0 \\ 2\end{array}\right]=2\left[\begin{array}{l}0 \\ 1\end{array}\right]$
- When a matrix is applied to eigenvectors, the effect is simple!
- What if the matrix is applied to another vector?
$\left[\begin{array}{ll}3 & 0 \\ 0 & 2\end{array}\right]\left[\begin{array}{l}1 \\ 2\end{array}\right]=\left[\begin{array}{ll}3 & 0 \\ 0 & 2\end{array}\right]\left(\left[\begin{array}{l}1 \\ 0\end{array}\right]+2\left[\begin{array}{l}0 \\ 1\end{array}\right]\right)=\left[\begin{array}{ll}3 & 0 \\ 0 & 2\end{array}\right]\left[\begin{array}{l}1 \\ 0\end{array}\right]+2\left[\begin{array}{ll}3 & 0 \\ 0 & 2\end{array}\right]\left[\begin{array}{l}0 \\ 1\end{array}\right]$

Eigenvalues and Eigenvectors

- Example: $A=\left[\begin{array}{ll}3 & 0 \\ 0 & 2\end{array}\right]$
- $\left[\begin{array}{ll}3 & 0 \\ 0 & 2\end{array}\right]\left[\begin{array}{l}1 \\ 0\end{array}\right]=\left[\begin{array}{l}3 \\ 0\end{array}\right]=3\left[\begin{array}{l}1 \\ 0\end{array}\right]$
- $\left[\begin{array}{ll}3 & 0 \\ 0 & 2\end{array}\right]\left[\begin{array}{l}0 \\ 1\end{array}\right]=\left[\begin{array}{l}0 \\ 2\end{array}\right]=2\left[\begin{array}{l}0 \\ 1\end{array}\right]$
- When a matrix is applied to eigenvectors, the effect is simple!
- What if the matrix is applied to another vector?
$\left[\begin{array}{ll}3 & 0 \\ 0 & 2\end{array}\right]\left[\begin{array}{l}1 \\ 2\end{array}\right]=\left[\begin{array}{ll}3 & 0 \\ 0 & 2\end{array}\right]\left(\left[\begin{array}{l}1 \\ 0\end{array}\right]+2\left[\begin{array}{l}0 \\ 1\end{array}\right]\right)=\left[\begin{array}{ll}3 & 0 \\ 0 & 2\end{array}\right]\left[\begin{array}{l}1 \\ 0\end{array}\right]+2\left[\begin{array}{ll}3 & 0 \\ 0 & 2\end{array}\right]\left[\begin{array}{l}0 \\ 1\end{array}\right]=\left[\begin{array}{l}3 \\ 0\end{array}\right]+2\left[\begin{array}{l}0 \\ 2\end{array}\right]=\left[\begin{array}{l}3 \\ 4\end{array}\right]$
- Looks silly, but we can apply the same idea for more complex matrices

Eigenvalues and Eigenvectors

- Geometric interpretation:
- $A x=A\left(a_{1} e_{1}+a_{2} e_{2}\right)=a_{1} A e_{1}+a_{2} A e_{2}=a_{1} \lambda e_{1}+a_{2} \lambda e_{2}$

- Negative eigenvalues \rightarrow reflection
- Complex eigenvalues \rightarrow rotation

Eigenvalues and Eigenvectors

- Geometric interpretation:
- $A x=A\left(a_{1} e_{1}+a_{2} e_{2}\right)=a_{1} A e_{1}+a_{2} A e_{2}=a_{1} \lambda e_{1}+a_{2} \lambda e_{2}$

- Negative eigenvalues \rightarrow reflection
- Complex eigenvalues \rightarrow rotation
- Property: $\operatorname{det} A=$ the product of eigenvalues
- Recall $\operatorname{det} A=0 \Leftrightarrow A$ is singular
- If $\operatorname{det} A=0$, then there must be an eigenvalue that's 0
- $A e=0$, so $e \in N(A)$
- Any vector in the direction of e gets scaled by a factor of 0
- Example: $A=\left[\begin{array}{ll}1 & 2 \\ 1 & 2\end{array}\right]$

Eigenvalues and Eigenvectors

- Define $T^{-1}=\left[\begin{array}{llll}e_{1} & e_{2} & \cdots & e_{n}\end{array}\right]$
- Then, $A T^{-1}=T^{-1} \Lambda$, where $\Lambda=\left[\begin{array}{llll}\lambda_{1} & & & \\ & \lambda_{2} & & \\ & & \ddots & \\ & & & \lambda_{n}\end{array}\right]$
- So, $A=T^{-1} \Lambda T$. This is a similarity transform

Eigenvalues and Eigenvectors

- Define $T^{-1}=\left[\begin{array}{llll}e_{1} & e_{2} & \cdots & e_{n}\end{array}\right]$
- Then, $A T^{-1}=T^{-1} \Lambda$, where $\Lambda=\left[\begin{array}{llll}\lambda_{1} & & & \\ & \lambda_{2} & & \\ & & \ddots & \\ & & & \lambda_{n}\end{array}\right]$
- So, $A=T^{-1} \Lambda T$. This is a similarity transform.
- Define $z=T x$, and we have $A x=T^{-1} \Lambda T x=T^{-1} \Lambda z$
- In the coordinate system obtained from applying transformation T, the map A is diagonal
- To obtain the result of applying A in the original coordinate system, transform back with T^{-1}

Obtaining Eigenvalues and Eigenvectors

- Hand calculation: $A=\left[\begin{array}{cc}2 & -3 \\ -3 & 2\end{array}\right]$
- Eigenvalues $A e=\lambda e$

Obtaining Eigenvalues and Eigenvectors

- Hand calculation: $A=\left[\begin{array}{cc}2 & -3 \\ -3 & 2\end{array}\right]$
- Eigenvalues $A e=\lambda e$

$$
\begin{gathered}
A e-\lambda I e=0 \\
(A-\lambda I) e=0
\end{gathered}
$$

This means the matrix $A-\lambda I$ has an eigenvalue of 0

Obtaining Eigenvalues and Eigenvectors

- Hand calculation: $A=\left[\begin{array}{cc}2 & -3 \\ -3 & 2\end{array}\right]$
- Eigenvalues

Solve for λ in $\operatorname{det}(A-\lambda I)=0$

$$
\begin{gathered}
A e-\lambda I e=0 \\
(A-\lambda I) e=0
\end{gathered}
$$

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-\lambda & 3 \\
-1 & 2-\lambda
\end{array}\right]\right)=(2-\lambda)(2-\lambda)-9=0
$$

This means the matrix $A-\lambda I$

$$
2-\lambda= \pm 3
$$ has an eigenvalue of 0

$$
\lambda=2 \pm 3=-1 \text { or } 5
$$

Obtaining Eigenvalues and Eigenvectors

- Hand calculation: $A=\left[\begin{array}{cc}2 & -3 \\ -3 & 2\end{array}\right]$
- Eigenvalues

$$
\begin{array}{r}
A e=\lambda e \\
A e-\lambda I e=0 \\
(A-\lambda I) e=0
\end{array}
$$

Solve for λ in $\operatorname{det}(A-\lambda I)=0$

This means the matrix $A-\lambda I$
has an eigenvalue of 0
$\operatorname{det}\left(\left[\begin{array}{cc}2-\lambda & 3 \\ -1 & 2-\lambda\end{array}\right]\right)=(2-\lambda)(2-\lambda)-9=0$

$$
2-\lambda= \pm 3
$$

$$
\lambda=2 \pm 3=-1 \text { or } 5
$$

- Eigenvectors

$$
\lambda=-1:\left[\begin{array}{cc}
3 & -3 \\
-3 & 3
\end{array}\right] e=0 \Rightarrow e=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Obtaining Eigenvalues and Eigenvectors

- Hand calculation: $A=\left[\begin{array}{cc}2 & -3 \\ -3 & 2\end{array}\right]$
- Eigenvalues

$$
\begin{array}{r}
A e=\lambda e \\
A e-\lambda I e=0 \\
(A-\lambda I) e=0
\end{array}
$$

$$
\text { Solve for } \lambda \text { in } \operatorname{det}(A-\lambda I)=0
$$

This means the matrix $A-\lambda I$

$$
2-\lambda= \pm 3
$$ has an eigenvalue of 0

$$
\operatorname{det}\left(\left[\begin{array}{cc}
2-\lambda & 3 \\
-1 & 2-\lambda
\end{array}\right]\right)=(2-\lambda)(2-\lambda)-9=0
$$

$$
\text { has an eigenvalue of } 0
$$

$$
\lambda=2 \pm 3=-1,5
$$

- Eigenvectors

$$
\lambda=-1:\left[\begin{array}{cc}
3 & -3 \\
-3 & 3
\end{array}\right] e=0 \Rightarrow e=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

$$
\lambda=5:\left[\begin{array}{ll}
-3 & -3 \\
-3 & -3
\end{array}\right] e=0 \Rightarrow e=\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
$$

Obtaining Eigenvalues and Eigenvectors

- Hand calculation: $A=\left[\begin{array}{cc}2 & -3 \\ -3 & 2\end{array}\right]$
- Eigenvalues

$$
\begin{array}{r}
A e=\lambda e \\
A e-\lambda I e=0 \\
(A-\lambda I) e=0
\end{array}
$$

$$
\text { Solve for } \lambda \text { in } \operatorname{det}(A-\lambda I)=0
$$

This means the matrix $A-\lambda I$ has an eigenvalue of 0

$$
\operatorname{det}\left(\left[\begin{array}{cc}
2-\lambda & 3 \\
-1 & 2-\lambda
\end{array}\right]\right)=(2-\lambda)(2-\lambda)-9=0
$$

$$
2-\lambda= \pm 3
$$

$$
\text { has an eigenvalue of } 0
$$

$$
\lambda=2 \pm 3=-1,5
$$

- Eigenvectors

$$
\lambda=-1:\left[\begin{array}{cc}
3 & -3 \\
-3 & 3
\end{array}\right] e=0 \Rightarrow e=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

$$
\lambda=5:\left[\begin{array}{ll}
-3 & -3 \\
-3 & -3
\end{array}\right] e=0 \Rightarrow e=\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
$$

- Matlab: eig(A)

Generalized Eigenvalues and Eigenvectors

- Not all matrices are diagonalizable

$$
\begin{aligned}
& A e_{1}=\lambda e_{1} \\
& A e_{2}=\lambda e_{2} \\
& A e_{3}=\lambda e_{3}
\end{aligned}
$$

Generalized Eigenvalues and Eigenvectors

- Not all matrices are diagonalizable

$$
\begin{array}{ll}
A e_{1}=\lambda e_{1} & A v_{1}=\lambda v_{1}+e_{1} \\
A e_{2}=\lambda e_{2} & A v_{2}=\lambda v_{2}+e_{2} \\
A e_{3}=\lambda e_{3} &
\end{array}
$$

Generalized Eigenvalues and Eigenvectors

- Not all matrices are diagonalizable

$$
\begin{array}{lll}
A e_{1}=\lambda e_{1} & A v_{1}=\lambda v_{1}+e_{1} & A w_{1}=\lambda w_{1}+v_{1} \\
A e_{2}=\lambda e_{2} & A v_{2}=\lambda v_{2}+e_{2} & \\
A e_{3}=\lambda e_{3} & &
\end{array}
$$

Generalized Eigenvalues and Eigenvectors

- Not all matrices are diagonalizable

$$
\begin{array}{ll}
A e_{1}=\lambda e_{1} & A v_{1}=\lambda v_{1}+e_{1} \\
A e_{2}=\lambda e_{2} & A v_{2}=\lambda v_{2}+e_{2}
\end{array} \quad A w_{1}=\lambda w_{1}+v_{1}
$$

$$
J=T A T^{-1}=\left[\begin{array}{llllll}
\lambda & 1 & 0 & & & \\
0 & \lambda & 1 & & & \\
0 & 0 & \lambda & & & \\
& & & \lambda & 1 & \\
& & & 0 & \lambda & \\
& & & & & \lambda
\end{array}\right]
$$

$$
T^{-1}=\left[\begin{array}{llllll}
e_{1} & v_{1} & w_{1} & e_{2} & v_{2} & e_{3}
\end{array}\right]
$$

Generalized Eigenvalues and Eigenvectors

- Not all matrices are diagonalizable

$$
\begin{gathered}
J=T A T^{-1}=\left[\begin{array}{llllll}
\lambda & 1 & 0 & & & \\
0 & \lambda & 1 & & & \\
0 & 0 & \lambda & & & \\
& & & \lambda & 1 & \\
& & & 0 & \lambda & \\
& & & & & \lambda
\end{array}\right] \\
T^{-1}=\left[\begin{array}{llllll}
e_{1} & v_{1} & w_{1} & e_{2} & v_{2} & e_{3}
\end{array}\right]
\end{gathered}
$$

- This is the matrix structure for one eigenvalue
- There may be more than one such blocks in general
- All matrices can be put into Jordan form

Functions of Matrices

- Consider a polynomial of a matrix, $f(A)=A^{k}$
- $A^{k}=\left(T^{-1} J T\right)^{k}=\left(T^{-1} J T\right)\left(T^{-1} J T\right)\left(T^{-1} J T\right) . . .\left(T^{-1} J T\right)=T^{-1} J^{k} T$
- Adjacent T matrices and inverse cancel!
- This motivates general functions of matrices, like $f(A)=\sin A$, defined through Taylor series
- $\sin A=A-\frac{A^{3}}{3!}+\frac{A^{5}}{5!}-\frac{A^{7}}{7!}+\cdots$

Functions of Matrices

- Suppose $J=\left[\begin{array}{|cccc}\lambda & 1 & & \\ & \lambda & \ddots & \\ & & \ddots & 1 \\ & & & \lambda\end{array}\right]$
- Then, $f(J)=\left[\begin{array}{cccc}f(\lambda) & f^{\prime}(\lambda) & \cdots & \frac{f^{(n-1)}(\lambda)}{(n-1)!} \\ & f(\lambda) & \ddots & \vdots \\ & & \ddots & f^{\prime}(\lambda) \\ & & & f(\lambda)\end{array}\right]$
- And $f(A)=T^{-1} f(J) T$, where $A=T^{-1} J T$
- Therefore, we also have that the eigenvalues of $f(A)$ are $\{f(\lambda)\}$, where $\{\lambda\}$ are eigenvalues of A

Linear Maps

- How about $\mathcal{A}: a s^{2}+b s+c \rightarrow \int_{0}^{s}(b t+a) d t$?

