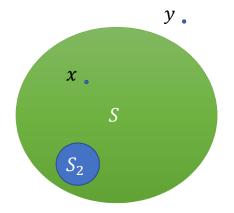
Review: Linear Algebra

CMPT 882 Jan. 7, 2018

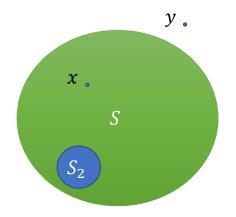
Outline

- Notation
- Linear maps
- Norms
- Diagonalization and Jordan form
- Functions of matrices

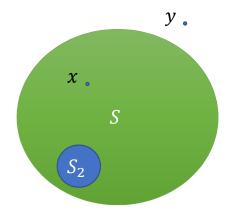
- Sets of numbers: \mathbb{Z} , \mathbb{R} , \mathbb{R}^n , $\mathbb{R}^{n \times m}$, \mathbb{R}_+ , \mathbb{C}^n
- Membership and Quantifiers: ∈, ∉, ∀, ∃, ∃!
 - $x \in S, y \notin S$



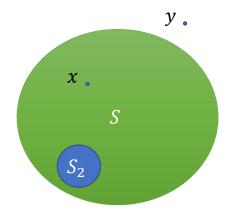
- Sets of numbers: \mathbb{Z} , \mathbb{R} , \mathbb{R}^n , $\mathbb{R}^{n \times m}$, \mathbb{R}_+ , \mathbb{C}^n
- Membership and Quantifiers: \in , \notin , \forall , \exists , \exists !
 - $x \in S, y \notin S$
 - $\forall x \in \mathbb{R}, \exists y \in \mathbb{R} \text{ such that } x + y = 0$



- Sets of numbers: \mathbb{Z} , \mathbb{R} , \mathbb{R}^n , $\mathbb{R}^{n \times m}$, \mathbb{R}_+ , \mathbb{C}^n
- Membership and Quantifiers: \in , \notin , \forall , \exists , \exists !
 - $x \in S, y \notin S$
 - $\forall x \in \mathbb{R}, \exists ! y \in \mathbb{R}, x + y = 0$



- Sets of numbers: \mathbb{Z} , \mathbb{R} , \mathbb{R}^n , $\mathbb{R}^{n \times m}$, \mathbb{R}_+ , \mathbb{C}^n
- Membership and Quantifiers: $\in, \notin, \forall, \exists, \exists$!
 - $x \in S, y \notin S$
 - $\forall x \in \mathbb{R}, \exists ! y \in \mathbb{R}, x + y = 0$
 - $\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, x + y = 0$

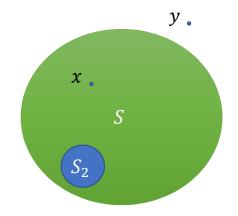


- Sets of numbers: \mathbb{Z} , \mathbb{R} , \mathbb{R}^n , $\mathbb{R}^{n \times m}$, \mathbb{R}_+ , \mathbb{C}^n
- Membership and Quantifiers: $\in, \notin, \forall, \exists, \exists$!
 - $x \in S, y \notin S$
 - $\forall x \in \mathbb{R}, \exists ! y \in \mathbb{R}, x + y = 0$
 - $\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, x + y = 0$



This is false

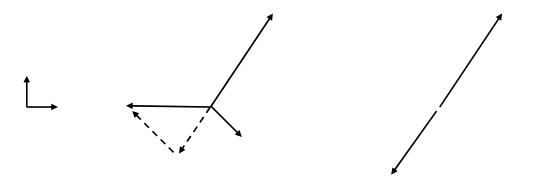
- Sets of numbers: \mathbb{Z} , \mathbb{R} , \mathbb{R}^n , $\mathbb{R}^{n \times m}$, \mathbb{R}_+ , \mathbb{C}^n
- Membership and Quantifiers: $\in, \notin, \forall, \exists, \exists$!
 - $x \in S, y \notin S$
 - $\forall x \in \mathbb{R}, \exists ! y \in \mathbb{R}, x + y = 0$
 - $\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, x + y = 0$
- Implications and negation: \Rightarrow , \Leftarrow , \Rightarrow , \neg
 - $z \in S_2 \Rightarrow z \in S$, $y \notin S \Leftrightarrow \neg(y \in S)$
 - $p \Rightarrow q$ and $p \Leftarrow q$ means $p \Leftrightarrow q$



Basis

- Let $v_1, v_2, ..., v_p$ be vectors in \mathbb{R}^n
 - They are **linearly independent** if and only if

 $\alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_p v_p = 0 \Rightarrow \alpha_1 = \alpha_2 = \dots = \alpha_p = 0$

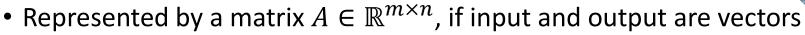


Basis

- Let $v_1, v_2, ..., v_p$ be vectors in \mathbb{R}^n
 - They are **linearly independent** if and only if

 $\alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_p v_p = 0 \Rightarrow \alpha_1 = \alpha_2 = \dots = \alpha_p = 0$

- A set of vectors $B = \{b_1, b_2, \dots, b_n\}$ is a **basis** of \mathbb{R}^n if and only if
 - $\forall v \in \mathbb{R}^n$, $\exists \alpha_1, \alpha_2, \dots, \alpha_n \in \mathbb{R}$ such that $v = \alpha_1 b_1 + \alpha_2 b_2 + \dots + \alpha_n b_n$
 - $\{b_1, b_2, \dots, b_n\}$ is a linearly independent set of vectors
- Bases of \mathbb{R}^2 : • $\left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}, \left\{ \begin{bmatrix} 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix} \right\}$



- $\mathcal{A}: v \to Av$
- Operates on a vector $v \in \mathbb{R}^n$; outputs $w = Av \in \mathbb{R}^m$
- Linearity: $\mathcal{A}(a_1v_1 + a_2v_2) = a_1\mathcal{A}(v_1) + a_2\mathcal{A}(v_2)$
 - for all scalars $a_1, a_2 \in \mathbb{R}$, vectors $v_1, v_2 \in \mathbb{R}^n$

- Represented by a matrix $A \in \mathbb{R}^{m \times n}$, if input and output are vectors
 - $\mathcal{A}: v \to Av$
 - Operates on a vector $v \in \mathbb{R}^n$; outputs $w = Av \in \mathbb{R}^m$
- Linearity: $\mathcal{A}(a_1v_1 + a_2v_2) = a_1\mathcal{A}(v_1) + a_2\mathcal{A}(v_2)$
 - for all scalars $a_1, a_2 \in \mathbb{R}$, vectors $v_1, v_2 \in \mathbb{R}^n$
- Range space: $R(\mathcal{A}) = \{ w \mid w = \mathcal{A}(v), v \in \mathbb{R}^n \} \subseteq \mathbb{R}^m$
 - Also known as the image of ${\mathcal A}$
- Null space: $N(\mathcal{A}) = \{ v \mid \mathcal{A}v = 0 \} \subseteq \mathbb{R}^n$
 - Also known as the kernel of ${\mathcal A}$

- Example: $A = \begin{bmatrix} 1 & 4 & 2 \\ 1 & 4 & 2 \end{bmatrix}$ • $R(A) = \operatorname{span}\left(\begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = \operatorname{all}$ vectors in the form $\begin{bmatrix} t \\ t \end{bmatrix}, t \in \mathbb{R}$
 - In general, the range of a matrix is given by all linear combinations of its columns

• Example:
$$A = \begin{bmatrix} 1 & 4 & 2 \\ 1 & 4 & 2 \end{bmatrix}$$

• $R(A) = \operatorname{span} \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = \operatorname{all vectors in the form} \begin{bmatrix} t \\ t \end{bmatrix}, t \in \mathbb{R}$
• In general, the range of a matrix is given by all linear combinations of its columns
• $N(A) = \operatorname{span} \left(\begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ -3 \end{bmatrix} \right)$

- Example: $A = \begin{bmatrix} 1 & 4 & 2 \\ 1 & 4 & 2 \end{bmatrix}$ • $R(A) = \operatorname{span} \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = \operatorname{all vectors in the form} \begin{bmatrix} t \\ t \end{bmatrix}, t \in \mathbb{R}$ • In general, the range of a matrix is given by all linear combinations of its columns • $N(A) = \operatorname{span} \left(\begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ -3 \end{bmatrix} \right)$
- Matlab:
 - A=sym([1 4 2; 1 4 2]);
 - colspace(A)
 - null(A)

- In general, an operator $\mathcal A$ may not have vectors as inputs and outputs
 - We use ${\mathcal A}$ to denote the map in this case
 - These maps may be linear!

- In general, an operator $\mathcal A$ may not have vectors as inputs and outputs
 - We use ${\mathcal A}$ to denote the map in this case
 - These maps may be linear!
- Consider the map $\mathcal{A}: as^2 + bs + c \rightarrow cs^2 + bs + a$
 - Maps quadratic functions to quadratic functions
 - Input and outputs are functions

- In general, an operator $\mathcal A$ may not have vectors as inputs and outputs
 - We use ${\mathcal A}$ to denote the map in this case
 - These maps may be linear!
- Consider the map $\mathcal{A}: as^2 + bs + c \rightarrow cs^2 + bs + a$
 - Maps quadratic functions to quadratic functions
 - Input and outputs are functions
- Is the above map linear?

- In general, an operator $\mathcal A$ may not have vectors as inputs and outputs
 - We use ${\mathcal A}$ to denote the map in this case
 - These maps may be linear!
- Consider the map $\mathcal{A}: as^2 + bs + c \rightarrow cs^2 + bs + a$
 - Maps quadratic functions to quadratic functions
 - Input and outputs are functions
- Is the above map linear?
 - Let $v_1 = a_1s^2 + b_1s + c_1$, $v_2 = a_2s^2 + b_2s + c_2$
 - Check whether $\mathcal{A}(\alpha_1 v_1 + \alpha_2 v_2) = \alpha_1 \mathcal{A}(v_1) + \alpha_2 \mathcal{A}(v_2)$

- Consider the map $\mathcal{A}: as^2 + bs + c \rightarrow cs^2 + bs + a$
 - Is the above map linear?
 - Let $v_1 = a_1s^2 + b_1s + c_1$, $v_2 = a_2s^2 + b_2s + c_2$
 - Check whether $\mathcal{A}(\alpha_1 v_1 + \alpha_2 v_2) = \alpha_1 \mathcal{A}(v_1) + \alpha_2 \mathcal{A}(v_2)$

 $\mathcal{A}(\alpha_1 v_1 + \alpha_2 v_2) = \mathcal{A}(\alpha_1 a_1 s^2 + \alpha_1 b_1 s + \alpha_1 c_1 + \alpha_2 a_2 s^2 + \alpha_2 b_2 s + \alpha_2 c_2)$

- Consider the map $\mathcal{A}: as^2 + bs + c \rightarrow cs^2 + bs + a$
 - Is the above map linear?
 - Let $v_1 = a_1s^2 + b_1s + c_1$, $v_2 = a_2s^2 + b_2s + c_2$
 - Check whether $\mathcal{A}(\alpha_1v_1 + \alpha_2v_2) = \alpha_1\mathcal{A}(v_1) + \alpha_2\mathcal{A}(v_2)$

$$\mathcal{A}(\alpha_1 v_1 + \alpha_2 v_2) = \mathcal{A}(\alpha_1 a_1 s^2 + \alpha_1 b_1 s + \alpha_1 c_1 + \alpha_2 a_2 s^2 + \alpha_2 b_2 s + \alpha_2 c_2)$$

= $\mathcal{A}((\alpha_1 a_1 + \alpha_2 a_2) s^2 + (\alpha_1 b_1 + \alpha_2 b_2) s + (\alpha_1 c_1 + \alpha_2 c_2))$

- Consider the map $\mathcal{A}: as^2 + bs + c \rightarrow cs^2 + bs + a$
 - Is the above map linear?
 - Let $v_1 = a_1s^2 + b_1s + c_1$, $v_2 = a_2s^2 + b_2s + c_2$
 - Check whether $\mathcal{A}(\alpha_1v_1 + \alpha_2v_2) = \alpha_1\mathcal{A}(v_1) + \alpha_2\mathcal{A}(v_2)$

$$\begin{aligned} \mathcal{A}(\alpha_1 v_1 + \alpha_2 v_2) &= \mathcal{A}(\alpha_1 a_1 s^2 + \alpha_1 b_1 s + \alpha_1 c_1 + \alpha_2 a_2 s^2 + \alpha_2 b_2 s + \alpha_2 c_2) \\ &= \mathcal{A}\big((\alpha_1 a_1 + \alpha_2 a_2) s^2 + (\alpha_1 b_1 + \alpha_2 b_2) s + (\alpha_1 c_1 + \alpha_2 c_2)\big) \\ &= (\alpha_1 c_1 + \alpha_2 c_2) s^2 + (\alpha_1 b_1 + \alpha_2 b_2) s + (\alpha_1 a_1 + \alpha_2 a_2) \end{aligned}$$

- Consider the map $\mathcal{A}: as^2 + bs + c \rightarrow cs^2 + bs + a$
 - Is the above map linear?
 - Let $v_1 = a_1s^2 + b_1s + c_1$, $v_2 = a_2s^2 + b_2s + c_2$
 - Check whether $\mathcal{A}(\alpha_1v_1 + \alpha_2v_2) = \alpha_1\mathcal{A}(v_1) + \alpha_2\mathcal{A}(v_2)$

$$\begin{aligned} \mathcal{A}(\alpha_1 v_1 + \alpha_2 v_2) &= \mathcal{A}(\alpha_1 a_1 s^2 + \alpha_1 b_1 s + \alpha_1 c_1 + \alpha_2 a_2 s^2 + \alpha_2 b_2 s + \alpha_2 c_2) \\ &= \mathcal{A}\big((\alpha_1 a_1 + \alpha_2 a_2) s^2 + (\alpha_1 b_1 + \alpha_2 b_2) s + (\alpha_1 c_1 + \alpha_2 c_2)\big) \\ &= (\alpha_1 c_1 + \alpha_2 c_2) s^2 + (\alpha_1 b_1 + \alpha_2 b_2) s + (\alpha_1 a_1 + \alpha_2 a_2) \\ &= \alpha_1 c_1 s^2 + \alpha_1 b_1 s + \alpha_1 a_1 + \alpha_2 c_2 s^2 + \alpha_2 b_2 s + \alpha_2 a_2 \end{aligned}$$

- Consider the map $\mathcal{A}: as^2 + bs + c \rightarrow cs^2 + bs + a$
 - Is the above map linear?
 - Let $v_1 = a_1s^2 + b_1s + c_1$, $v_2 = a_2s^2 + b_2s + c_2$
 - Check whether $\mathcal{A}(\alpha_1v_1 + \alpha_2v_2) = \alpha_1\mathcal{A}(v_1) + \alpha_2\mathcal{A}(v_2)$

$$\begin{aligned} \mathcal{A}(\alpha_1 v_1 + \alpha_2 v_2) &= \mathcal{A}(\alpha_1 a_1 s^2 + \alpha_1 b_1 s + \alpha_1 c_1 + \alpha_2 a_2 s^2 + \alpha_2 b_2 s + \alpha_2 c_2) \\ &= \mathcal{A}\big((\alpha_1 a_1 + \alpha_2 a_2) s^2 + (\alpha_1 b_1 + \alpha_2 b_2) s + (\alpha_1 c_1 + \alpha_2 c_2)\big) \\ &= (\alpha_1 c_1 + \alpha_2 c_2) s^2 + (\alpha_1 b_1 + \alpha_2 b_2) s + (\alpha_1 a_1 + \alpha_2 a_2) \\ &= \alpha_1 c_1 s^2 + \alpha_1 b_1 s + \alpha_1 a_1 + \alpha_2 c_2 s^2 + \alpha_2 b_2 s + \alpha_2 a_2 \\ &= \alpha_1 \mathcal{A}(v_1) + \alpha_2 \mathcal{A}(v_2) \end{aligned}$$

- Consider the map $\mathcal{A}: as^2 + bs + c \rightarrow cs^2 + bs + a$
 - Is the above map linear?

• Therefore, the

- Let $v_1 = a_1 s^2 + b_1 s + c_1$, $v_2 = a_2 s^2 + b_2 s + c_2$
- Check whether $\mathcal{A}(\alpha_1v_1 + \alpha_2v_2) = \alpha_1\mathcal{A}(v_1) + \alpha_2\mathcal{A}(v_2)$

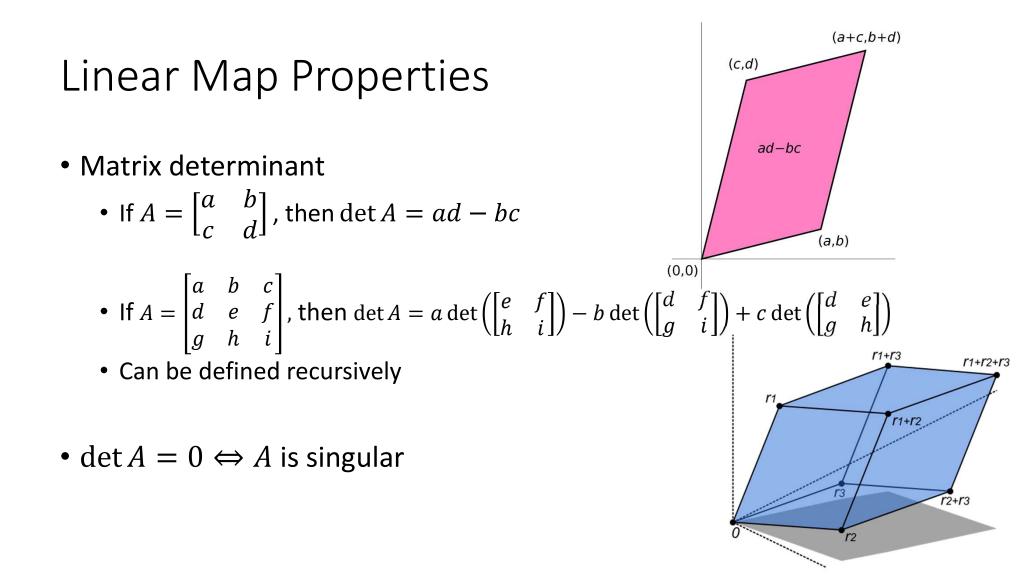
$$\begin{aligned} \mathcal{A}(\alpha_{1}v_{1} + \alpha_{2}v_{2}) &= \mathcal{A}(\alpha_{1}a_{1}s^{2} + \alpha_{1}b_{1}s + \alpha_{1}c_{1} + \alpha_{2}a_{2}s^{2} + \alpha_{2}b_{2}s + \alpha_{2}c_{2}) \\ &= \mathcal{A}\big((\alpha_{1}a_{1} + \alpha_{2}a_{2})s^{2} + (\alpha_{1}b_{1} + \alpha_{2}b_{2})s + (\alpha_{1}c_{1} + \alpha_{2}c_{2})\big) \\ &= (\alpha_{1}c_{1} + \alpha_{2}c_{2})s^{2} + (\alpha_{1}b_{1} + \alpha_{2}b_{2})s + (\alpha_{1}a_{1} + \alpha_{2}a_{2}) \\ &= \alpha_{1}c_{1}s^{2} + \alpha_{1}b_{1}s + \alpha_{1}a_{1} + \alpha_{2}c_{2}s^{2} + \alpha_{2}b_{2}s + \alpha_{2}a_{2} \\ &= \alpha_{1}\mathcal{A}(v_{1}) + \alpha_{2}\mathcal{A}(v_{2}) \end{aligned}$$

Linear Map Properties

- Matrix inverse
 - System of equations, $Ax = b, A \in \mathbb{R}^{n \times n}$
 - Solution: $x = A^{-1}b$, if a solution exists
 - However, try not to do this in Matlab. Instead, use x=A\b

• If
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, then $A^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$

- A is singular if it does not have an inverse
 - Columns of A are not linear independent ⇔ A is singular
- Non-commutative in general
 - $\mathcal{A}(\mathcal{B}(x)) \neq \mathcal{B}(\mathcal{A}(x))$



Linear Map Properties

- Let A be a linear map from $\mathcal{U} \to \mathcal{V}$, and $b \in \mathcal{V}$, then
 - Au = b has at least one solution $\Leftrightarrow b \in R(A)$
 - If $b \in R(A)$, then
 - Au = b has a unique solution $\Leftrightarrow N(A) = \{\theta_u\}$
 - Let x_0 be such that $Ax_0 = b$. Then, $Ax = b \Leftrightarrow x x_0 \in N(A)$

- A norm is a map $\|\cdot\|: \mathcal{V} \to \mathbb{R}_+$ satisfying
 - $\forall v_1, v_2 \in \mathcal{V}, ||v_1 + v_2|| \le ||v_1|| + ||v_2||$ (triangle inequality)
 - $\forall \alpha \in \mathbb{R}, v \in \mathcal{V}, \|\alpha v\| = |\alpha| \|v\|$
 - $\forall v \in \mathcal{V}, \|v\| = 0 \Leftrightarrow v = \theta_{\mathcal{V}}$

- A norm is a map $\|\cdot\|: \mathcal{V} \to \mathbb{R}_+$ satisfying
 - $\forall v_1, v_2 \in \mathcal{V}, ||v_1 + v_2|| \le ||v_1|| + ||v_2||$ (triangle inequality)
 - $\forall \alpha \in \mathbb{R}, v \in \mathcal{V}, \|\alpha v\| = |\alpha| \|v\|$
 - $\forall v \in \mathcal{V}, \|v\| = 0 \Leftrightarrow v = \theta_{\mathcal{V}}$
- Examples in \mathbb{R}^n

•
$$||x||_1 = \sum_{i=1}^n |x_i|$$
 ("1-norm", or " l_1 norm")

- $||x||_2 = \left(\sum_{i=1}^n x_i^2\right)_1^{\frac{1}{2}}$ ("2-norm", or " l_2 norm")
- $||x||_p = (\sum_{i=1}^n x_i^p)^{\frac{1}{p}}$ ("*p*-norm", or "*l*_p norm")
- $||x||_{\infty} = \max_{i} |x_{i}|$ (" ∞ -norm", or " l_{∞} norm")

- A norm is a map $\|\cdot\|: \mathcal{V} \to \mathbb{R}_+$ satisfying
 - $\forall v_1, v_2 \in \mathcal{V}, ||v_1 + v_2|| \le ||v_1|| + ||v_2||$ (triangle inequality)
 - $\forall \alpha \in \mathbb{R}, v \in \mathcal{V}, ||\alpha v|| = |\alpha|||v||$
 - $\forall v \in \mathcal{V}, ||v|| = 0 \Leftrightarrow v = \theta_{\mathcal{V}}$
- Examples in $\mathbb{R}^{m \times n}$

 - $||A||_a = \sum_{i=1}^m \sum_{j=1}^n |a_{ij}|$ $||A||_F = \left(\sum_{i=1}^m \sum_{j=1}^n a_{ij}^2\right)^{\frac{1}{2}}$ ("Frobenius norm")
 - $||A||_b = \max_{i,i} |a_{ii}|$

- A norm is a map $\|\cdot\|: \mathcal{V} \to \mathbb{R}_+$ satisfying
 - $\forall v_1, v_2 \in \mathcal{V}, \|v_1 + v_2\| \le \|v_1\| + \|v_2\|$ (triangle inequality)
 - $\forall \alpha \in \mathbb{R}, v \in \mathcal{V}, \|\alpha v\| = |\alpha| \|v\|$
 - $\forall v \in \mathcal{V}, \|v\| = 0 \Leftrightarrow v = \theta_{\mathcal{V}}$
- Examples for continuous functions $f: [t_0, t_1] \rightarrow \mathbb{R}^n$
 - $||f||_1 = \int_{t_0}^{t_1} ||f(t)|| dt$, where ||f(t)|| is any of the vector norms from before
 - $||f||_2 = \left(\int_{t_0}^{t_1} ||f(t)||^2 dt\right)^{\frac{1}{2}}$ ("2-norm", or " l_2 norm")
 - $||f||_{\infty} = \max\{||f(t)||, t \in [t_0, t_1]\}$ (" ∞ -norm", or " l_{∞} norm")

Induced Norms

- Let A be a linear operator. Then, the induced norm of \mathcal{A} is defined as $\|A\|_{p,i} = \sup_{x \neq 0} \frac{\|Ax\|_p}{\|x\|_p}$
- Properties
 - $||A||_{1,i} = \max_j \sum_{i=1}^m |a_{ij}|$ (maximum column sum)
 - $||A||_{2,i} = \max_j \operatorname{eig}(A^{\mathsf{T}}A)^{\frac{1}{2}}$ (maximum singular value)
 - $||A||_{\infty,i} = \max_{i} \sum_{j=1}^{n} |a_{ij}|$ (maximum row sum)

Eigenvalues and Eigenvectors

- Eigenvalues:
 - If there is some vector e and scalar λ such that $Ae = \lambda e$, then e is called the eigenvector corresponding to eigenvalue λ of the matrix A

• Example:
$$A = \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix}$$

• $\begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 3 \\ 0 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 0 \end{bmatrix}$
• $\begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \end{bmatrix} = 2 \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ \rightarrow

• When a matrix is applied to eigenvectors, the effect is simple!

Eigenvalues and Eigenvectors

• Example: $A = \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix}$ • $\begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 3 \\ 0 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ • $\begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \end{bmatrix} = 2 \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

• When a matrix is applied to eigenvectors, the effect is simple!

• What if the matrix is applied to another vector?

 $\begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix} \left(\begin{bmatrix} 1 \\ 0 \end{bmatrix} + 2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right)$

Eigenvalues and Eigenvectors

• Example: $A = \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix}$ • $\begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 3 \\ 0 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ • $\begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \end{bmatrix} = 2 \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

• When a matrix is applied to eigenvectors, the effect is simple!

• What if the matrix is applied to another vector?

$$\begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix} \left(\begin{bmatrix} 1 \\ 0 \end{bmatrix} + 2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) = \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 2 \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

• Example: $A = \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix}$ • $\begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 3 \\ 0 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ • $\begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \end{bmatrix} = 2 \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

• When a matrix is applied to eigenvectors, the effect is simple!

• What if the matrix is applied to another vector?

 $\begin{bmatrix}3 & 0\\0 & 2\end{bmatrix}\begin{bmatrix}1\\2\end{bmatrix} = \begin{bmatrix}3 & 0\\0 & 2\end{bmatrix}\begin{pmatrix}1\\0\end{bmatrix} + 2\begin{bmatrix}0\\1\end{bmatrix} = \begin{bmatrix}3 & 0\\1\end{bmatrix} = \begin{bmatrix}3 & 0\\1\end{bmatrix} = \begin{bmatrix}3 & 0\\1\end{bmatrix} = \begin{bmatrix}3\\0\end{bmatrix} + 2\begin{bmatrix}0\\2\end{bmatrix} = \begin{bmatrix}3\\4\end{bmatrix}$

• Looks silly, but we can apply the same idea for more complex matrices

- Geometric interpretation:
 - $Ax = A(a_1e_1 + a_2e_2) = a_1Ae_1 + a_2Ae_2 = a_1\lambda e_1 + a_2\lambda e_2$
 - Negative eigenvalues \rightarrow reflection
 - Complex eigenvalues \rightarrow rotation

- Geometric interpretation:
 - $Ax = A(a_1e_1 + a_2e_2) = a_1Ae_1 + a_2Ae_2 = a_1\lambda e_1 + a_2\lambda e_2$
 - Negative eigenvalues \rightarrow reflection
 - Complex eigenvalues \rightarrow rotation
- Property: det A = the product of eigenvalues
 - Recall $\det A = 0 \Leftrightarrow A$ is singular
 - If $\det A = 0$, then there must be an eigenvalue that's 0
 - Ae = 0, so $e \in N(A)$
 - Any vector in the direction of e gets scaled by a factor of 0

• Example:
$$A = \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix}$$

• Define $T^{-1} = [e_1 \ e_2 \ \cdots \ e_n]$

• Then,
$$AT^{-1} = T^{-1}\Lambda$$
, where $\Lambda = \begin{bmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & & \ddots & \\ & & & & \lambda_n \end{bmatrix}$

• So, $A = T^{-1}\Lambda T$. This is a **similarity transform**

• Define $T^{-1} = [e_1 \ e_2 \ \cdots \ e_n]$

• Then,
$$AT^{-1} = T^{-1}\Lambda$$
, where $\Lambda = \begin{bmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & & \ddots & \\ & & & & \lambda_n \end{bmatrix}$

- So, $A = T^{-1}\Lambda T$. This is a similarity transform.
- Define z = Tx, and we have $Ax = T^{-1}\Lambda Tx = T^{-1}\Lambda z$
 - In the coordinate system obtained from applying transformation *T*, the map *A* is diagonal
 - To obtain the result of applying A in the original coordinate system, transform back with T^{-1}

• Hand calculation:
$$A = \begin{bmatrix} 2 & -3 \\ -3 & 2 \end{bmatrix}$$

• Eigenvalues
$$Ae = \lambda e$$

• Hand calculation:
$$A = \begin{bmatrix} 2 & -3 \\ -3 & 2 \end{bmatrix}$$

Eigenvalues

 $Ae - \lambda Ie = 0$ $(A - \lambda I)e = 0$

 $Ae = \lambda e$

This means the matrix $A - \lambda I$ has an eigenvalue of 0

• Hand calculation: $A = \begin{bmatrix} 2 & -3 \\ -3 & 2 \end{bmatrix}$

 $Ae - \lambda Ie = 0$

 $(A - \lambda I)e = 0$

• Eigenvalues $Ae = \lambda e^{-1}$

Solve for λ in det $(A - \lambda I) = 0$

$$det\left(\begin{bmatrix} 2-\lambda & 3\\ -1 & 2-\lambda \end{bmatrix}\right) = (2-\lambda)(2-\lambda) - 9 = 0$$

This means the matrix $A - \lambda I$ has an eigenvalue of 0 $2 - \lambda = \pm 3$ $\lambda = 2 \pm 3 = -1 \text{ or } 5$

- Hand calculation: $A = \begin{bmatrix} 2 & -3 \\ -3 & 2 \end{bmatrix}$
 - Eigenvalues $Ae = \lambda e$ $Ae - \lambda Ie = 0$ $(A - \lambda I)e = 0$ This means the matrix $A = \lambda I$ Solve for λ in $det(A - \lambda I) = 0$ $det\left(\begin{bmatrix} 2-\lambda & 3\\ -1 & 2-\lambda \end{bmatrix}\right) = (2-\lambda)(2-\lambda) - 9 = 0$ $2-\lambda = \pm 3$

 $\lambda = 2 + 3 = -1$ or 5

This means the matrix $A - \lambda I$ has an eigenvalue of 0

• Eigenvectors

$$\lambda = -1 : \begin{bmatrix} 3 & -3 \\ -3 & 3 \end{bmatrix} e = 0 \Rightarrow e = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

- Hand calculation: $A = \begin{bmatrix} 2 & -3 \\ -3 & 2 \end{bmatrix}$
 - Eigenvalues $Ae = \lambda e$ $Ae - \lambda Ie = 0$ $(A - \lambda I)e = 0$ Solve for λ in $det(A - \lambda I) = 0$ $det\left(\begin{bmatrix} 2-\lambda & 3\\ -1 & 2-\lambda \end{bmatrix}\right) = (2-\lambda)(2-\lambda) - 9 = 0$ $2-\lambda = \pm 3$

 $\lambda = 2 + 3 = -1.5$

This means the matrix $A - \lambda I$ has an eigenvalue of 0

• Eigenvectors

$$\lambda = -1 : \begin{bmatrix} 3 & -3 \\ -3 & 3 \end{bmatrix} e = 0 \Rightarrow e = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \qquad \qquad \lambda = 5 : \begin{bmatrix} -3 & -3 \\ -3 & -3 \end{bmatrix} e = 0 \Rightarrow e = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

• Hand calculation: $A = \begin{bmatrix} 2 & -3 \\ -3 & 2 \end{bmatrix}$ • Eigenvalues $Ae = \lambda e$ Solve for λ in det $(A - \lambda I) = 0$ $Ae - \lambda Ie = 0$

$$\det\left(\begin{bmatrix}2-\lambda & 3\\-1 & 2-\lambda\end{bmatrix}\right) = (2-\lambda)(2-\lambda) - 9 = 0$$
$$2-\lambda = +3$$

 $\lambda = 2 + 3 = -1.5$

This means the matrix $A - \lambda I$ has an eigenvalue of 0

 $(A - \lambda I)e = 0$

• Eigenvectors

$$\lambda = -1: \begin{bmatrix} 3 & -3 \\ -3 & 3 \end{bmatrix} e = 0 \Rightarrow e = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \qquad \qquad \lambda = 5: \begin{bmatrix} -3 & -3 \\ -3 & -3 \end{bmatrix} e = 0 \Rightarrow e = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

Matlab: eig(A)

• Not all matrices are diagonalizable

 $\begin{array}{l} Ae_1 = \lambda e_1 \\ Ae_2 = \lambda e_2 \\ Ae_3 = \lambda e_3 \end{array}$

• Not all matrices are diagonalizable

 $\begin{array}{ll} Ae_1 = \lambda e_1 & Av_1 = \lambda v_1 + e_1 \\ Ae_2 = \lambda e_2 & Av_2 = \lambda v_2 + e_2 \\ Ae_3 = \lambda e_3 & \end{array}$

• Not all matrices are diagonalizable

 $\begin{array}{ll} Ae_1 = \lambda e_1 & Av_1 = \lambda v_1 + e_1 & Aw_1 = \lambda w_1 + v_1 \\ Ae_2 = \lambda e_2 & Av_2 = \lambda v_2 + e_2 \\ Ae_3 = \lambda e_3 & \end{array}$

• Not all matrices are diagonalizable $Ae_1 = \lambda e_1 \quad Av_1 = \lambda v_1 + e_1 \quad Aw_1 = \lambda w_1 + v_1$ $Ae_2 = \lambda e_2 \quad Av_2 = \lambda v_2 + e_2$ $Ae_3 = \lambda e_3$ $J = TAT^{-1} = \begin{bmatrix} \lambda & 1 & 0 & & & \\ 0 & \lambda & 1 & & & \\ & & & \lambda & 1 & \\ & & & & \lambda & 1 \\ & & & & & \lambda \end{bmatrix}$ $T^{-1} = \begin{bmatrix} e_1 & v_1 & w_1 & e_2 & v_2 & e_3 \end{bmatrix}$

• Not all matrices are diagonalizable

 $\begin{array}{ll} Ae_1 = \lambda e_1 & Av_1 = \lambda v_1 + e_1 & Aw_1 = \lambda w_1 + v_1 \\ Ae_2 = \lambda e_2 & Av_2 = \lambda v_2 + e_2 \\ Ae_3 = \lambda e_3 & \end{array}$

$$J = TAT^{-1} = \begin{bmatrix} \lambda & 1 & 0 & 0 \\ 0 & \lambda & 1 & 0 & 0 \\ 0 & 0 & \lambda & 0 & 0 \\ 0 & 0 & \lambda & 0 & \lambda \\ 0 & 0 & \lambda & 0 & \lambda \end{bmatrix}$$
$$T^{-1} = \begin{bmatrix} e_1 & v_1 & w_1 & e_2 & v_2 & e_3 \end{bmatrix}$$

1

Δ

٦

Г)

- This is the matrix structure for one eigenvalue
- There may be more than one such blocks in general
- All matrices can be put into Jordan form

Functions of Matrices

- Consider a polynomial of a matrix, $f(A) = A^k$
 - $A^k = (T^{-1}JT)^k = (T^{-1}JT)(T^{-1}JT)(T^{-1}JT)...(T^{-1}JT) = T^{-1}J^kT$
 - Adjacent T matrices and inverse cancel!
- This motivates general functions of matrices, like $f(A) = \sin A$, defined through Taylor series

•
$$\sin A = A - \frac{A^3}{3!} + \frac{A^5}{5!} - \frac{A^7}{7!} + \cdots$$

• Suppose
$$J = \begin{bmatrix} \lambda & 1 & & \\ \lambda & \ddots & & \\ & \ddots & 1 \\ & & \lambda \end{bmatrix} \begin{bmatrix} n & & \\ n & & \\ & \ddots & 1 \\ & & & \lambda \end{bmatrix}$$

• Then, $f(J) = \begin{bmatrix} f(\lambda) & f'(\lambda) & \cdots & \frac{f^{(n-1)}(\lambda)}{(n-1)!} \\ & f(\lambda) & \ddots & \vdots \\ & & \ddots & f'(\lambda) \\ & & & & f(\lambda) \end{bmatrix}$

- And $f(A) = T^{-1}f(J)T$, where $A = T^{-1}JT$
 - Therefore, we also have that the eigenvalues of f(A) are $\{f(\lambda)\}$, where $\{\lambda\}$ are eigenvalues of A

Linear Maps

• How about $\mathcal{A}: as^2 + bs + c \rightarrow \int_0^s (bt + a)dt$?