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• Sets of numbers: ×

• Membership and Quantifiers: 
•
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Linear Maps

• Represented by a matrix × , if input and output are vectors
•
• Operates on a vector ; outputs 

• Linearity: 
• for all scalars , vectors 

• Range space: 
• Also known as the image of 

• Null space: 
• Also known as the kernel of 
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Linear Maps

• Example: 

• all vectors in the form 
• In general, the range of a matrix is given by all linear combinations of its columns

•

• Matlab:
• A=sym([1 4 2; 1 4 2]);
• colspace(A)
• null(A)
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Linear Maps

• In general, an operator may not have vectors as inputs and outputs
• We use to denote the map in this case
• These maps may be linear!

• Consider the map 
• Maps quadratic functions to quadratic functions
• Input and outputs are functions

• Is the above map linear?
• Let 
• Check whether 
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Linear Maps: Example 1

• Consider the map 
• Is the above map linear?
• Let 
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Linear Map Properties

• Matrix inverse
• System of equations, ×

• Solution: , if a solution exists
• However, try not to do this in Matlab. Instead, use x=A\b
• If , then 

• is singular if it does not have an inverse
• Columns of are not linear independent is singular

• Non-commutative in general
•



Linear Map Properties

• Matrix determinant
• If , then

• If 𝐴 =
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

, then det 𝐴 = 𝑎 det
𝑒 𝑓
ℎ 𝑖

− 𝑏 det
𝑑 𝑓
𝑔 𝑖

+ 𝑐 det
𝑑 𝑒
𝑔 ℎ

• Can be defined recursively

• is singular



Linear Map Properties

• Let be a linear map from , and , then
• has at least one solution 
• If , then

• 𝐴𝑢 = 𝑏 has a unique solution ⇔ 𝑁 𝐴 = 𝜃

• Let 𝑥 be such that 𝐴𝑥 = 𝑏. Then, 𝐴𝑥 = 𝑏 ⇔ 𝑥 − 𝑥 ∈ 𝑁 𝐴
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• A norm is a map satisfying
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•
• 𝒱

• Examples in 
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Norms

• A norm is a map satisfying
• (triangle inequality)
•
• 𝒱

• Examples for continuous functions 
• , where is any of the vector norms from before

• (“ -norm”, or “ norm”)

• (“ -norm”, or “ norm”)



Induced Norms

• Let be a linear operator. Then, the induced norm of is defined as

,

• Properties
• , (maximum column sum)

• , (maximum singular value)
• , (maximum row sum)



• Eigenvalues:
• If there is some vector and scalar such that , then is called the 

eigenvector corresponding to eigenvalue of the matrix 

• Example: 

•

•

• When a matrix is applied to eigenvectors, the effect is simple!

Eigenvalues and Eigenvectors
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•
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• Looks silly, but we can apply the same idea for more complex matrices



Eigenvalues and Eigenvectors

• Geometric interpretation:
•
• Negative eigenvalues  reflection
• Complex eigenvalues  rotation



Eigenvalues and Eigenvectors

• Geometric interpretation:
•
• Negative eigenvalues  reflection
• Complex eigenvalues  rotation

• Property: the product of eigenvalues
• Recall is singular
• If , then there must be an eigenvalue that’s 
• , so 
• Any vector in the direction of gets scaled by a factor of 

• Example: 



Eigenvalues and Eigenvectors

• Define 

• Then, , where 

• So, . This is a similarity transform
• Define , and we have 

• In the coordinate system obtained from applying transformation 𝑇, the map 𝐴 is 
diagonal

• To obtain the result of applying 𝐴 in the original coordinate system, transform back with 
𝑇
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• Eigenvectors

• Matlab: eig(A)

𝐴𝑒 = 𝜆𝑒
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Functions of Matrices

• Consider a polynomial of a matrix, 
• … 
• Adjacent matrices and inverse cancel!

• This motivates general functions of matrices, like , 
defined through Taylor series

•
! ! !



Functions of Matrices

• Suppose 

• Then, 
!

• And , where 
• Therefore, we also have that the eigenvalues of 𝑓 𝐴 are 𝑓 𝜆 , where 𝜆 are eigenvalues 

of 𝐴

𝑛

𝑛



Linear Maps

• How about ?


