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Notation

• Sets of numbers: ௡ ௡×௠
ା

௡

• Membership and Quantifiers: 
•
• such that 
• such that 

• Implications: 
• ଶ

• and means 

𝑆

𝑥

𝑦

𝑆ଶ
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Notation

• Sets of numbers: ௡ ௡×௠
ା

௡

• Membership and Quantifiers: 
•
•
•

• Implications and negation: 
• ଶ

• and means 

𝑆

𝑥

𝑦

𝑆ଶ



Basis

• Let ଵ ଶ ௣ be vectors in ௡

• They are linearly independent if and only if 
ଵ ଵ ଶ ଶ ௣ ௣ ଵ ଶ ௣

• A set of vectors ଵ ଶ ௡ is a basis of ௡ if and only if
• ௡

ଵ ଶ ௡ such that ଵ ଵ ଶ ଶ ௡ ௡

• ଵ ଶ ௡ is a linearly independent set of vectors

• Bases of ଶ:
•
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Linear Maps

• Represented by a matrix ௠×௡, if input and output are vectors
•
• Operates on a vector ௡; outputs ௠

• Linearity: ଵ ଵ ଶ ଶ ଵ ଵ ଶ ଶ
• for all scalars ଵ ଶ , vectors ଵ ଶ

௡

• Range space: ௡ ௠

• Also known as the image of 

• Null space: ௡

• Also known as the kernel of 
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Linear Maps

• Example: 

• all vectors in the form 
• In general, the range of a matrix is given by all linear combinations of its columns

•

• Matlab:
• A=sym([1 4 2; 1 4 2]);
• colspace(A)
• null(A)
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Linear Maps

• In general, an operator may not have vectors as inputs and outputs
• We use to denote the map in this case
• These maps may be linear!

• Consider the map ଶ ଶ

• Maps quadratic functions to quadratic functions
• Input and outputs are functions

• Is the above map linear?
• Let ଵ ଵ

ଶ
ଵ ଵ ଶ ଶ

ଶ
ଶ ଶ

• Check whether ଵ ଵ ଶ ଶ ଵ ଵ ଶ ଶ
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Linear Maps: Example 1

• Consider the map ଶ ଶ

• Is the above map linear?
• Let ଵ ଵ

ଶ
ଵ ଵ ଶ ଶ

ଶ
ଶ ଶ

• Check whether ଵ ଵ ଶ ଶ ଵ ଵ ଶ ଶ

• Therefore, the map is linear

𝒜 𝛼ଵ𝑣ଵ + 𝛼ଶ𝑣ଶ = 𝒜 𝛼ଵ𝑎ଵ𝑠ଶ + 𝛼ଵ𝑏ଵ𝑠 + 𝛼ଵ𝑐ଵ + 𝛼ଶ𝑎ଶ𝑠ଶ + 𝛼ଶ𝑏ଶ𝑠 + 𝛼ଶ𝑐ଶ
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Linear Map Properties

• Matrix inverse
• System of equations, ௡×௡

• Solution: ିଵ , if a solution exists
• However, try not to do this in Matlab. Instead, use x=A\b
• If , then ିଵ ଵ

௔ௗି௕௖

• is singular if it does not have an inverse
• Columns of are not linear independent is singular

• Non-commutative in general
•



Linear Map Properties

• Matrix determinant
• If , then

• If 𝐴 =
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

, then det 𝐴 = 𝑎 det
𝑒 𝑓
ℎ 𝑖

− 𝑏 det
𝑑 𝑓
𝑔 𝑖

+ 𝑐 det
𝑑 𝑒
𝑔 ℎ

• Can be defined recursively

• is singular



Linear Map Properties

• Let be a linear map from , and , then
• has at least one solution 
• If , then

• 𝐴𝑢 = 𝑏 has a unique solution ⇔ 𝑁 𝐴 = 𝜃௨

• Let 𝑥଴ be such that 𝐴𝑥଴ = 𝑏. Then, 𝐴𝑥 = 𝑏 ⇔ 𝑥 − 𝑥଴ ∈ 𝑁 𝐴



Norms

• A norm is a map ା satisfying
• ଵ ଶ ଵ ଶ ଵ ଶ (triangle inequality)
•
• 𝒱

• Examples in ௡

• ଵ ௜
௡
௜ୀଵ (“ -norm”, or “ ଵ norm”)

• ଶ ௜
ଶ௡

௜ୀଵ

భ

మ (“ -norm”, or “ ଶ norm”)

• ௣ ௜
௣௡

௜ୀଵ

భ

೛ (“ -norm”, or “ ௣ norm”)
• ஶ ௜ ௜ (“ -norm”, or “ ஶ norm”)
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Norms

• A norm is a map ା satisfying
• ଵ ଶ ଵ ଶ ଵ ଶ (triangle inequality)
•
• 𝒱

• Examples in ௠×௡

• ௔ ௜௝
௡
௝ୀଵ

௠
௜ୀଵ

• ி ௜௝
ଶ௡

௝ୀଵ
௠
௜ୀଵ

భ

మ (“Frobenius norm”)

• ௕ ௜,௝ ௜௝



Norms

• A norm is a map ା satisfying
• ଵ ଶ ଵ ଶ ଵ ଶ (triangle inequality)
•
• 𝒱

• Examples for continuous functions ଴ ଵ
௡

• ଵ
௧భ

௧బ
, where is any of the vector norms from before

• ଶ
ଶ௧భ

௧బ

భ

మ (“ -norm”, or “ ଶ norm”)

• ஶ ଴ ଵ (“ -norm”, or “ ஶ norm”)



Induced Norms

• Let be a linear operator. Then, the induced norm of is defined as

௣,௜
௫ஷ଴

௣

௣

• Properties
• ଵ,௜ ௝ ௜௝

௠
௜ୀଵ (maximum column sum)

• ଶ,௜ ௝
ୃ

భ

మ (maximum singular value)
• ஶ,௜

௜
௜௝

௡
௝ୀଵ (maximum row sum)



• Eigenvalues:
• If there is some vector and scalar such that , then is called the 

eigenvector corresponding to eigenvalue of the matrix 

• Example: 

•

•

• When a matrix is applied to eigenvectors, the effect is simple!

Eigenvalues and Eigenvectors
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• When a matrix is applied to eigenvectors, the effect is simple!

• What if the matrix is applied to another vector?

• Looks dumb, but we can apply the same idea for more complex matrices
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• Example: 

•

•

• When a matrix is applied to eigenvectors, the effect is simple!

• What if the matrix is applied to another vector?

• Looks silly, but we can apply the same idea for more complex matrices



Eigenvalues and Eigenvectors

• Geometric interpretation:
• ଵ ଵ ଶ ଶ ଵ ଵ ଶ ଶ ଵ ଵ ଶ ଶ

• Negative eigenvalues  reflection
• Complex eigenvalues  rotation



Eigenvalues and Eigenvectors

• Geometric interpretation:
• ଵ ଵ ଶ ଶ ଵ ଵ ଶ ଶ ଵ ଵ ଶ ଶ

• Negative eigenvalues  reflection
• Complex eigenvalues  rotation

• Property: the product of eigenvalues
• Recall is singular
• If , then there must be an eigenvalue that’s 
• , so 
• Any vector in the direction of gets scaled by a factor of 

• Example: 



Eigenvalues and Eigenvectors

• Define ିଵ
ଵ ଶ ௡

• Then, ିଵ ିଵ , where 

ଵ

ଶ

௡

• So, ିଵ . This is a similarity transform
• Define , and we have ିଵ ିଵ

• In the coordinate system obtained from applying transformation 𝑇, the map 𝐴 is 
diagonal

• To obtain the result of applying 𝐴 in the original coordinate system, transform back with 
𝑇ିଵ
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Obtaining Eigenvalues and Eigenvectors

• Hand calculation: 
• Eigenvalues

• Eigenvectors

• Matlab: eig(A)

𝐴𝑒 = 𝜆𝑒



Obtaining Eigenvalues and Eigenvectors

• Hand calculation: 
• Eigenvalues

• Eigenvectors

• Matlab: eig(A)

𝐴𝑒 = 𝜆𝑒

𝐴𝑒 − 𝜆𝐼𝑒 = 0

(𝐴 − 𝜆𝐼)𝑒 = 0

This means the matrix 𝐴 − 𝜆𝐼
has an eigenvalue of 0



Obtaining Eigenvalues and Eigenvectors

• Hand calculation: 
• Eigenvalues

• Eigenvectors

• Matlab: eig(A)

𝐴𝑒 = 𝜆𝑒

𝐴𝑒 − 𝜆𝐼𝑒 = 0

(𝐴 − 𝜆𝐼)𝑒 = 0

This means the matrix 𝐴 − 𝜆𝐼
has an eigenvalue of 0

Solve for 𝜆 in det 𝐴 − 𝜆𝐼 = 0

det
2 − 𝜆 3

−1 2 − 𝜆
= 2 − 𝜆 2 − 𝜆 − 9 = 0

2 − 𝜆 = ±3

𝜆 = 2 ± 3 = −1 or 5



Obtaining Eigenvalues and Eigenvectors

• Hand calculation: 
• Eigenvalues

• Eigenvectors

• Matlab: eig(A)

𝐴𝑒 = 𝜆𝑒

𝐴𝑒 − 𝜆𝐼𝑒 = 0

(𝐴 − 𝜆𝐼)𝑒 = 0

This means the matrix 𝐴 − 𝜆𝐼
has an eigenvalue of 0

Solve for 𝜆 in det 𝐴 − 𝜆𝐼 = 0

det
2 − 𝜆 3

−1 2 − 𝜆
= 2 − 𝜆 2 − 𝜆 − 9 = 0

2 − 𝜆 = ±3

𝜆 = 2 ± 3 = −1 or 5

𝜆 = −1:
3 −3

−3 3
𝑒 = 0 ⇒ 𝑒 =

1
1



Obtaining Eigenvalues and Eigenvectors

• Hand calculation: 
• Eigenvalues

• Eigenvectors

• Matlab: eig(A)

𝐴𝑒 = 𝜆𝑒

𝐴𝑒 − 𝜆𝐼𝑒 = 0

(𝐴 − 𝜆𝐼)𝑒 = 0

This means the matrix 𝐴 − 𝜆𝐼
has an eigenvalue of 0

Solve for 𝜆 in det 𝐴 − 𝜆𝐼 = 0

det
2 − 𝜆 3

−1 2 − 𝜆
= 2 − 𝜆 2 − 𝜆 − 9 = 0

2 − 𝜆 = ±3

𝜆 = 2 ± 3 = −1,5

𝜆 = −1:
3 −3

−3 3
𝑒 = 0 ⇒ 𝑒 =

1
1

𝜆 = 5:
−3 −3
−3 −3

𝑒 = 0 ⇒ 𝑒 =
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Generalized Eigenvalues and Eigenvectors

• Not all matrices are diagonalizable
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Functions of Matrices

• Consider a polynomial of a matrix, ௞

• ௞ ିଵ ௞ ିଵ ିଵ ିଵ … ିଵ ିଵ ௞

• Adjacent matrices and inverse cancel!

• This motivates general functions of matrices, like , 
defined through Taylor series

•
஺య

ଷ!

஺ఱ

ହ!

஺ళ

଻!



Functions of Matrices

• Suppose 

• Then, 

ᇱ ௙ ೙షభ ఒ

௡ିଵ !

ᇱ

• And ିଵ , where ିଵ

• Therefore, we also have that the eigenvalues of 𝑓 𝐴 are 𝑓 𝜆 , where 𝜆 are eigenvalues 
of 𝐴

𝑛

𝑛



Linear Maps

• How about ଶ ௦

଴
?


