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• Eigenvalues and Eigenvectors

• Jordan form of matrices

• Functions of matrices



• Eigenvalues:
• If there is some vector and scalar such that , then is called the 

eigenvector corresponding to eigenvalue of the matrix 

• Example: 

•

•

• When a matrix is applied to eigenvectors, the effect is simple!

Eigenvalues and Eigenvectors
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• So, . This is a similarity transform
• Define , and we have 

• In the coordinate system obtained from applying transformation 𝑇, the map 𝐴 is 
diagonal

• To obtain the result of applying 𝐴 in the original coordinate system, transform back with 
𝑇
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Generalized Eigenvalues and Eigenvectors

• Not all matrices are diagonalizable
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Generalized Eigenvalues and Eigenvectors

• Not all matrices are diagonalizable

• This is the matrix structure for one eigenvalue
• There may be more than one such blocks in general

• All matrices can be put into Jordan form
• Note that the eigenvalues of are the same as those of 

𝐴𝑒 = 𝜆𝑒
𝐴𝑒 = 𝜆𝑒
𝐴𝑒 = 𝜆𝑒
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𝐴𝑣 = 𝜆𝑣 + 𝑒

𝐴𝑤 = 𝜆𝑤 + 𝑣
𝐽 = 𝑇𝐴𝑇 =

𝜆 1 0
0 𝜆 1
0 0 𝜆

𝜆 1
0 𝜆

𝜆

𝑇 = 𝑒 𝑣 𝑤 𝑒 𝑣 𝑒

Imagine det 𝐽 − 𝑠𝐼 = 0
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Functions of Matrices

• Suppose 

• Then, 
!

• And , where 
• Therefore, we also have that the eigenvalues of 𝑓 𝐴 are 𝑓 𝜆 , where 𝜆 are eigenvalues 

of 𝐴

𝑛

𝑛



Functions of Matrices

• Suppose 

• Then, 
!

• And , where 
• Spectral theorem: the eigenvalues of are , where are eigenvalues 

of 

𝑛

𝑛

Imagine det 𝑓 𝐽 − 𝑠𝐼 = 0
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Outline

• Differential equations

• Linear time-invariant differential equations



References for Linear Systems

• F. Callier & C. A. Desoer, Linear System Theory, Springer-Verlag, 1991. 

• W. J. Rugh, Linear System Theory, Prentice-Hall, 1996. 



Differential equations

• Continuous time model of robotic systems
• In general, nonlinear systems
• One may construct discrete time models from continuous time models

• Dynamics:
• Specifies how the robot state or configuration changes over time
• In some ways, the most “natural” model, since 
• Defining , we have
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• Most common: position, velocity, angular position, angular velocity

• Control:
• Examples: steering, accelerating, decelerating
• Usually constrained to be within some set
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Differential Equations

• Example: Simple car, 

•
•
• is constant

𝜃
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Existence and Uniqueness of Solutions

•
• State:
• Control:
• Disturbance:

• Conditions for existence and uniqueness of solution 
• is piecewise continuous in 

• There can only be finitely many points of discontinuity in any compact interval
• is Lipschitz continuous in : such that

• and are piecewise continuous
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LTI Systems

• Differential equations generally do not have closed-form solutions
• Numerical methods can be used to obtain approximate solutions
• Other analysis techniques offer insight into the solutions

• Linear time-invariant (LTI) systems: 
• Damped mass spring systems
• Circuits involving resistors, capacitors, inductors
• Approximations of nonlinear systems
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