Review: Linear Algebra (Cont'd)

CMPT 882
Jan. 9, 2018

Outline

- Eigenvalues and Eigenvectors
- Jordan form of matrices
- Functions of matrices

Eigenvalues and Eigenvectors

- Eigenvalues:
- If there is some vector e and scalar λ such that $A e=\lambda e$, then e is called the eigenvector corresponding to eigenvalue λ of the matrix A
- Example: $A=\left[\begin{array}{ll}3 & 0 \\ 0 & 2\end{array}\right]$
- $\left[\begin{array}{ll}3 & 0 \\ 0 & 2\end{array}\right]\left[\begin{array}{l}1 \\ 0\end{array}\right]=\left[\begin{array}{l}3 \\ 0\end{array}\right]=3\left[\begin{array}{l}1 \\ 0\end{array}\right]$

- $\left[\begin{array}{ll}3 & 0 \\ 0 & 2\end{array}\right]\left[\begin{array}{l}0 \\ 1\end{array}\right]=\left[\begin{array}{l}0 \\ 2\end{array}\right]=2\left[\begin{array}{l}0 \\ 1\end{array}\right]$
- When a matrix is applied to eigenvectors, the effect is simple!

Eigenvalues and Eigenvectors

- Define $T^{-1}=\left[\begin{array}{llll}e_{1} & e_{2} & \cdots & e_{n}\end{array}\right]$
- Then, $A T^{-1}=T^{-1} \Lambda$, where $\Lambda=\left[\begin{array}{llll}\lambda_{1} & & & \\ & \lambda_{2} & & \\ & & \ddots & \\ & & & \lambda_{n}\end{array}\right]$
- So, $A=T^{-1} \Lambda T$. This is a similarity transform

Eigenvalues and Eigenvectors

- Define $T^{-1}=\left[\begin{array}{llll}e_{1} & e_{2} & \cdots & e_{n}\end{array}\right]$
- Then, $A T^{-1}=T^{-1} \Lambda$, where $\Lambda=\left[\begin{array}{llll}\lambda_{1} & & & \\ & \lambda_{2} & & \\ & & \ddots & \\ & & & \lambda_{n}\end{array}\right]$
- So, $A=T^{-1} \Lambda T$. This is a similarity transform.
- Define $z=T x$, and we have $A x=T^{-1} \Lambda T x=T^{-1} \Lambda z$
- In the coordinate system obtained from applying transformation T, the map A is diagonal
- To obtain the result of applying A in the original coordinate system, transform back with T^{-1}

Obtaining Eigenvalues and Eigenvectors

- Hand calculation: $A=\left[\begin{array}{cc}2 & -3 \\ -3 & 2\end{array}\right]$
- Eigenvalues $A e=\lambda e$

Obtaining Eigenvalues and Eigenvectors

- Hand calculation: $A=\left[\begin{array}{cc}2 & -3 \\ -3 & 2\end{array}\right]$
- Eigenvalues $A e=\lambda e$

$$
\begin{gathered}
A e-\lambda I e=0 \\
(A-\lambda I) e=0
\end{gathered}
$$

This means the matrix $A-\lambda I$ has an eigenvalue of 0

Obtaining Eigenvalues and Eigenvectors

- Hand calculation: $A=\left[\begin{array}{cc}2 & -3 \\ -3 & 2\end{array}\right]$
- Eigenvalues

Solve for λ in $\operatorname{det}(A-\lambda I)=0$

$$
\begin{gathered}
A e-\lambda I e=0 \\
(A-\lambda I) e=0
\end{gathered}
$$

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-\lambda & 3 \\
-1 & 2-\lambda
\end{array}\right]\right)=(2-\lambda)(2-\lambda)-9=0
$$

This means the matrix $A-\lambda I$

$$
2-\lambda= \pm 3
$$ has an eigenvalue of 0

$$
\lambda=2 \pm 3=-1 \text { or } 5
$$

Obtaining Eigenvalues and Eigenvectors

- Hand calculation: $A=\left[\begin{array}{cc}2 & -3 \\ -3 & 2\end{array}\right]$
- Eigenvalues

$$
\begin{array}{r}
A e=\lambda e \\
A e-\lambda I e=0 \\
(A-\lambda I) e=0
\end{array}
$$

Solve for λ in $\operatorname{det}(A-\lambda I)=0$

This means the matrix $A-\lambda I$
has an eigenvalue of 0
$\operatorname{det}\left(\left[\begin{array}{cc}2-\lambda & 3 \\ -1 & 2-\lambda\end{array}\right]\right)=(2-\lambda)(2-\lambda)-9=0$

$$
2-\lambda= \pm 3
$$

$$
\lambda=2 \pm 3=-1 \text { or } 5
$$

- Eigenvectors

$$
\lambda=-1:\left[\begin{array}{cc}
3 & -3 \\
-3 & 3
\end{array}\right] e=0 \Rightarrow e=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Obtaining Eigenvalues and Eigenvectors

- Hand calculation: $A=\left[\begin{array}{cc}2 & -3 \\ -3 & 2\end{array}\right]$
- Eigenvalues

$$
\begin{array}{r}
A e=\lambda e \\
A e-\lambda I e=0 \\
(A-\lambda I) e=0
\end{array}
$$

$$
\text { Solve for } \lambda \text { in } \operatorname{det}(A-\lambda I)=0
$$

This means the matrix $A-\lambda I$

$$
2-\lambda= \pm 3
$$ has an eigenvalue of 0

$$
\operatorname{det}\left(\left[\begin{array}{cc}
2-\lambda & 3 \\
-1 & 2-\lambda
\end{array}\right]\right)=(2-\lambda)(2-\lambda)-9=0
$$

$$
\text { has an eigenvalue of } 0
$$

$$
\lambda=2 \pm 3=-1,5
$$

- Eigenvectors

$$
\lambda=-1:\left[\begin{array}{cc}
3 & -3 \\
-3 & 3
\end{array}\right] e=0 \Rightarrow e=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

$$
\lambda=5:\left[\begin{array}{ll}
-3 & -3 \\
-3 & -3
\end{array}\right] e=0 \Rightarrow e=\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
$$

Obtaining Eigenvalues and Eigenvectors

- Hand calculation: $A=\left[\begin{array}{cc}2 & -3 \\ -3 & 2\end{array}\right]$
- Eigenvalues

$$
\begin{array}{r}
A e=\lambda e \\
A e-\lambda I e=0 \\
(A-\lambda I) e=0
\end{array}
$$

$$
\text { Solve for } \lambda \text { in } \operatorname{det}(A-\lambda I)=0
$$

This means the matrix $A-\lambda I$ has an eigenvalue of 0

$$
\operatorname{det}\left(\left[\begin{array}{cc}
2-\lambda & 3 \\
-1 & 2-\lambda
\end{array}\right]\right)=(2-\lambda)(2-\lambda)-9=0
$$

$$
2-\lambda= \pm 3
$$

$$
\text { has an eigenvalue of } 0
$$

$$
\lambda=2 \pm 3=-1,5
$$

- Eigenvectors

$$
\lambda=-1:\left[\begin{array}{cc}
3 & -3 \\
-3 & 3
\end{array}\right] e=0 \Rightarrow e=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

$$
\lambda=5:\left[\begin{array}{ll}
-3 & -3 \\
-3 & -3
\end{array}\right] e=0 \Rightarrow e=\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
$$

- Matlab: eig(A)

Generalized Eigenvalues and Eigenvectors

- Not all matrices are diagonalizable

$$
\begin{aligned}
& A e_{1}=\lambda e_{1} \\
& A e_{2}=\lambda e_{2} \\
& A e_{3}=\lambda e_{3}
\end{aligned}
$$

Generalized Eigenvalues and Eigenvectors

- Not all matrices are diagonalizable

$$
\begin{array}{ll}
A e_{1}=\lambda e_{1} & A v_{1}=\lambda v_{1}+e_{1} \\
A e_{2}=\lambda e_{2} & A v_{2}=\lambda v_{2}+e_{2} \\
A e_{3}=\lambda e_{3} &
\end{array}
$$

Generalized Eigenvalues and Eigenvectors

- Not all matrices are diagonalizable

$$
\begin{array}{lll}
A e_{1}=\lambda e_{1} & A v_{1}=\lambda v_{1}+e_{1} & A w_{1}=\lambda w_{1}+v_{1} \\
A e_{2}=\lambda e_{2} & A v_{2}=\lambda v_{2}+e_{2} & \\
A e_{3}=\lambda e_{3} & &
\end{array}
$$

Generalized Eigenvalues and Eigenvectors

- Not all matrices are diagonalizable

$$
\begin{array}{ll}
A e_{1}=\lambda e_{1} & A v_{1}=\lambda v_{1}+e_{1} \\
A e_{2}=\lambda e_{2} & A v_{2}=\lambda v_{2}+e_{2}
\end{array} \quad A w_{1}=\lambda w_{1}+v_{1}
$$

$$
J=T A T^{-1}=\left[\begin{array}{llllll}
\lambda & 1 & 0 & & & \\
0 & \lambda & 1 & & & \\
0 & 0 & \lambda & & & \\
& & & \lambda & 1 & \\
& & & 0 & \lambda & \\
& & & & & \lambda
\end{array}\right]
$$

$$
T^{-1}=\left[\begin{array}{llllll}
e_{1} & v_{1} & w_{1} & e_{2} & v_{2} & e_{3}
\end{array}\right]
$$

Generalized Eigenvalues and Eigenvectors

- Not all matrices are diagonalizable

$$
\begin{gathered}
J=T A T^{-1}=\left[\begin{array}{llllll}
\lambda & 1 & 0 & & & \\
0 & \lambda & 1 & & & \\
0 & 0 & \lambda & & & \\
& & & \lambda & 1 & \\
& & & 0 & \lambda & \\
& & & & & \lambda
\end{array}\right] \\
T^{-1}=\left[\begin{array}{llllll}
e_{1} & v_{1} & w_{1} & e_{2} & v_{2} & e_{3}
\end{array}\right]
\end{gathered}
$$

- This is the matrix structure for one eigenvalue
- There may be more than one such blocks in general
- All matrices can be put into Jordan form
- Note that the eigenvalues of J are the same as those of A

$$
\text { Imagine } \operatorname{det}(J-s I)=0
$$

Functions of Matrices

- Consider a polynomial of a matrix, $f(A)=A^{k}$
- $A^{k}=\left(T^{-1} J T\right)^{k}=\left(T^{-1} J T\right)\left(T^{-1} J T\right)\left(T^{-1} J T\right) \ldots\left(T^{-1} J T\right)=T^{-1} J^{k} T$
- Adjacent T matrices and inverse cance!!

Functions of Matrices

- Consider a polynomial of a matrix, $f(A)=A^{k}$
- $A^{k}=\left(T^{-1} J T\right)^{k}=\left(T^{-1} J T\right)\left(T^{-1} J T\right)\left(T^{-1} J T\right) . . .\left(T^{-1} J T\right)=T^{-1} J^{k} T$
- Adjacent T matrices and inverse cancel!
- This motivates general functions of matrices, like $f(A)=\sin A$, defined through Taylor series
- $\sin A=A-\frac{A^{3}}{3!}+\frac{A^{5}}{5!}-\frac{A^{7}}{7!}+\cdots$

Functions of Matrices

- Suppose $J=\left[\begin{array}{ccccc}\lambda & 1 & & \\ & \lambda & \ddots & \\ & & \ddots & 1 \\ & & & & \lambda\end{array}\right]$
-Then, $f(J)=\left[\begin{array}{cccc}f(\lambda) & f^{\prime}(\lambda) & \cdots & \frac{f^{(n-1)(\lambda)}}{(n-1)!} \\ & f(\lambda) & \ddots & \vdots \\ & & \ddots & f^{\prime}(\lambda) \\ & & & f(\lambda)\end{array}\right]$

Functions of Matrices

- Suppose $J=\left[\begin{array}{|cccc}\lambda & 1 & & \\ & \lambda & \ddots & \\ & & \ddots & 1 \\ & & & \lambda\end{array}\right]$
- Then, $f(J)=\left[\begin{array}{cccc}f(\lambda) & f^{\prime}(\lambda) & \cdots & \frac{f^{(n-1)}(\lambda)}{(n-1)!} \\ & f(\lambda) & \ddots & \vdots \\ & & \ddots & f^{\prime}(\lambda) \\ & & & f(\lambda)\end{array}\right]$
- And $f(A)=T^{-1} f(J) T$, where $A=T^{-1} J T$
- Spectral theorem: the eigenvalues of $f(A)$ are $\{f(\lambda)\}$, where $\{\lambda\}$ are eigenvalues of A

$$
\text { Imagine } \operatorname{det}(f(J)-s I)=0
$$

Linear Systems

CMPT 882
Jan. 9

Outline

- Differential equations
- Linear time-invariant differential equations

References for Linear Systems

- F. Callier \& C. A. Desoer, Linear System Theory, Springer-Verlag, 1991.
- W. J. Rugh, Linear System Theory, Prentice-Hall, 1996.

Differential equations

- Continuous time model of robotic systems
- In general, nonlinear systems
- One may construct discrete time models from continuous time models

Differential equations

- Continuous time model of robotic systems
- In general, nonlinear systems
- One may construct discrete time models from continuous time models
- Dynamics: $\dot{x}=f(t, x, u, d), x \in \mathbb{R}^{n}, t \geq t_{0}$
- Specifies how the robot state or configuration changes over time
- In some ways, the most "natural" model, since $F=m a=m \ddot{x}$
- Defining $x_{1}=x, x_{2}=\dot{x}$, we have

$$
\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{c}
x_{2} \\
\frac{F}{m}
\end{array}\right]
$$

Differential equations

- State: $x(t) \in \mathbb{R}^{n}, x\left(t_{0}\right)=x_{0}$
- Contains all information needed to specify the configuration of the robot
- Most common: position, velocity, angular position, angular velocity

Differential equations

- State: $x(t) \in \mathbb{R}^{n}, x\left(t_{0}\right)=x_{0}$
- Contains all information needed to specify the configuration of the robot
- Most common: position, velocity, angular position, angular velocity
- Control: $u(t) \in \mathcal{U}$
- Examples: steering, accelerating, decelerating
- Usually constrained to be within some set

Differential equations

- State: $x(t) \in \mathbb{R}^{n}, x\left(t_{0}\right)=x_{0}$
- Contains all information needed to specify the configuration of the robot
- Most common: position, velocity, angular position, angular velocity
- Control: $u(t) \in \mathcal{U}$
- Examples: steering, accelerating, decelerating
- Usually constrained to be within some set
- Disturbance: $d(t) \in \mathcal{D}$
- Examples: wind, input noise, another agent

Differential Equations

- Example: Simple car, $x=\left(p_{x}, p_{y}, \theta\right), t \geq 0$

$$
\begin{gathered}
\dot{p}_{x}=v \cos \theta \\
\dot{p}_{y}=v \sin \theta \quad f(x, u)=\left[\begin{array}{c}
v \cos \theta \\
\dot{\theta}=u
\end{array} \quad \begin{array}{c}
\sin \theta \\
u
\end{array}\right]
\end{gathered}
$$

- $x(t) \in \mathbb{R}^{3}$
- $u \in[-1,1]$
- v is constant

Differential Equations

- Example: Simple car, $x=\left(p_{x}, p_{y}, \theta\right), t \geq 0$

$$
\begin{aligned}
& \dot{p}_{x}=v \cos \theta \\
& \dot{p}_{y}=v \sin \theta \quad f(x, u)=\left[\begin{array}{c}
v \cos \theta \\
\dot{\theta}=u
\end{array} \quad \begin{array}{c}
\sin \theta \\
u
\end{array}\right]
\end{aligned}
$$

- $x(t) \in \mathbb{R}^{3}$
- $u \in[-1,1]$
- v is constant

Differential Equations

- Example: Simple car, $x=\left(p_{x}, p_{y}, \theta\right), t \geq 0$

$$
\begin{gathered}
\dot{p}_{x}=v \cos \theta \\
\dot{p}_{y}=v \sin \theta \\
\dot{\theta}=u
\end{gathered} \quad f(x, u)=\left[\begin{array}{c}
v \cos \theta \\
v \sin \theta \\
u
\end{array}\right]
$$

- $x(t) \in \mathbb{R}^{3}$
- $u \in[-1,1]$
- v is constant

Existence and Uniqueness of Solutions

- $\dot{x}=f(t, x, u, d), t \geq t_{0}$
- State: $x(t) \in \mathbb{R}^{n}, x\left(t_{0}\right)=x_{0}$
- Control: $u(t) \in U$
- Disturbance: $d(t) \in \mathcal{D}$
- Conditions for existence and uniqueness of solution $x(t)$
- f is piecewise continuous in t
- There can only be finitely many points of discontinuity in any compact interval

Existence and Uniqueness of Solutions

- $\dot{x}=f(t, x, u, d), t \geq t_{0}$
- State: $x(t) \in \mathbb{R}^{n}, x\left(t_{0}\right)=x_{0}$
- Control: $u(t) \in U$
- Disturbance: $d(t) \in \mathcal{D}$
- Conditions for existence and uniqueness of solution $x(t)$
- f is piecewise continuous in t
- There can only be finitely many points of discontinuity in any compact interval
- f is Lipschitz continuous in $x: \exists L(\cdot): \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$such that

$$
\forall u, d, x_{1}, x_{2}, t,\left\|f\left(t, x_{1}, u\right)-f\left(t, x_{2}, u\right)\right\| \leq L(t)\left\|x_{1}-x_{2}\right\|
$$

Existence and Uniqueness of Solutions

- $\dot{x}=f(t, x, u, d), t \geq t_{0}$
- State: $x(t) \in \mathbb{R}^{n}, x\left(t_{0}\right)=x_{0}$
- Control: $u(t) \in U$
- Disturbance: $d(t) \in \mathcal{D}$
- Conditions for existence and uniqueness of solution $x(t)$
- f is piecewise continuous in t
- There can only be finitely many points of discontinuity in any compact interval
- f is Lipschitz continuous in $x: \exists L(\cdot): \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$such that

$$
\forall u, d, x_{1}, x_{2}, t,\left\|f\left(t, x_{1}, u\right)-f\left(t, x_{2}, u\right)\right\| \leq L(t)\left\|x_{1}-x_{2}\right\|
$$

- $u(\cdot)$ and $d(\cdot)$ are piecewise continuous

Lipschitz Continuity

- A Lipschitz continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$
- $f(x)=\sin x \cos 4 x$
- $\forall x_{1}, x_{2},\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right| \leq 4\left|x_{1}-x_{2}\right|$
- Graph shows $x_{2}=0$
- All of red curve is outside of green cones
- Translate the green lines anywhere along the red curve
- All of red curve is still outside green cones

Lipschitz Continuity

- A Lipschitz continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$
- $f(x)=\sin x \cos 4 x$
- $\forall x_{1}, x_{2},\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right| \leq 4\left|x_{1}-x_{2}\right|$
- Graph shows $x_{2}=0$
- All of red curve is outside of green cones
- Translate the green lines anywhere along the red curve
- All of red curve is still outside green cones

Existence and Uniqueness of Solutions

- $\dot{x}=f(t, x, u, d), t \geq t_{0}$
- State: $x(t) \in \mathbb{R}^{n}, x\left(t_{0}\right)=x_{0}$
- Control: $u(t) \in U$
- Disturbance: $d(t) \in \mathcal{D}$
- Conditions for existence and uniqueness of solution $x(t)$
- f is piecewise continuous in t
- There can only be finitely many points of discontinuity in any compact interval
- f is Lipschitz continuous in $x: \exists L(\cdot): \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$such that

$$
\forall u, d, x_{1}, x_{2}, t,\left\|f\left(t, x_{1}, u\right)-f\left(t, x_{2}, u\right)\right\| \leq L(t)\left\|x_{1}-x_{2}\right\|
$$

- $u(\cdot)$ and $d(\cdot)$ are piecewise continuous

Existence and Uniqueness of Solutions

- Example: $\dot{x}=x^{2}, x \in \mathbb{R}, x(0)=\frac{1}{c}$

Existence and Uniqueness of Solutions

- Example: $\dot{x}=x^{2}, x \in \mathbb{R}, x(0)=\frac{1}{c}$

$$
\frac{d x}{d t}=x^{2} \Rightarrow \frac{d x}{x^{2}}=\frac{c}{d t}
$$

Existence and Uniqueness of Solutions

- Example: $\dot{x}=x^{2}, x \in \mathbb{R}, x(0)=\frac{1}{c}$

$$
\frac{d x}{d t}=x^{2} \Rightarrow \frac{d x}{x^{2}}=d t \Rightarrow \int \frac{d x}{x^{2}}=\int d t
$$

Existence and Uniqueness of Solutions

- Example: $\dot{x}=x^{2}, x \in \mathbb{R}, x(0)=\frac{1}{c}$

$$
\begin{gathered}
\frac{d x}{d t}=x^{2} \Rightarrow \frac{d x}{x^{2}}=d t \Rightarrow \int \frac{d x}{x^{2}}=\int d t \\
-\frac{1}{x}+c=t \\
x(t)=\frac{1}{c-t}
\end{gathered}
$$

$$
t=c
$$

Existence and Uniqueness of Solutions

- Example: $\dot{x}=x^{2}, x \in \mathbb{R}, x(0)=\frac{1}{c}$

$$
\begin{gathered}
\frac{d x}{d t}=x^{2} \Rightarrow \frac{d x}{x^{2}}=d t \Rightarrow \int \frac{d x}{x^{2}}=\int d t \\
-\frac{1}{x}+c=t \\
x(t)=\frac{1}{c-t}
\end{gathered}
$$

- Here, $f(x)=x^{2}$, not Lipschitz continuous in x

Checking Lipschitz Continuity

- Example: $f(x)=x^{2}$
- $\exists L>0, \forall x_{1}, x_{2},\left\|f\left(x_{1}\right)-f\left(x_{2}\right)\right\| \leq L\left\|x_{1}-x_{2}\right\|$
$\cdot \Leftrightarrow \exists L>0, \forall x_{1}, x_{2},\left|x_{1}^{2}-x_{2}^{2}\right| \leq L\left|x_{1}-x_{2}\right|$

Checking Lipschitz Continuity

- Example: $f(x)=x^{2}$
- $\exists L>0, \forall x_{1}, x_{2},\left\|f\left(x_{1}\right)-f\left(x_{2}\right)\right\| \leq L\left\|x_{1}-x_{2}\right\|$
- $\Leftrightarrow \exists L>0, \forall x_{1}, x_{2},\left|x_{1}^{2}-x_{2}^{2}\right| \leq L\left|x_{1}-x_{2}\right|$
$\cdot \Leftrightarrow \exists L>0, \forall x_{1}, x_{2},\left|\left(x_{1}-x_{2}\right)\left(x_{1}+x_{2}\right)\right| \leq L\left|x_{1}-x_{2}\right|$

Checking Lipschitz Continuity

- Example: $f(x)=x^{2}$
- $\exists L>0, \forall x_{1}, x_{2},\left\|f\left(x_{1}\right)-f\left(x_{2}\right)\right\| \leq L\left\|x_{1}-x_{2}\right\|$
- $\Leftrightarrow \exists L>0, \forall x_{1}, x_{2},\left|x_{1}^{2}-x_{2}^{2}\right| \leq L\left|x_{1}-x_{2}\right|$
$\cdot \Leftrightarrow \exists L>0, \forall x_{1}, x_{2},\left|\left(x_{1}-x_{2}\right)\left(x_{1}+x_{2}\right)\right| \leq L\left|x_{1}-x_{2}\right|$
$\cdot \Leftrightarrow \exists L>0, \forall x_{1}, x_{2},\left(x_{1}+x_{2}\right)\left|x_{1}-x_{2}\right| \leq L\left|x_{1}-x_{2}\right|$

Checking Lipschitz Continuity

- Example: $f(x)=x^{2}$
- $\exists L>0, \forall x_{1}, x_{2},\left\|f\left(x_{1}\right)-f\left(x_{2}\right)\right\| \leq L\left\|x_{1}-x_{2}\right\|$
- $\Leftrightarrow \exists L>0, \forall x_{1}, x_{2},\left|x_{1}^{2}-x_{2}^{2}\right| \leq L\left|x_{1}-x_{2}\right|$
$\cdot \Leftrightarrow \exists L>0, \forall x_{1}, x_{2},\left|\left(x_{1}-x_{2}\right)\left(x_{1}+x_{2}\right)\right| \leq L\left|x_{1}-x_{2}\right|$
$\cdot \Leftrightarrow \exists L>0, \forall x_{1}, x_{2},\left(x_{1}+x_{2}\right)\left|x_{1}-x_{2}\right| \leq L\left|x_{1}-x_{2}\right|$
$\cdot \Leftrightarrow \exists L>0, \forall x_{1}, x_{2}, x_{1}+x_{2} \leq L$

Checking Lipschitz Continuity

- Example: $f(x)=x^{2}$
- $\exists L>0, \forall x_{1}, x_{2},\left\|f\left(x_{1}\right)-f\left(x_{2}\right)\right\| \leq L\left\|x_{1}-x_{2}\right\|$
- $\Leftrightarrow \exists L>0, \forall x_{1}, x_{2},\left|x_{1}^{2}-x_{2}^{2}\right| \leq L\left|x_{1}-x_{2}\right|$
$\cdot \Leftrightarrow \exists L>0, \forall x_{1}, x_{2},\left|\left(x_{1}-x_{2}\right)\left(x_{1}+x_{2}\right)\right| \leq L\left|x_{1}-x_{2}\right|$
$\cdot \Leftrightarrow \exists L>0, \forall x_{1}, x_{2},\left(x_{1}+x_{2}\right)\left|x_{1}-x_{2}\right| \leq L\left|x_{1}-x_{2}\right|$
$\cdot \Leftrightarrow \exists L>0, \forall x_{1}, x_{2}, x_{1}+x_{2} \leq L$
- However, for $\forall L>0, \exists x_{1}, x_{2}, x_{1}+x_{2}>\mathrm{L}$

Checking Lipschitz Continuity

- Example: $f(x)=x^{2}$
- $\exists L>0, \forall x_{1}, x_{2},\left\|f\left(x_{1}\right)-f\left(x_{2}\right)\right\| \leq L\left\|x_{1}-x_{2}\right\|$
- $\Leftrightarrow \exists L>0, \forall x_{1}, x_{2},\left|x_{1}^{2}-x_{2}^{2}\right| \leq L\left|x_{1}-x_{2}\right|$
$\cdot \Leftrightarrow \exists L>0, \forall x_{1}, x_{2},\left|\left(x_{1}-x_{2}\right)\left(x_{1}+x_{2}\right)\right| \leq L\left|x_{1}-x_{2}\right|$
$\cdot \Leftrightarrow \exists L>0, \forall x_{1}, x_{2},\left(x_{1}+x_{2}\right)\left|x_{1}-x_{2}\right| \leq L\left|x_{1}-x_{2}\right|$
$\cdot \Leftrightarrow \exists L>0, \forall x_{1}, x_{2}, x_{1}+x_{2} \leq L$
- However, for $\forall L>0, \exists x_{1}, x_{2}, x_{1}+x_{2}>\mathrm{L}$
- This is the negation of the statement \qquad

Checking Lipschitz Continuity

- Example: $f(x)=x^{2}$
- $\exists L>0, \forall x_{1}, x_{2},\left\|f\left(x_{1}\right)-f\left(x_{2}\right)\right\| \leq L\left\|x_{1}-x_{2}\right\|$
- $\Leftrightarrow \exists L>0, \forall x_{1}, x_{2},\left|x_{1}^{2}-x_{2}^{2}\right| \leq L\left|x_{1}-x_{2}\right|$
$\cdot \Leftrightarrow \exists L>0, \forall x_{1}, x_{2},\left|\left(x_{1}-x_{2}\right)\left(x_{1}+x_{2}\right)\right| \leq L\left|x_{1}-x_{2}\right|$
$\cdot \Leftrightarrow \exists L>0, \forall x_{1}, x_{2},\left(x_{1}+x_{2}\right)\left|x_{1}-x_{2}\right| \leq L\left|x_{1}-x_{2}\right|$
$\cdot \Leftrightarrow \exists L>0, \forall x_{1}, x_{2}, x_{1}+x_{2} \leq L$
- However, for $\forall L>0, \exists x_{1}, x_{2}, x_{1}+x_{2}>\mathrm{L}$

$$
\begin{aligned}
& \neg(\exists a, p) \Leftrightarrow \forall a, \neg p \\
& \neg(\forall b, q) \Leftrightarrow \exists a, \neg q
\end{aligned}
$$

Checking Lipschitz Continuity

- Example: $f(x)=x^{2}$
- $\exists L>0, \forall x_{1}, x_{2},\left\|f\left(x_{1}\right)-f\left(x_{2}\right)\right\| \leq L\left\|x_{1}-x_{2}\right\|$
- $\Leftrightarrow \exists L>0, \forall x_{1}, x_{2},\left|x_{1}^{2}-x_{2}^{2}\right| \leq L\left|x_{1}-x_{2}\right|$
$\cdot \Leftrightarrow \exists L>0, \forall x_{1}, x_{2},\left|\left(x_{1}-x_{2}\right)\left(x_{1}+x_{2}\right)\right| \leq L\left|x_{1}-x_{2}\right|$
$\cdot \Leftrightarrow \exists L>0, \forall x_{1}, x_{2},\left(x_{1}+x_{2}\right)\left|x_{1}-x_{2}\right| \leq L\left|x_{1}-x_{2}\right|$
$\cdot \Leftrightarrow \exists L>0, \forall x_{1}, x_{2}, x_{1}+x_{2} \leq L$

$$
\begin{aligned}
& \neg(\exists a, p) \Leftrightarrow \forall a, \neg p \\
& \neg(\forall b, q) \Leftrightarrow \exists a, \neg q
\end{aligned}
$$

- However, for $\forall L>0, \exists x_{1}, x_{2}, x_{1}+x_{2}>\mathrm{L}$
- If $f(x)$ is differentiable, then f is Lipchitz continuous with Lipchitz constant L if and only if $\forall x,\left|f^{\prime}(x)\right|<L$

LTI Systems

- Differential equations generally do not have closed-form solutions
- Numerical methods can be used to obtain approximate solutions
- Other analysis techniques offer insight into the solutions

LTI Systems

- Differential equations generally do not have closed-form solutions
- Numerical methods can be used to obtain approximate solutions
- Other analysis techniques offer insight into the solutions
- Linear time-invariant (LTI) systems: $\dot{x}=A x+B u$
- Damped mass spring systems
- Circuits involving resistors, capacitors, inductors

