Review: Linear Algebra (Cont'd)

CMPT 882 Jan. 9, 2018

Outline

- Eigenvalues and Eigenvectors
- Jordan form of matrices
- Functions of matrices

Eigenvalues and Eigenvectors

- Eigenvalues:
 - If there is some vector e and scalar λ such that $Ae = \lambda e$, then e is called the eigenvector corresponding to eigenvalue λ of the matrix A

• Example:
$$A = \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix}$$

• $\begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 3 \\ 0 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 0 \end{bmatrix}$
• $\begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \end{bmatrix} = 2 \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ \rightarrow

• When a matrix is applied to eigenvectors, the effect is simple!

Eigenvalues and Eigenvectors

• Define $T^{-1} = [e_1 \ e_2 \ \cdots \ e_n]$

• Then,
$$AT^{-1} = T^{-1}\Lambda$$
, where $\Lambda = \begin{bmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & & \ddots & \\ & & & & \lambda_n \end{bmatrix}$

• So, $A = T^{-1}\Lambda T$. This is a **similarity transform**

Eigenvalues and Eigenvectors

• Define $T^{-1} = [e_1 \ e_2 \ \cdots \ e_n]$

• Then,
$$AT^{-1} = T^{-1}\Lambda$$
, where $\Lambda = \begin{bmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & & \ddots & \\ & & & & \lambda_n \end{bmatrix}$

- So, $A = T^{-1}\Lambda T$. This is a similarity transform.
- Define z = Tx, and we have $Ax = T^{-1}\Lambda Tx = T^{-1}\Lambda z$
 - In the coordinate system obtained from applying transformation T, the map A is diagonal
 - To obtain the result of applying A in the original coordinate system, transform back with T^{-1}

• Hand calculation:
$$A = \begin{bmatrix} 2 & -3 \\ -3 & 2 \end{bmatrix}$$

• Eigenvalues
$$Ae = \lambda e$$

• Hand calculation:
$$A = \begin{bmatrix} 2 & -3 \\ -3 & 2 \end{bmatrix}$$

Eigenvalues

 $Ae - \lambda Ie = 0$ $(A - \lambda I)e = 0$

 $Ae = \lambda e$

This means the matrix $A - \lambda I$ has an eigenvalue of 0

• Hand calculation: $A = \begin{bmatrix} 2 & -3 \\ -3 & 2 \end{bmatrix}$

 $Ae - \lambda Ie = 0$

 $(A - \lambda I)e = 0$

• Eigenvalues $Ae = \lambda e^{-1}$

Solve for λ in det $(A - \lambda I) = 0$

$$det\left(\begin{bmatrix} 2-\lambda & 3\\ -1 & 2-\lambda \end{bmatrix}\right) = (2-\lambda)(2-\lambda) - 9 = 0$$

This means the matrix $A - \lambda I$ has an eigenvalue of 0 $2 - \lambda = \pm 3$ $\lambda = 2 \pm 3 = -1 \text{ or } 5$

- Hand calculation: $A = \begin{bmatrix} 2 & -3 \\ -3 & 2 \end{bmatrix}$
 - Eigenvalues $Ae = \lambda e$ $Ae - \lambda Ie = 0$ $(A - \lambda I)e = 0$ $det \left(\begin{bmatrix} 2 - \lambda & 3 \\ -1 & 2 - \lambda \end{bmatrix} \right) = (2 - \lambda)(2 - \lambda) - 9 = 0$ $2 - \lambda = \pm 3$

 $\lambda = 2 + 3 = -1$ or 5

This means the matrix $A - \lambda I$ has an eigenvalue of 0

• Eigenvectors

$$\lambda = -1 : \begin{bmatrix} 3 & -3 \\ -3 & 3 \end{bmatrix} e = 0 \Rightarrow e = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

- Hand calculation: $A = \begin{bmatrix} 2 & -3 \\ -3 & 2 \end{bmatrix}$
 - Eigenvalues $Ae = \lambda e$ $Ae - \lambda Ie = 0$ $(A - \lambda I)e = 0$ Solve for λ in $det(A - \lambda I) = 0$ $det\left(\begin{bmatrix} 2-\lambda & 3\\ -1 & 2-\lambda \end{bmatrix}\right) = (2-\lambda)(2-\lambda) - 9 = 0$ $2-\lambda = \pm 3$

 $\lambda = 2 + 3 = -1.5$

This means the matrix $A - \lambda I$ has an eigenvalue of 0

• Eigenvectors

$$\lambda = -1 : \begin{bmatrix} 3 & -3 \\ -3 & 3 \end{bmatrix} e = 0 \Rightarrow e = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \qquad \qquad \lambda = 5 : \begin{bmatrix} -3 & -3 \\ -3 & -3 \end{bmatrix} e = 0 \Rightarrow e = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

• Hand calculation: $A = \begin{bmatrix} 2 & -3 \\ -3 & 2 \end{bmatrix}$ • Eigenvalues $Ae = \lambda e$ Solve for λ in det $(A - \lambda I) = 0$ $Ae - \lambda Ie = 0$

$$\det\left(\begin{bmatrix}2-\lambda & 3\\-1 & 2-\lambda\end{bmatrix}\right) = (2-\lambda)(2-\lambda) - 9 = 0$$
$$2-\lambda = +3$$

 $\lambda = 2 + 3 = -1.5$

This means the matrix $A - \lambda I$ has an eigenvalue of 0

 $(A - \lambda I)e = 0$

• Eigenvectors

$$\lambda = -1: \begin{bmatrix} 3 & -3 \\ -3 & 3 \end{bmatrix} e = 0 \Rightarrow e = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \qquad \qquad \lambda = 5: \begin{bmatrix} -3 & -3 \\ -3 & -3 \end{bmatrix} e = 0 \Rightarrow e = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

Matlab: eig(A)

• Not all matrices are diagonalizable

 $\begin{array}{l} Ae_1 = \lambda e_1 \\ Ae_2 = \lambda e_2 \\ Ae_3 = \lambda e_3 \end{array}$

• Not all matrices are diagonalizable

 $\begin{array}{ll} Ae_1 = \lambda e_1 & Av_1 = \lambda v_1 + e_1 \\ Ae_2 = \lambda e_2 & Av_2 = \lambda v_2 + e_2 \\ Ae_3 = \lambda e_3 & \end{array}$

• Not all matrices are diagonalizable

 $\begin{array}{ll} Ae_1 = \lambda e_1 & Av_1 = \lambda v_1 + e_1 & Aw_1 = \lambda w_1 + v_1 \\ Ae_2 = \lambda e_2 & Av_2 = \lambda v_2 + e_2 \\ Ae_3 = \lambda e_3 & \end{array}$

• Not all matrices are diagonalizable $Ae_1 = \lambda e_1 \quad Av_1 = \lambda v_1 + e_1 \quad Aw_1 = \lambda w_1 + v_1$ $Ae_2 = \lambda e_2 \quad Av_2 = \lambda v_2 + e_2$ $Ae_3 = \lambda e_3$ $J = TAT^{-1} = \begin{bmatrix} \lambda & 1 & 0 & & & \\ 0 & \lambda & 1 & & & \\ & & & \lambda & 1 & \\ & & & & \lambda & 1 \\ & & & & & \lambda \end{bmatrix}$ $T^{-1} = \begin{bmatrix} e_1 & v_1 & w_1 & e_2 & v_2 & e_3 \end{bmatrix}$

Not all matrices are diagonalizable

 $\begin{array}{ll} Ae_1 = \lambda e_1 & Av_1 = \lambda v_1 + e_1 & Aw_1 = \lambda w_1 + v_1 \\ Ae_2 = \lambda e_2 & Av_2 = \lambda v_2 + e_2 \\ Ae_3 = \lambda e_3 & \end{array}$

$$J = TAT^{-1} = \begin{bmatrix} n & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \\ & & & \lambda & 1 \\ & & & 0 & \lambda \\ & & & & & \lambda \end{bmatrix}$$
$$T^{-1} = \begin{bmatrix} e_1 & v_1 & w_1 & e_2 & v_2 & e_3 \end{bmatrix}$$

1

0

٦

Гλ

- This is the matrix structure for one eigenvalue
- There may be more than one such blocks in general
- All matrices can be put into Jordan form
 - Note that the eigenvalues of J are the same as those of A

Imagine det(J - sI) = 0

Functions of Matrices

- Consider a polynomial of a matrix, $f(A) = A^k$
 - $A^k = (T^{-1}JT)^k = (T^{-1}JT)(T^{-1}JT)(T^{-1}JT)...(T^{-1}JT) = T^{-1}J^kT$
 - Adjacent T matrices and inverse cancel!

Functions of Matrices

- Consider a polynomial of a matrix, $f(A) = A^k$
 - $A^k = (T^{-1}JT)^k = (T^{-1}JT)(T^{-1}JT)(T^{-1}JT)...(T^{-1}JT) = T^{-1}J^kT$
 - Adjacent T matrices and inverse cancel!
- This motivates general functions of matrices, like $f(A) = \sin A$, defined through Taylor series

•
$$\sin A = A - \frac{A^3}{3!} + \frac{A^5}{5!} - \frac{A^7}{7!} + \cdots$$

• Suppose
$$J = \begin{bmatrix} \lambda & 1 & & \\ & \lambda & \ddots & \\ & & \ddots & 1 \\ & & & \lambda \end{bmatrix} \begin{pmatrix} \uparrow & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ &$$

- And $f(A) = T^{-1}f(J)T$, where $A = T^{-1}JT$
- **Spectral theorem**: the eigenvalues of f(A) are $\{f(\lambda)\}$, where $\{\lambda\}$ are eigenvalues of A

Imagine $\det(f(J) - sI) = 0$

Linear Systems

CMPT 882

Jan. 9

Outline

- Differential equations
- Linear time-invariant differential equations

References for Linear Systems

- F. Callier & C. A. Desoer, Linear System Theory, Springer-Verlag, 1991.
- W. J. Rugh, Linear System Theory, Prentice-Hall, 1996.

- Continuous time model of robotic systems
 - In general, nonlinear systems
 - One may construct discrete time models from continuous time models

- Continuous time model of robotic systems
 - In general, nonlinear systems
 - One may construct discrete time models from continuous time models
- Dynamics: $\dot{x} = f(t, x, u, d), x \in \mathbb{R}^n, t \ge t_0$
 - Specifies how the robot state or configuration changes over time
 - In some ways, the most "natural" model, since $F = ma = m\ddot{x}$
 - Defining $x_1 = x, x_2 = \dot{x}$, we have

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} x_2 \\ F \\ \overline{m} \end{bmatrix}$$

- State: $x(t) \in \mathbb{R}^n$, $x(t_0) = x_0$
 - Contains all information needed to specify the configuration of the robot
 - Most common: position, velocity, angular position, angular velocity

- State: $x(t) \in \mathbb{R}^n$, $x(t_0) = x_0$
 - Contains all information needed to specify the configuration of the robot
 - Most common: position, velocity, angular position, angular velocity
- Control: $u(t) \in \mathcal{U}$
 - Examples: steering, accelerating, decelerating
 - Usually constrained to be within some set

- State: $x(t) \in \mathbb{R}^n$, $x(t_0) = x_0$
 - Contains all information needed to specify the configuration of the robot
 - Most common: position, velocity, angular position, angular velocity
- Control: $u(t) \in \mathcal{U}$
 - Examples: steering, accelerating, decelerating
 - Usually constrained to be within some set
- Disturbance: $d(t) \in \mathcal{D}$
 - Examples: wind, input noise, another agent

• Example: Simple car, $x = (p_x, p_y, \theta), t \ge 0$

$$\dot{p}_x = v \cos \theta \\ \dot{p}_y = v \sin \theta \qquad f(x, u) = \begin{bmatrix} v \cos \theta \\ v \sin \theta \\ u \end{bmatrix}$$

- $x(t) \in \mathbb{R}^3$
- *u* ∈ [−1,1]
- *v* is constant

• Example: Simple car, $x = (p_x, p_y, \theta), t \ge 0$

$$\dot{p}_x = v \cos \theta \\ \dot{p}_y = v \sin \theta \qquad f(x, u) = \begin{bmatrix} v \cos \theta \\ v \sin \theta \\ u \end{bmatrix}$$

- $x(t) \in \mathbb{R}^3$
- *u* ∈ [−1,1]
- *v* is constant

• Example: Simple car,
$$x = (p_x, p_y, \theta)$$
, $t \ge 0$

$$\dot{p}_x = v \cos \theta \\ \dot{p}_y = v \sin \theta \qquad f(x, u) = \begin{bmatrix} v \cos \theta \\ v \sin \theta \\ u \end{bmatrix}$$

- $x(t) \in \mathbb{R}^3$
- *u* ∈ [−1,1]
- *v* is constant

- $\dot{x} = f(t, x, u, d), t \ge t_0$
 - State: $x(t) \in \mathbb{R}^n$, $x(t_0) = x_0$
 - Control: $u(t) \in \mathcal{U}$
 - Disturbance: $d(t) \in \mathcal{D}$
- Conditions for existence and uniqueness of solution x(t)
 - f is piecewise continuous in t
 - There can only be finitely many points of discontinuity in any compact interval

- $\dot{x} = f(t, x, u, d), t \ge t_0$
 - State: $x(t) \in \mathbb{R}^n$, $x(t_0) = x_0$
 - Control: $u(t) \in \mathcal{U}$
 - Disturbance: $d(t) \in \mathcal{D}$
- Conditions for existence and uniqueness of solution x(t)
 - f is piecewise continuous in t
 - There can only be finitely many points of discontinuity in any compact interval
 - f is Lipschitz continuous in $x: \exists L(\cdot): \mathbb{R}_+ \to \mathbb{R}_+$ such that $\forall u, d, x_1, x_2, t, ||f(t, x_1, u) - f(t, x_2, u)|| \le L(t)||x_1 - x_2||$

- $\dot{x} = f(t, x, u, d), t \ge t_0$
 - State: $x(t) \in \mathbb{R}^n$, $x(t_0) = x_0$
 - Control: $u(t) \in \mathcal{U}$
 - Disturbance: $d(t) \in \mathcal{D}$
- Conditions for existence and uniqueness of solution x(t)
 - f is piecewise continuous in t
 - There can only be finitely many points of discontinuity in any compact interval
 - *f* is Lipschitz continuous in $x: \exists L(\cdot): \mathbb{R}_+ \to \mathbb{R}_+$ such that $\forall u, d, x_1, x_2, t, ||f(t, x_1, u) - f(t, x_2, u)|| \le L(t)||x_1 - x_2||$
 - $u(\cdot)$ and $d(\cdot)$ are piecewise continuous

Lipschitz Continuity

- A Lipschitz continuous function $f \colon \mathbb{R} \to \mathbb{R}$
 - $f(x) = \sin x \cos 4x$
 - $\forall x_1, x_2, |f(x_1) f(x_2)| \le 4|x_1 x_2|$
- Graph shows $x_2 = 0$
 - All of red curve is outside of green cones
- Translate the green lines anywhere along the red curve
 - All of red curve is still outside green cones

Lipschitz Continuity

- A Lipschitz continuous function $f \colon \mathbb{R} \to \mathbb{R}$
 - $f(x) = \sin x \cos 4x$
 - $\forall x_1, x_2, |f(x_1) f(x_2)| \le 4|x_1 x_2|$
- Graph shows $x_2 = 0$
 - All of red curve is outside of green cones
- Translate the green lines anywhere along the red curve
 - All of red curve is still outside green cones

- $\dot{x} = f(t, x, u, d), t \ge t_0$
 - State: $x(t) \in \mathbb{R}^n$, $x(t_0) = x_0$
 - Control: $u(t) \in \mathcal{U}$
 - Disturbance: $d(t) \in \mathcal{D}$
- Conditions for existence and uniqueness of solution x(t)
 - f is piecewise continuous in t
 - There can only be finitely many points of discontinuity in any compact interval
 - *f* is Lipschitz continuous in $x: \exists L(\cdot): \mathbb{R}_+ \to \mathbb{R}_+$ such that $\forall u, d, x_1, x_2, t, ||f(t, x_1, u) - f(t, x_2, u)|| \le L(t)||x_1 - x_2||$
 - $u(\cdot)$ and $d(\cdot)$ are piecewise continuous

• Example:
$$\dot{x} = x^2, x \in \mathbb{R}, x(0) = \frac{1}{c}$$

• Example:
$$\dot{x} = x^2, x \in \mathbb{R}, x(0) = \frac{1}{c}$$

 $\frac{dx}{dt} = x^2 \Rightarrow \frac{dx}{x^2} = dt$

• Example:
$$\dot{x} = x^2, x \in \mathbb{R}, x(0) = \frac{1}{c}$$

$$\frac{dx}{dt} = x^2 \Rightarrow \frac{dx}{x^2} = dt \Rightarrow \int \frac{dx}{x^2} = \int dt$$

• Example:
$$\dot{x} = x^2, x \in \mathbb{R}, x(0) = \frac{1}{c}$$

 $\frac{dx}{dt} = x^2 \Rightarrow \frac{dx}{x^2} = dt \Rightarrow \int \frac{dx}{x^2} = \int dt$
 $-\frac{1}{x} + c = t$
 $x(t) = \frac{1}{c-t}$
 $t = c$

- Example: $f(x) = x^2$
 - $\exists L > 0, \forall x_1, x_2, ||f(x_1) f(x_2)|| \le L ||x_1 x_2||$
 - $\Leftrightarrow \exists L > 0, \forall x_1, x_2, \left| x_1^2 x_2^2 \right| \le L |x_1 x_2|$

- Example: $f(x) = x^2$
 - $\exists L > 0, \forall x_1, x_2, ||f(x_1) f(x_2)|| \le L ||x_1 x_2||$
 - $\Leftrightarrow \exists L > 0, \forall x_1, x_2, |x_1^2 x_2^2| \le L|x_1 x_2|$
 - $\Leftrightarrow \exists L > 0, \forall x_1, x_2, |(x_1 x_2)(x_1 + x_2)| \le L|x_1 x_2|$

- Example: $f(x) = x^2$
 - $\exists L > 0, \forall x_1, x_2, ||f(x_1) f(x_2)|| \le L ||x_1 x_2||$
 - $\Leftrightarrow \exists L > 0, \forall x_1, x_2, |x_1^2 x_2^2| \le L|x_1 x_2|$
 - $\Leftrightarrow \exists L > 0, \forall x_1, x_2, |(x_1 x_2)(x_1 + x_2)| \le L|x_1 x_2|$
 - $\Leftrightarrow \exists L > 0, \forall x_1, x_2, (x_1 + x_2) | x_1 x_2 | \le L | x_1 x_2 |$

- Example: $f(x) = x^2$
 - $\exists L > 0, \forall x_1, x_2, \|f(x_1) f(x_2)\| \le L \|x_1 x_2\|$
 - $\Leftrightarrow \exists L > 0, \forall x_1, x_2, |x_1^2 x_2^2| \le L|x_1 x_2|$
 - $\Leftrightarrow \exists L > 0, \forall x_1, x_2, |(x_1 x_2)(x_1 + x_2)| \le L|x_1 x_2|$
 - $\Leftrightarrow \exists L > 0, \forall x_1, x_2, (x_1 + x_2) | x_1 x_2 | \le L | x_1 x_2 |$
 - $\Leftrightarrow \exists L > 0, \forall x_1, x_2, x_1 + x_2 \le L$

- Example: $f(x) = x^2$
 - $\exists L > 0, \forall x_1, x_2, ||f(x_1) f(x_2)|| \le L ||x_1 x_2||$
 - $\Leftrightarrow \exists L > 0, \forall x_1, x_2, |x_1^2 x_2^2| \le L|x_1 x_2|$
 - $\Leftrightarrow \exists L > 0, \forall x_1, x_2, |(x_1 x_2)(x_1 + x_2)| \le L|x_1 x_2|$
 - $\Leftrightarrow \exists L > 0, \forall x_1, x_2, (x_1 + x_2) | x_1 x_2 | \le L | x_1 x_2 |$
 - $\Leftrightarrow \exists L > 0, \forall x_1, x_2, x_1 + x_2 \le L$
 - However, for $\forall L > 0, \exists x_1, x_2, x_1 + x_2 > L$

- Example: $f(x) = x^2$
 - $\exists L > 0, \forall x_1, x_2, ||f(x_1) f(x_2)|| \le L ||x_1 x_2||$
 - $\Leftrightarrow \exists L > 0, \forall x_1, x_2, |x_1^2 x_2^2| \le L|x_1 x_2|$
 - $\Leftrightarrow \exists L > 0, \forall x_1, x_2, |(x_1 x_2)(x_1 + x_2)| \le L|x_1 x_2|$
 - $\Leftrightarrow \exists L > 0, \forall x_1, x_2, (x_1 + x_2) | x_1 x_2 | \le L | x_1 x_2 |$
 - $\Leftrightarrow \exists L > 0, \forall x_1, x_2, x_1 + x_2 \le L$ \longleftarrow
 - However, for $\forall L > 0, \exists x_1, x_2, x_1 + x_2 > L$
 - This is the negation of the statement _____

• Example: $f(x) = x^2$ • $\exists L > 0, \forall x_1, x_2, ||f(x_1) - f(x_2)|| \le L||x_1 - x_2||$ • $\Leftrightarrow \exists L > 0, \forall x_1, x_2, |x_1^2 - x_2^2| \le L|x_1 - x_2|$ • $\Leftrightarrow \exists L > 0, \forall x_1, x_2, |(x_1 - x_2)(x_1 + x_2)| \le L|x_1 - x_2|$ • $\Leftrightarrow \exists L > 0, \forall x_1, x_2, (x_1 + x_2)|x_1 - x_2| \le L|x_1 - x_2|$ • $\Leftrightarrow \exists L > 0, \forall x_1, x_2, x_1 + x_2 \le L$ • However, for $\forall L > 0, \exists x_1, x_2, x_1 + x_2 > L$ • This is the negation of the statement $\neg (\forall b, q) \Leftrightarrow \exists a, \neg q$

• If f(x) is differentiable, then f is Lipchitz continuous with Lipchitz constant L if and only if $\forall x, |f'(x)| < L$

LTI Systems

- Differential equations generally do not have closed-form solutions
 - Numerical methods can be used to obtain approximate solutions
 - Other analysis techniques offer insight into the solutions

LTI Systems

- Differential equations generally do not have closed-form solutions
 - Numerical methods can be used to obtain approximate solutions
 - Other analysis techniques offer insight into the solutions
- Linear time-invariant (LTI) systems: $\dot{x} = Ax + Bu$
 - Damped mass spring systems
 - Circuits involving resistors, capacitors, inductors
 - Approximations of nonlinear systems

