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Outline

• Eigenvalues and Eigenvectors

• Jordan form of matrices

• Functions of matrices



• Eigenvalues:
• If there is some vector and scalar such that , then is called the 

eigenvector corresponding to eigenvalue of the matrix 

• Example: 

•

•

• When a matrix is applied to eigenvectors, the effect is simple!

Eigenvalues and Eigenvectors



Eigenvalues and Eigenvectors

• Define ିଵ
ଵ ଶ ௡

• Then, ିଵ ିଵ , where 

ଵ

ଶ

௡

• So, ିଵ . This is a similarity transform
• Define , and we have ିଵ ିଵ

• In the coordinate system obtained from applying transformation 𝑇, the map 𝐴 is 
diagonal

• To obtain the result of applying 𝐴 in the original coordinate system, transform back with 
𝑇ିଵ
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Generalized Eigenvalues and Eigenvectors

• Not all matrices are diagonalizable
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• There may be more than one such blocks in general
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Generalized Eigenvalues and Eigenvectors

• Not all matrices are diagonalizable

• This is the matrix structure for one eigenvalue
• There may be more than one such blocks in general

• All matrices can be put into Jordan form
• Note that the eigenvalues of are the same as those of 

𝐴𝑒ଵ = 𝜆𝑒ଵ

𝐴𝑒ଶ = 𝜆𝑒ଶ

𝐴𝑒ଷ = 𝜆𝑒ଷ
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𝜆 1 0
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𝜆 1
0 𝜆

𝜆

𝑇ିଵ = 𝑒ଵ 𝑣ଵ 𝑤ଵ 𝑒ଶ 𝑣ଶ 𝑒ଷ

Imagine det 𝐽 − 𝑠𝐼 = 0



Functions of Matrices

• Consider a polynomial of a matrix, ௞
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defined through Taylor series
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Functions of Matrices

• Suppose 

• Then, 

ᇱ ௙ ೙షభ ఒ

௡ିଵ !

ᇱ

• And ିଵ , where ିଵ

• Therefore, we also have that the eigenvalues of 𝑓 𝐴 are 𝑓 𝜆 , where 𝜆 are eigenvalues 
of 𝐴

𝑛

𝑛



Functions of Matrices

• Suppose 

• Then, 

ᇱ ௙ ೙షభ ఒ

௡ିଵ !

ᇱ

• And ିଵ , where ିଵ

• Spectral theorem: the eigenvalues of are , where are eigenvalues 
of 

𝑛

𝑛

Imagine det 𝑓 𝐽 − 𝑠𝐼 = 0
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Outline

• Differential equations

• Linear time-invariant differential equations



References for Linear Systems
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Differential equations

• Continuous time model of robotic systems
• In general, nonlinear systems
• One may construct discrete time models from continuous time models

• Dynamics: ଴
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• In some ways, the most “natural” model, since 
• Defining ଵ ଶ , we have
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• Control:
• Examples: steering, accelerating, decelerating
• Usually constrained to be within some set

• Disturbance:
• Examples: wind, input noise, another agent
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Differential Equations

• Example: Simple car, ௫ ௬

• ଷ

•
• is constant

𝜃
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Existence and Uniqueness of Solutions

• ଴
• State: ௡

଴ ଴

• Control:
• Disturbance:

• Conditions for existence and uniqueness of solution 
• is piecewise continuous in 

• There can only be finitely many points of discontinuity in any compact interval
• is Lipschitz continuous in : ା ା such that

ଵ ଶ ଵ ଶ ଵ ଶ

• and are piecewise continuous
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• A Lipschitz continuous function 
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• ଵ ଶ ଵ ଶ ଵ ଶ

• Graph shows ଶ
• All of red curve is outside of green cones

• Translate the green lines anywhere along 
the red curve

• All of red curve is still outside green cones
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Existence and Uniqueness of Solutions

• Example: ଶ ଵ

௖
ଶ
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ఛ

଴

ఛ

଴

• Here, ଶ, not Lipschitz continuous in 
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• If is differentiable, then is Lipchitz continuous with Lipchitz constant if and 
only if ᇱ
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LTI Systems

• Differential equations generally do not have closed-form solutions
• Numerical methods can be used to obtain approximate solutions
• Other analysis techniques offer insight into the solutions

• Linear time-invariant (LTI) systems: 
• Damped mass spring systems
• Circuits involving resistors, capacitors, inductors
• Approximations of nonlinear systems
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