CMPT 882
Special Topics in Artificial Intelligence
Robotic Decision Making
Mo Chen
https://www.sfu.ca/~mochen
Course Outline

• Overview of algorithms used for robotic decision making
 • Theory-focused
 • Fundamentals for doing many areas of robotics research

• Dynamical systems
• Nonlinear optimization
• Optimal control
• Machine learning in robotics
• Localization and mapping
Logistics

• Academic Quadrangle 5030, MWF 12:30-13:20

• Office hour: Thursdays 15:00-16:00, TASC 1 8225

• Course website: https://coursys.sfu.ca/2019sp-cmpt-882-g1/pages/

• Contact: mochen@cs.sfu.ca
Caveats

• This class is in “experimental mode”

• Slight changes are expected

• Some things may not be super polished

• Please provide feedback and comments
Grading

• 40% Homework
 • 5 assignments, one on each unit

• 60% Project
Project suggestions

• Thoroughly understand and critically evaluate 3 to 5 papers in an area covered in this course

• Reproduce the results of 1 to 2 papers in an area covered in this course, and suggest or make improvements

• Implement an algorithm covered in or related to the class on a robot

• Mini Research project related to an area covered in this course
Project timeline

• Proposal (1-2 paragraphs)
 • Due Feb. 18

• Presentation
 • Last three classes of the semester

• Report (5 pages maximum)
 • Due Apr. 20
Recommended textbooks

Dynamical systems

• Mathematical models of robotic systems
 • Deterministic vs. stochastic
 • Continuous vs. discrete time

• Configuration of system described by the state, often denoted x
 • State changes, or evolves, according to the model
Dynamical systems

- Mathematical models of robotic systems
 - Deterministic vs. stochastic
 - Continuous vs. discrete time

- Configuration of system described by the state, often denoted x
 - State changes, or evolves, according to the model

- Deterministic, continuous time
 - $\frac{dx}{dt} = \dot{x}(t) = f(x, u)$
Dynamical systems

• Mathematical models of robotic systems
 • Deterministic vs. stochastic
 • Continuous vs. discrete time

• Configuration of system described by the state, often denoted x
 • State changes, or evolves, according to the model

• Deterministic, continuous time
 • $\frac{dx}{dt} = \dot{x}(t) = f(x, u)$

• Stochastic, discrete time
 • x_{k+1} obtained from the probability distribution $p(x_{k+1} | x_k, u_k)$
System State

• Defined in terms of any variables of interest
 • Often denoted $x(t)$ or x_k

• Position
• Heading
System State

• Defined in terms of any variables of interest
 • Often denoted $x(t)$ or x_k

• Position
• Heading

• Velocity
• Angular velocity
System State

• Defined in terms of any variables of interest
 • Often denoted $x(t)$ or x_k

• Position
• Heading

• Velocity
• Angular velocity

• Voltages, concentrations of chemicals
• Human comfort, degree of trust
Control and disturbance

• Control/action: usually used to achieve a desired goal
 • Usually denoted $u(t)$ or u_k
 • Acceleration
 • Turn rate
Control and disturbance

• Control/action: usually used to achieve a desired goal
 • Usually denoted $u(t)$ or u_k
 • Acceleration
 • Turn rate

• Gas throttle
• Steering wheel angle
Control and disturbance

• Control/action: usually used to achieve a desired goal
 • Usually denoted $u(t)$ or u_k
 • Acceleration
 • Turn rate
 • Gas throttle
 • Steering wheel angle

• Disturbance
 • Usually denoted $d(t)$ or d_k
 • Bumps on the road
 • Input noise
Mathematical models of robotic systems

- Continuous state
 - Continuous time
 - Linear
 - Time-varying
 - Time-invariant
 - Nonlinear
 - Time-varying
 - Time-invariant
 - Discrete time
 - Discrete state
Mathematical models of robotic systems

- Continuous state
 - Continuous time
 - Linear
 - Time-varying
 - Time-invariant
 - Discrete time
 - Linear
 - Time-varying
 - Time-invariant
 - Nonlinear
 - Time-varying
 - Time-invariant

- Discrete state
Examples of Robotic Systems

Amazon.com Inc.

Google Inc.
Examples of Robotic Systems
Examples of Robotic Systems
Car models

\[
\begin{align*}
\dot{x} &= v \cos \theta \\
\dot{y} &= v \sin \theta \\
\dot{\theta} &= \omega
\end{align*}
\]

States: \((x, y, \theta)\); position and heading
Control: \(\omega\); turn rate (angular speed)
Car models

1. \[
\begin{align*}
\dot{x} &= v \cos \theta \\
\dot{y} &= v \sin \theta \\
\dot{\theta} &= \omega
\end{align*}
\]
States: \((x, y, \theta)\); position and heading
Control: \(\omega\); turn rate (angular speed)

2. \[
\begin{align*}
\dot{x} &= v \cos \theta \\
\dot{y} &= v \sin \theta \\
\dot{\theta} &= \omega \\
\dot{v} &= a \\
\dot{\omega} &= \alpha
\end{align*}
\]
States: \((x, y, \theta, v, \omega)\); position, heading, speed, turn rate
Control: \((a, \alpha)\); acceleration, angular acceleration
Car models

1. \[
\begin{align*}
\dot{x} &= v \cos \theta \\
\dot{y} &= v \sin \theta \\
\dot{\theta} &= \omega
\end{align*}
\]
 States: \((x, y, \theta)\); position and heading
 Control: \(\omega\); turn rate (angular speed)

2. \[
\begin{align*}
\dot{x} &= v \cos \theta \\
\dot{y} &= v \sin \theta \\
\dot{\theta} &= \omega \\
\dot{v} &= a \\
\dot{\omega} &= \alpha
\end{align*}
\]
 States: \((x, y, \theta, v, \omega)\);
 position, heading, speed, turn rate
 Control: \((a, \alpha)\);
 acceleration, angular acceleration

3. \[
\begin{align*}
\dot{x} &= v_x \\
\dot{y} &= v_y \\
\dot{v}_x &= \omega v_y + a_x \\
\dot{v}_y &= -\omega v_x + \frac{2}{m} (F_{c,f} \cos \delta_f + F_{c,r}) \\
\dot{\psi} &= \omega \\
\dot{\omega} &= \frac{2}{I_z} (l_f F_{c,f} - l_r F_{c,r}) \\
\dot{X} &= v_x \cos \psi - v_y \sin \psi \\
\dot{Y} &= v_x \sin \psi + v_y \cos \psi
\end{align*}
\]
Car models

1. \[\dot{x} = v \cos \theta \]
 \[\dot{y} = v \sin \theta \]
 \[\dot{\theta} = \omega \]

States: \((x, y, \theta)\); position and heading
Control: \(\omega\); turn rate (angular speed)

2. \[\dot{x} = v \cos \theta \]
 \[\dot{y} = v \sin \theta \]
 \[\dot{\theta} = \omega \]
 \[\dot{v} = a \]
 \[\dot{\omega} = \alpha \]

States: \((x, y, \theta, v, \omega)\);
Control: \((a, \alpha)\);

acceleration, angular acceleration

3. Bicycle model

\[\dot{x} = v_x \]
\[\dot{y} = v_y \]
\[\dot{v}_x = \omega v_y + a_x \]
\[\dot{v}_y = -\omega v_x + \frac{1}{m} \left(F_{c,f} \cos \delta_f + F_{c,r} \right) \]
\[\dot{\psi} = \omega \]
\[\dot{\omega} = \frac{2}{I_z} \left(l_f F_{c,f} - l_r F_{c,r} \right) \]
\[\dot{X} = v_x \cos \psi - v_y \sin \psi \]
\[\dot{Y} = v_x \sin \psi + v_y \cos \psi \]
Models

• All models are wrong; some are useful
Models

- All models are wrong; some are useful

- Definition of “useful” depends on situation
 - Simulation
 - Analysis and control
 - Verification
Models

• All models are wrong; some are useful

• Definition of “useful” depends on situation
 • Simulation
 • Analysis and control
 • Verification

• Considerations
 • Does the model capture the desired system behaviours
 • Is the model amenable to tractable computation
Nonlinear Optimization

• Choose x to minimize some cost, subject to constraints
Nonlinear Optimization

• Choose \(x \) to minimize some cost, subject to constraints

\[
\begin{align*}
\text{minimize} & \quad f(x) \\
\text{subject to} & \quad g_i(x) \leq 0, \quad i = 1, \ldots, n \\
& \quad h_j(x) = 0, \quad j = 1, \ldots, m
\end{align*}
\]

Fuel cost, distance to obstacles, distance from goal, prediction error in machine learning

System dynamics, obstacle avoidance, goal reaching

• Equivalently, maximize \(- f(x)\): Maximize reward, maximize profit
Nonlinear Optimization

• Choose x to minimize some cost, subject to constraints

\[
\begin{align*}
\text{minimize} & \quad f(x) \\
\text{subject to} & \quad g_i(x) \leq 0, \ i = 1, \ldots, n \\
& \quad h_j(x) = 0, \ j = 1, \ldots, m
\end{align*}
\]

Fuel cost, distance to obstacles, distance from goal, prediction error in machine learning

System dynamics, obstacle avoidance, goal reaching

• Equivalently, maximize $-f(x)$: Maximize reward, maximize profit

• Robotics spans many fields
 • Many conventions
 • Many notations clashes
Nonlinear Optimization

- A very difficult problem in general for $x \in \mathbb{R}^n$ where n is large
 - Calculus facts: necessary and sufficient conditions
 - Rely on gradients (if possible)

- Sometimes, some components of x may be integers

- Can we do better than brute force?

- Simpler cases

- Differentiable functions
 - Linear, convex, quasiconvex
 - Unconstrained problems
Nonlinear Optimization

• A very difficult problem in general for $x \in \mathbb{R}^n$ where n is large
 • Calculus facts: necessary and sufficient conditions
 • Rely on gradients (if possible)

• Sometimes, some components of x may be integers
 • Can we do better than brute force?
Nonlinear Optimization

• A very difficult problem in general for $x \in \mathbb{R}^n$ where n is large
 • Calculus facts: necessary and sufficient conditions
 • Rely on gradients (if possible)

• Sometimes, some components of x may be integers
 • Can we do better than brute force?

• Simpler cases
 • Differentiable functions
 • Linear, convex, quasiconvex
 • Unconstrained problems
Nonlinear Optimization

minimize \(f(x) \)
subject to \(g_i(x) \leq 0, i = 1, \ldots, n \)
\(h_j(x) = 0, j = 1, \ldots, m \)

- Nonlinear optimization:
 - Decision variable is \(x \in \mathbb{R}^n \)
Optimal Control

Nonlinear optimization:
- Decision variable is $x \in \mathbb{R}^n$

Optimal control:
- Decision variable is a function $u(\cdot)$

Cost functional, $J(x(\cdot), u(\cdot))$
- Final cost
- Running cost

Dynamic model
- Additional constraints
 - Eg. actuation limits

Dynamic model:
- $x(t) \in \mathbb{R}^n, u(t) \in \mathbb{R}^m, x(0) = x_0$
- $\dot{x}(t) = f(x(t), u(t))$
- $g(x(t), u(t)) \geq 0$

Minimize
- $l(x(t_f), t_f) + \int_0^{t_f} c(x(t), u(t), t) dt$

Graphical representation:
- Path of $x(t)$ and $u(t)$ over time
Robotic Safety

• Verification methods

 Assumptions → Control policy → Prove safety

• Considers all possible system behaviours, given assumptions

• Can be written as an optimal control problem
Reachability Analysis

- Model of robot
- Unsafe region

Reachable set

Unsafe region

Optimal control policy to avoid danger

Reachable set (States leading to danger)
Machine Learning

• Application of nonlinear optimization
 • Takes advantage of available data

• Supervised learning
 • Regression
 • Classification
Machine Learning

• Application of nonlinear optimization
 • Takes advantage of available data

• Supervised learning
 • Regression
 • Classification

• Unsupervised learning
 • Clustering
 • Reinforcement learning
Machine Learning

- Very scalable with additional data
- Requires a lot of data
Machine Learning

• Very scalable with additional data
• Requires a lot of data

• Computer vision
• Natural language processing
• Game playing
• Simulated robotics

• Physical robotics?
Localization and Mapping

• Localization
 • Given a map, figure out where the robot is (with respect to the map) using sensor information
 • Continuously do this while moving around in the environment
Localization and Mapping

• Localization
 • Given a map, figure out where the robot is (with respect to the map) using sensor information
 • Continuously do this while moving around in the environment

• Simultaneous localization and mapping
 • Figure out the map and localize at the same time
Localization and Mapping

• Localization
 • Given a map, figure out where the robot is (with respect to the map) using sensor information
 • Continuously do this while moving around in the environment

• Simultaneous localization and mapping
 • Figure out the map and localize at the same time

• Probabilistic models
 • of how the robot moves
 • of how the robot senses the environment
Sample of MARS Research

• https://sfumars.com

• Control algorithms
• Computational complexity
• Reinforcement learning
• Human intent inference

• Theory
• Computation
• Experiments
Safety: A Crucial Perspective in Automation
Safety: A Crucial Perspective in Automation
Challenges in Safety-Critical Systems

• Account for all possible system behaviours
• Complex systems
• Complex environment
 • Weather conditions
 • Other robots
Reachability Analysis

- Model of robot
- Unsafe region

Reachable set (States leading to danger)
Optimal control policy to avoid danger
Human-controlled intruder

Autonomous quadrotors
Main Challenge:
Exponential Computational Complexity with DP

Computation time and RAM usage

1D: < 0.1s
negligible RAM

2D: seconds
negligible RAM

3D: minutes
tens of megabytes

4D: hours
hundreds of megabytes

5D: days
megabytes

6D: intractable!

\[O(N^d) \] time and space complexity!
Research Directions

Dimensionality reduction
Self-Contained Subsystems

- Motivating example: Dubins Car

\[
\begin{align*}
\dot{x} &= v \cos \theta \\
\dot{y} &= v \sin \theta \\
\dot{\theta} &= \omega
\end{align*}
\]

- Subsystems are coupled through state and control

- Many systems have states that are not directly coupled to each other
 - Most common in vehicle dynamics
Research Directions

Dimensionality reduction

Parallel computing
Research Directions

Dimensionality reduction

Parallel computing

Perception systems
Research Directions

Human intent understanding

Campbell et al.
Proactive Human Intent Understanding

Is the red car
• A pursuer,
• Or a benign vehicle?

Robot car (green) *proactively* changes lanes to determine intent
Multi-Modal Human Intent Understanding

Motion
Emotion
Engagement
Audio
Research Directions

Human intent understanding

Robotic learning

Campbell et al.

Global Robots Ltd.
Curriculum Reinforcement Learning

Without curriculum

Distance-based reward shaping

Reachability-based curriculum

Random curriculum
Curriculum Reinforcement Learning

Task performance

- Reachability-based curriculum
- Random curriculum
- Without curriculum
- Distance-based reward shaping

Curriculum performance