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Course Outline

• Overview of algorithms used for robotic decision making
• Theory-focused
• Fundamentals for doing many areas of robotics research

• Dynamical systems
• Nonlinear optimization
• Optimal control
• Machine learning in robotics
• Localization and mapping



Logistics

• Academic Quadrangle 5030, MWF 12:30-13:20

• Office hour: Thursdays 15:00-16:00, TASC 1 8225

• Course website: https://coursys.sfu.ca/2019sp-cmpt-882-g1/pages/

• Contact: mochen@cs.sfu.ca

https://coursys.sfu.ca/2019sp-cmpt-882-g1/pages/
mailto:mochen@cs.sfu.ca


Caveats

• This class is in “experimental mode”

• Slight changes are expected

• Some things may not be super polished

• Please provide feedback and comments



Grading

• 40% Homework
• 5 assignments, one on each unit

• 60% Project



Project suggestions

• Thoroughly understand and critically evaluate 3 to 5 papers in an area 
covered in this course

• Reproduce the results of 1 to 2 papers in an area covered in this 
course, and suggest or make improvements

• Implement an algorithm covered in or related to the class on a robot

• Mini Research project related to an area covered in this course



Project timeline

• Proposal (1-2 paragraphs)
• Due Feb. 18

• Presentation
• Last three classes of the semester

• Report (5 pages maximum)
• Due Apr. 20



Recommended textbooks

• R. Siegwart, I. R. Nourbakhsh, and D. Scaramuzza, 
Introduction to Autonomous Mobile Robots. The MIT 
Press, 2011, 9780262015356.

• S. M. LaValle, Planning Algorithms. Cambridge University 
Press, 2006, 9780521862059.

• S. Boyd and L. Vandenberghe, Convex Optimization. 
Cambridge University Press, 2008, 9780521833783.

• D. P. Bertsekas, Dynamic Programming and Optimal 
Control. Athena Scientific, 2017, 1886529434.



Dynamical systems

• Mathematical models of robotic systems
• Deterministic vs. stochastic
• Continuous vs. discrete time

• Configuration of system described by the state, often denoted 𝑥𝑥
• State changes, or evolves, according to the model

• Deterministic, continuous time
• 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑥̇𝑥 𝑡𝑡 = 𝑓𝑓 𝑥𝑥,𝑢𝑢

• Stochastic, discrete time
• 𝑥𝑥𝑘𝑘+1 obtained from the probability distribution 𝑝𝑝 𝑥𝑥𝑘𝑘+1|𝑥𝑥𝑘𝑘 ,𝑢𝑢𝑘𝑘
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System State

• Defined in terms of any variables of interest
• Often denoted 𝑥𝑥 𝑡𝑡 or 𝑥𝑥𝑘𝑘

• Position
• Heading

• Velocity
• Angular velocity

• Voltages, concentrations of chemicals
• Human comfort, degree of trust

Google Inc.
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Control and disturbance

• Control/action: usually used to achieve a desired goal
• Usually denoted 𝑢𝑢 𝑡𝑡 or 𝑢𝑢𝑘𝑘
• Acceleration
• Turn rate

• Gas throttle
• Steering wheel angle

• Disturbance
• Usually denoted 𝑑𝑑 𝑡𝑡 or 𝑑𝑑𝑘𝑘
• Bumps on the road
• Input noise

Google Inc.
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Mathematical models of robotic systems

Continuous time Discrete time

NonlinearLinear

Time-varying Time-invariantTime-varying Time-invariant

Discrete stateContinuous state
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Car models

𝑥̇𝑥 = 𝑣𝑣 cos𝜃𝜃
𝑦̇𝑦 = 𝑣𝑣 sin𝜃𝜃

𝜃̇𝜃 = 𝜔𝜔

States: 𝑥𝑥,𝑦𝑦, 𝜃𝜃 ; position and heading
Control: 𝜔𝜔; turn rate (angular speed)

𝑦𝑦

𝑥𝑥

𝜃𝜃
1
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Models

• All models are wrong; some are useful

• Definition of “useful” depends on situation
• Simulation
• Analysis and control
• Verification

• Considerations
• Does the model capture the desired system behaviours
• Is the model amenable to tractable computation
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Nonlinear Optimization

• Choose 𝑥𝑥 to minimize some cost, subject to constraints

• Equivalently, maximize − 𝑓𝑓 𝑥𝑥 : Maximize reward, maximize profit

• Robotics spans many fields
• Many conventions
• Many notations clashes
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Fuel cost, distance to obstacles, distance from 
goal, prediction error in machine learning

System dynamics, obstacle avoidance, goal reaching
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Nonlinear Optimization

• A very difficult problem in general for 𝑥𝑥 ∈ ℝ𝑛𝑛 where 𝑛𝑛 is large
• Calculus facts: necessary and sufficient conditions
• Rely on gradients (if possible)

• Sometimes, some components of 𝑥𝑥 may be integers
• Can we do better than brute force?

• Simpler cases
• Differentiable functions
• Linear, convex, quasiconvex
• Unconstrained problems
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Nonlinear Optimization

• Nonlinear optimization:
• Decision variable is 𝑥𝑥 ∈ ℝ𝑛𝑛

minimize 𝑓𝑓 𝑥𝑥
subject to 𝑔𝑔𝑖𝑖 𝑥𝑥 ≤ 0, 𝑖𝑖 = 1, … ,𝑛𝑛

ℎ𝑗𝑗 𝑥𝑥 = 0, 𝑗𝑗 = 1, … ,𝑚𝑚



Optimal Control

• Nonlinear optimization:
• Decision variable is 𝑥𝑥 ∈ ℝ𝑛𝑛

• Optimal control:
• Decision variable is a function 𝑢𝑢 ⋅

minimize 𝑙𝑙 𝑥𝑥 𝑡𝑡𝑓𝑓 , 𝑡𝑡𝑓𝑓 + �
0

𝑡𝑡𝑓𝑓
𝑐𝑐 𝑥𝑥 𝑡𝑡 ,𝑢𝑢 𝑡𝑡 , 𝑡𝑡 𝑑𝑑𝑑𝑑

subject to 𝑥̇𝑥 𝑡𝑡 = 𝑓𝑓 𝑥𝑥 𝑡𝑡 ,𝑢𝑢 𝑡𝑡
𝑢𝑢 ⋅

Final cost
Running cost

Dynamic model

𝑥𝑥 𝑡𝑡 ∈ ℝ𝑛𝑛,𝑢𝑢 𝑡𝑡 ∈ ℝ𝑚𝑚, 𝑥𝑥 0 = 𝑥𝑥0
𝑔𝑔 𝑥𝑥 𝑡𝑡 ,𝑢𝑢 𝑡𝑡 ≥ 0 Additional constraints 

• Eg. actuation limits

Cost functional, 𝐽𝐽 𝑥𝑥 ⋅ ,𝑢𝑢 ⋅



Robotic Safety

• Verification methods

• Considers all possible system behaviours, given assumptions

• Can be written as an optimal control problem

Assumptions

Prove safety
Control policy



Reachability Analysis

• Model of robot
• Unsafe region

Unsafe region

Reachable set (States leading to danger)

Reachable set

Optimal control policy to avoid danger



Machine Learning

• Application of nonlinear 
optimization

• Takes advantage of available data

• Supervised learning
• Regression
• Classification

• Unsupervised learning
• Clustering
• Reinforcement learning
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Machine Learning

• Very scalable with additional data
• Requires a lot of data

• Computer vision
• Natural language processing
• Game playing
• Simulated robotics



Machine Learning

• Very scalable with additional data
• Requires a lot of data

• Computer vision
• Natural language processing
• Game playing
• Simulated robotics

• Physical robotics?



Localization and Mapping

• Localization
• Given a map, figure out where the robot is (with respect to the map) using 

sensor information
• Continuously do this while moving around in the environment

• Simultaneous localization and mapping
• Figure out the map and localize at the same time

• Probabilistic models
• of how the robot moves
• of how the robot senses the environment
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Sample of MARS Research

• https://sfumars.com

• Control algorithms
• Computational complexity
• Reinforcement learning
• Human intent inference

• Theory
• Computation
• Experiments

https://sfumars.com/


Safety: A Crucial Perspective in Automation

Google Inc.

Amazon.com Inc.

Airware



Safety: A Crucial Perspective in Automation

Google Inc.

Amazon.com Inc.

Airware

iStock

Google Inc.

49Wikipedia



Challenges in Safety-Critical Systems

• Account for all possible system behaviours
• Complex systems
• Complex environment

• Weather conditions
• Other robots

Wikipedia

iStock

Wikipedia



Reachability Analysis

• Model of robot
• Unsafe region

Unsafe region

Reachable set (States leading to danger)

Optimal control policy to avoid danger

Reachable set



Human-controlled intruder

Autonomous 
quadrotors






1D: 
< 0.1s
negligible RAM

2D: 
seconds
negligible RAM

3D: 
minutes
tens of megabytes

4D:
hours
hundreds of megabytes

Main Challenge:
Exponential Computational Complexity with DP

number of system dimensions

Computation time 
and RAM usage

5D:
days
gigabytes

53

𝑂𝑂 𝑁𝑁𝑑𝑑 time and space complexity!

6D:
intractable!



Dimensionality reduction

Research Directions



• Motivating example: Dubins Car

• Subsystems are coupled through state and control

• Many systems have states that are not directly coupled to each other
• Most common in vehicle dynamics

𝜃̇𝜃 = 𝜔𝜔

𝑥̇𝑥 = 𝑣𝑣 cos 𝜃𝜃
𝑦̇𝑦 = 𝑣𝑣 sin𝜃𝜃
𝜃̇𝜃 = 𝜔𝜔

Self-contained
subsystem 1

Self-contained 
subsystem 2

Self-Contained Subsystems

𝑥̇𝑥 = 𝑣𝑣 cos 𝜃𝜃

55



Dimensionality reduction Parallel computing

Research Directions



Dimensionality reduction Parallel computing

Research Directions

Perception systems



Human intent understanding

Research Directions

Campbell et al.



Proactive Human Intent Understanding

Is the red car
• A pursuer,
• Or a benign vehicle?

Robot car (green) 
proactively changes lanes 
to determine intent



Multi-Modal Human Intent Understanding

Motion

Emotion

Engagement

Audio



Human intent understanding Robotic learning

Research Directions

Global Robots Ltd.

Campbell et al.



Curriculum Reinforcement Learning

Reachability-based curriculumWithout curriculum Distance-based reward shaping Random curriculum



Curriculum Reinforcement Learning

Task performance Curriculum performance

Without curriculum

Reachability-based curriculum

Distance-based reward shaping

Random curriculum
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