CMPT 882

Special Topics in Artificial Intelligence
Robotic Decision Making
Mo Chen

https://www.sfu.ca/~mochen

Course Outline

- Overview of algorithms used for robotic decision making
 - Theory-focused
 - Fundamentals for doing many areas of robotics research

- Dynamical systems
- Nonlinear optimization
- Optimal control
- Machine learning in robotics
- Localization and mapping

Logistics

• Academic Quadrangle 5030, MWF 12:30-13:20

• Office hour: Thursdays 15:00-16:00, TASC 1 8225

Course website: https://coursys.sfu.ca/2019sp-cmpt-882-g1/pages/

• Contact: mochen@cs.sfu.ca

Caveats

• This class is in "experimental mode"

Slight changes are expected

Some things may not be super polished

Please provide feedback and comments

Grading

- 40% Homework
 - 5 assignments, one on each unit

• 60% Project

Project suggestions

 Thoroughly understand and critically evaluate 3 to 5 papers in an area covered in this course

 Reproduce the results of 1 to 2 papers in an area covered in this course, and suggest or make improvements

Implement an algorithm covered in or related to the class on a robot

Mini Research project related to an area covered in this course

Project timeline

- Proposal (1-2 paragraphs)
 - Due Feb. 18

- Presentation
 - Last three classes of the semester

- Report (5 pages maximum)
 - Due Apr. 20

Recommended textbooks

• R. Siegwart, I. R. Nourbakhsh, and D. Scaramuzza, *Introduction to Autonomous Mobile Robots*. The MIT Press, 2011, 9780262015356.

• S. M. LaValle, *Planning Algorithms*. Cambridge University Press, 2006, 9780521862059.

- S. Boyd and L. Vandenberghe, *Convex Optimization*. Cambridge University Press, 2008, 9780521833783.
- D. P. Bertsekas, *Dynamic Programming and Optimal Control*. Athena Scientific, 2017, 1886529434.

Convex

Optimization

Dynamical systems

- Mathematical models of robotic systems
 - Deterministic vs. stochastic
 - Continuous vs. discrete time
- Configuration of system described by the state, often denoted x
 - State changes, or evolves, according to the model

Dynamical systems

- Mathematical models of robotic systems
 - Deterministic vs. stochastic
 - Continuous vs. discrete time
- Configuration of system described by the state, often denoted x
 - State changes, or evolves, according to the model
- Deterministic, continuous time

•
$$\frac{dx}{dt} = \dot{x}(t) = f(x, u)$$

Dynamical systems

- Mathematical models of robotic systems
 - Deterministic vs. stochastic
 - Continuous vs. discrete time
- Configuration of system described by the state, often denoted x
 - State changes, or evolves, according to the model
- Deterministic, continuous time

•
$$\frac{dx}{dt} = \dot{x}(t) = f(x, u)$$

- Stochastic, discrete time
 - x_{k+1} obtained from the probability distribution $p(x_{k+1}|x_k,u_k)$

System State

- Defined in terms of any variables of interest
 - Often denoted x(t) or x_k
- Position
- Heading

System State

- Defined in terms of any variables of interest
 - Often denoted x(t) or x_k
- Position
- Heading
- Velocity
- Angular velocity

System State

- Defined in terms of any variables of interest
 - Often denoted x(t) or x_k
- Position
- Heading
- Velocity
- Angular velocity
- Voltages, concentrations of chemicals
- Human comfort, degree of trust

Control and disturbance

- Control/action: usually used to achieve a desired goal
 - Usually denoted u(t) or u_k
 - Acceleration
 - Turn rate

Control and disturbance

- Control/action: usually used to achieve a desired goal
 - Usually denoted u(t) or u_k
 - Acceleration
 - Turn rate
 - Gas throttle
 - Steering wheel angle

Control and disturbance

- Control/action: usually used to achieve a desired goal
 - Usually denoted u(t) or u_k
 - Acceleration
 - Turn rate
 - Gas throttle
 - Steering wheel angle

Disturbance

- Usually denoted d(t) or d_k
- Bumps on the road
- Input noise

Mathematical models of robotic systems

Mathematical models of robotic systems

Examples of Robotic Systems

Examples of Robotic Systems

Examples of Robotic Systems

1)

$$\dot{x} = v \cos \theta$$

$$\dot{y} = v \sin \theta$$

$$\dot{\theta} = \omega$$

States: (x, y, θ) ; position and heading

Control: ω ; turn rate (angular speed)

1)

 $\dot{x} = v \cos \theta$

 $\dot{y} = v \sin \theta$ States: (x, y, θ) ; position and heading

Control: ω ; turn rate (angular speed)

 $\dot{\theta} = \omega$

 $\dot{x} = v \cos \theta$

 $\dot{y} = v \sin \theta$ States: $(x, y, \theta, v, \omega)$;

 $\dot{\theta} = \omega$ position, heading, speed, turn rate

Control: (a, α) ;

acceleration, angular acceleration

 $\dot{\omega} = \alpha$

 $\dot{v} = a$

$$\dot{x} = v \cos \theta$$

 $\dot{\theta} = \omega$

States: (x, y, θ) ; position and heading $\dot{y} = v \sin \theta$

Control: ω ; turn rate (angular speed)

$$\dot{x} = v \cos \theta$$

 $\dot{y} = v \sin \theta$

States: $(x, y, \theta, v, \omega)$;

 $\dot{\theta} = \omega$ position, heading, speed, turn rate

Control: (a, α) ;

acceleration, angular acceleration

 $\dot{\omega} = \alpha$

 $\dot{v} = a$

 $\dot{x} = v_x$ $\dot{v}_x = \omega v_y + a_{x_2}$ $\dot{v}_y = -\omega v_x + \frac{2}{m} \left(F_{c,f} \cos \delta_f + F_{c,r} \right)$ $\dot{\omega} = \frac{2}{I_{\tau}} \left(l_f F_{c,f} - l_r F_{c,r} \right)$ $\dot{X} = v_x \cos \psi - v_y \sin \psi$ $\dot{Y} = v_x \sin \psi + v_y \cos \psi$

$$\dot{x} = v \cos \theta$$

States: (x, y, θ) ; position and heading $\dot{y} = v \sin \theta$

Control: ω ; turn rate (angular speed) $\dot{\theta} = \omega$

$$\dot{x} = v \cos \theta$$

 $\dot{y} = v \sin \theta$

States: $(x, y, \theta, v, \omega)$; $\dot{\theta} = \omega$

position, heading, speed, turn rate

Control: (a, α) ;

acceleration, angular acceleration

 $\dot{\omega} = \alpha$

 $\dot{v} = a$

(3) Bicycle model

$$\dot{x} = v_x$$

$$\dot{y} = v_y$$

$$\dot{v}_x = \omega v_y + a_{x_2}$$

$$\dot{v}_y = -\omega v_x + \frac{\lambda^2}{m} \left(F_{c,f} \cos \delta_f + F_{c,r} \right)$$

$$\dot{\psi} = \omega$$

$$\dot{\omega} = \frac{2}{I_z} \left(l_f F_{c,f} - l_r F_{c,r} \right)$$

$$\dot{X} = v_{\chi} \cos \psi - v_{\gamma} \sin \psi$$

$$\dot{Y} = v_x \sin \psi + v_y \cos \psi$$

Models

• All models are wrong; some are useful

Models

- All models are wrong; some are useful
- Definition of "useful" depends on situation
 - Simulation
 - Analysis and control
 - Verification

Models

- All models are wrong; some are useful
- Definition of "useful" depends on situation
 - Simulation
 - Analysis and control
 - Verification
- Considerations
 - Does the model capture the desired system behaviours
 - Is the model amenable to tractable computation

• Choose *x* to minimize some cost, subject to constraints

• Choose x to minimize some cost, subject to constraints

minimize
$$f(x)$$

subject to $g_i(x) \le 0, i = 1, ..., n$
 $h_j(x) = 0, j = 1, ..., m$

Fuel cost, distance to obstacles, distance from goal, prediction error in machine learning

System dynamics, obstacle avoidance, goal reaching

• Equivalently, maximize -f(x): Maximize reward, maximize profit

• Choose x to minimize some cost, subject to constraints

minimize
$$f(x)$$

subject to $g_i(x) \le 0, i = 1, ..., n$
 $h_j(x) = 0, j = 1, ..., m$

Fuel cost, distance to obstacles, distance from goal, prediction error in machine learning

System dynamics, obstacle avoidance, goal reaching

- Equivalently, maximize -f(x): Maximize reward, maximize profit
- Robotics spans many fields
 - Many conventions
 - Many notations clashes

- A very difficult problem in general for $x \in \mathbb{R}^n$ where n is large
 - Calculus facts: necessary and sufficient conditions
 - Rely on gradients (if possible)

- A very difficult problem in general for $x \in \mathbb{R}^n$ where n is large
 - Calculus facts: necessary and sufficient conditions
 - Rely on gradients (if possible)

Sometimes, some components of x may be integers

• Can we do better than brute force?

- A very difficult problem in general for $x \in \mathbb{R}^n$ where n is large
 - Calculus facts: necessary and sufficient conditions
 - Rely on gradients (if possible)

Sometimes, some components of x may be integers

- Can we do better than brute force?
- Simpler cases
 - Differentiable functions
 - Linear, convex, quasiconvex
 - Unconstrained problems


```
minimize f(x)

subject to g_i(x) \le 0, i = 1, ..., n

h_j(x) = 0, j = 1, ..., m
```

- Nonlinear optimization:
 - Decision variable is $x \in \mathbb{R}^n$

Optimal Control

minimize
$$l(x(t_f), t_f) + \int_0^{t_f} c(x(t), u(t), t) dt$$
 Cost functional, $J(x(\cdot), u(\cdot))$ subject to $\dot{x}(t) = f(x(t), u(t))$ $g(x(t), u(t)) \geq 0$ Additional constraints $x(t) \in \mathbb{R}^n, u(t) \in \mathbb{R}^m, x(0) = x_0$

- Nonlinear optimization:
 - Decision variable is $x \in \mathbb{R}^n$

- Optimal control:
 - Decision variable is a function $u(\cdot)$

Robotic Safety

Verification methods

- Considers all possible system behaviours, given assumptions
- Can be written as an optimal control problem

Reachability Analysis

- Model of robot
- Unsafe region

Optimal control policy to avoid danger

Reachable set (States leading to danger)

- Application of nonlinear optimization
 - Takes advantage of available data
- Supervised learning
 - Regression
 - Classification

- Application of nonlinear optimization
 - Takes advantage of available data
- Supervised learning
 - Regression
 - Classification
- Unsupervised learning
 - Clustering
 - Reinforcement learning

- Very scalable with additional data
- Requires a lot of data

- Very scalable with additional data
- Requires a lot of data
- Computer vision
- Natural language processing
- Game playing
- Simulated robotics
- Physical robotics?

Localization and Mapping

- Localization
 - Given a map, figure out where the robot is (with respect to the map) using sensor information
 - Continuously do this while moving around in the environment

Localization and Mapping

- Localization
 - Given a map, figure out where the robot is (with respect to the map) using sensor information
 - Continuously do this while moving around in the environment
- Simultaneous localization and mapping
 - Figure out the map and localize at the same time

Localization and Mapping

- Localization
 - Given a map, figure out where the robot is (with respect to the map) using sensor information
 - Continuously do this while moving around in the environment
- Simultaneous localization and mapping
 - Figure out the map and localize at the same time
- Probabilistic models
 - of how the robot moves
 - of how the robot senses the environment

Sample of MARS Research

- https://sfumars.com
- Control algorithms
- Computational complexity
- Reinforcement learning
- Human intent inference
- Theory
- Computation
- Experiments

Safety: A Crucial Perspective in Automation

Safety: A Crucial Perspective in Automation

Challenges in Safety-Critical Systems

- Account for all possible system behaviours
- Complex systems
- Complex environment
 - Weather conditions
 - Other robots

Reachability Analysis

- Model of robot
- Unsafe region

Reachable set (States leading to danger)

Optimal control policy to avoid danger

Main Challenge:

Exponential Computational Complexity with DP

6D:

intractable!

5D:

days

gigabytes

Dimensionality reduction

Self-Contained Subsystems

Motivating example: Dubins Car

- Subsystems are coupled through state and control
- Many systems have states that are not directly coupled to each other
 - Most common in vehicle dynamics

Dimensionality reduction

Parallel computing

Human intent understanding

Proactive Human Intent Understanding

Is the red car

- A pursuer,
- Or a benign vehicle?

Robot car (green)

proactively changes lanes
to determine intent

Multi-Modal Human Intent Understanding

Motion

Emotion

Engagement

Audio

Human intent understanding Ro

Robotic learning

Curriculum Reinforcement Learning

Curriculum Reinforcement Learning

