Numerical Solutions to ODEs

CMPT 882

Jan. 23

Numerical Solutions of ODEs

- In general, $\dot{x} = f(x, u)$ does not have a closed-form solution
 - Instead, we usually compute numerical approximations to simulate system behaviour
 - Done through discretization: $t^k = kh$, $u^k \coloneqq u(t^k)$
 - *h* represents size of time step
 - Goal: compute $y^k \approx x(t^k)$
- Key considerations
 - Consistency: Does the approximation satisfy the ODE as $h \rightarrow 0$?
 - Accuracy: How fast does the solution converge?
 - Stability: Do approximation error remain bounded over time?
 - Convergence: Does the solution converge the true solution as $h \rightarrow 0$?

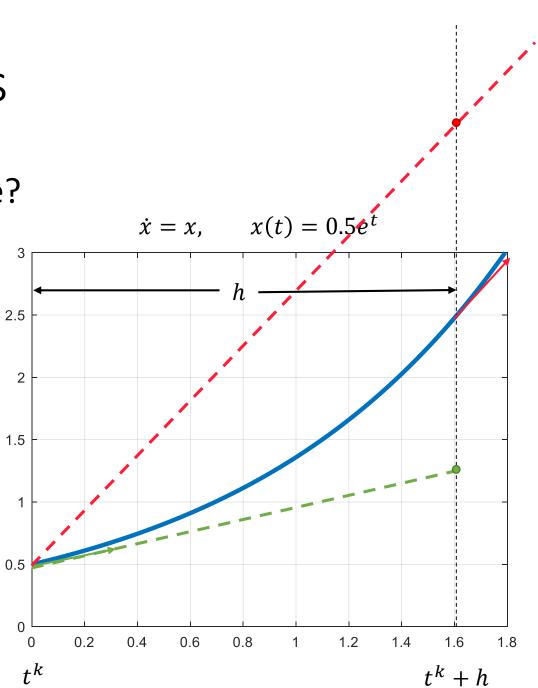
Euler Methods

• ODE: $\dot{x} = f(x, u)$ $\dot{x} = f(x, u)$ • Discretization: $t^k = kh$, $u^k \coloneqq u(t^k)$ $\frac{x(t^{k+1}) - x(t^k)}{\frac{h}{y^{k+1} - y^k}} \approx f(x(t^k), u^k)$ $\frac{y^{k+1} - y^k}{h} = f(y^k, u^k)$ • Want: Approximate solution: $y^k \approx x(kh)$ Forward Euler Most naïve method (explicit method) $\frac{y^{k+1} - y^k}{h} = f(y^k, u^k) \Rightarrow y^{k+1} = y^k + hf(y^k, u^k)$ Backward Euler

$$\frac{y^{k+1}-y^k}{h} = f(y^{k+1}, u^k) \Rightarrow \text{solve for } y^{k+1} \text{ implicitly}$$

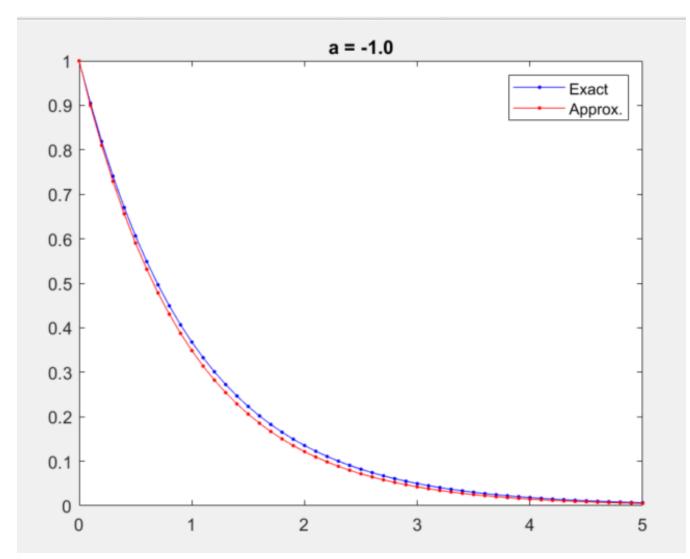
Visualizing Euler Methods

- Main consideration: what slope to use?
 - Forward Euler: slope at beginning $y^{k+1} = y^k + hf(y^k, u^k)$
 - Backward Euler: slope at the end $y^{k+1} = y^k + hf(y^{k+1}, u^k)$



•
$$\dot{x} = ax$$
, $x(0) = x_0$
• Analytic solution: $x(t) = x_0 e^{at}$

- Forward Euler
 - $y^{k+1} = y^k + hf(y^k, u^k)$ • $y^{k+1} = y^k + hay^k$
 - $y^{k+1} = (1+ha)y^k$



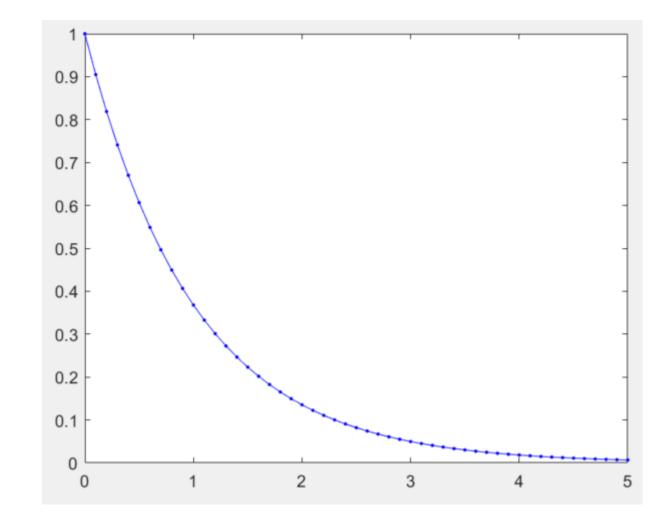
%% Problem setup
x0 = 1;

- a = -1;
- h = 0.1;
- T = 5;

tau = 0:h:T;

%% Exact solution
x_exact = @(t) exp(a*t);

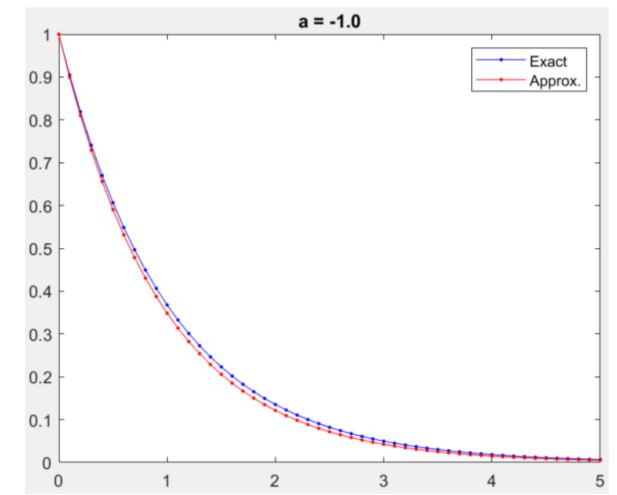
figure
plot(tau, x_exact(tau), 'b.-')



%% Forward Euler
f = @(x) a*x;
y_approx = -ones(size(tau));
y_approx(1) = x0;

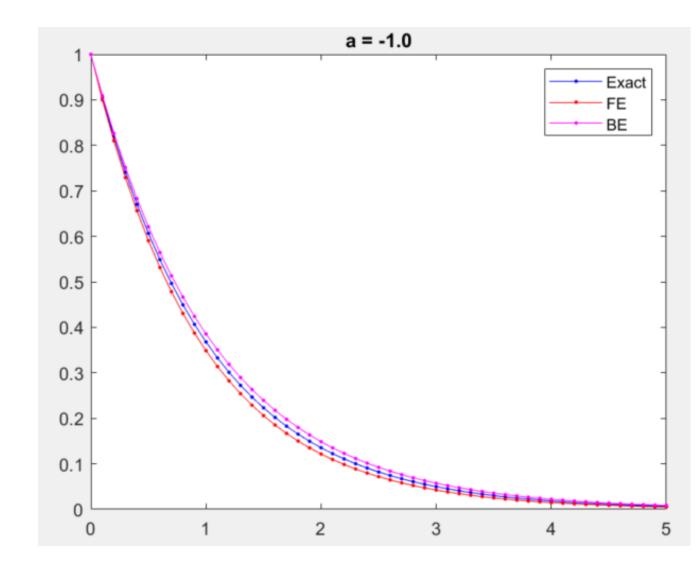
```
% Initialize vector
for i = 2:length(tau)
    y_approx(i) = y_approx(i-1)*(1+h*a);
end
```

```
hold on
plot(tau, y_approx, 'r.-')
title(sprintf('a = %.1f', a))
legend('Exact', 'Approx.')
```



•
$$\dot{x} = ax$$
, $x(0) = x_0$
• Analytic solution: $x(t) = x_0 e^{at}$

- Backward Euler
 - $y^{k+1} = y^k + hf(y^{k+1})$ • $y^{k+1} = y^k + hay^{k+1}$ • $y^{k+1} - hay^{k+1} = y^k$ • $(1 - ha)y^{k+1} = y^k$ • $y^{k+1} = \frac{y^k}{1 - ha}$



Numerical Consistency: Forward Euler

- **Consistency:** ODE is satisfied as $h \rightarrow 0$
 - Forward Euler: $y^{k+1} = y^k + hf(y^k, u^k)$ $\frac{y^{k+1} y^k}{h} = f(y^k, u^k)$
- Local truncation error: Analysis requires $\frac{\|e^k\|}{h} \to 0$ as $h \to 0$
 - $||e^k||$: Error induced during one step, assuming perfect previous information
 - Forward Euler approximate solution:

$$v^{k+1} = x(t^k) + hf(x(t^k), u^k)$$

• True solution:

$$x(t^{k+1}) = x(t^{k} + h) = x(t^{k}) + h\frac{dx}{dt}(t^{k}) + \frac{h^{2}}{2}\frac{d^{2}x}{dx^{2}}(t^{k}) + O(h^{3})$$
$$= x(t^{k}) + hf(x(t^{k}), u^{k}) + \frac{h^{2}}{2}\frac{d^{2}x}{dx^{2}}(t^{k}) + O(h^{3})$$

Numerical Consistency: Forward Euler

• Local truncation error: $e^{k} = x(t^{k+1}) - y^{k+1}$ $= x(t^{k}) + hf(x(t^{k}), u^{k}) + \frac{h^{2}}{2} \frac{d^{2}x}{dx^{2}}(t^{k}) + O(h^{3}) - (x(t^{k}) + hf(x(t^{k}), u^{k}))$ $= \frac{h^{2}}{2} \frac{d^{2}x}{dx^{2}}(t^{k}) + O(h^{3})$ $= O(h^{2})$

• Consistency requires
$$\frac{\|e^k\|}{h} \to 0$$
 as $h \to 0$
$$\frac{\|e^k\|}{h} = \frac{\left|\frac{h^2}{2}\frac{d^2x}{dx^2}(t^k) + O(h^3)\right|}{h} = \left|\frac{h}{2}\frac{d^2x}{dx^2}(t^k) + O(h^2)\right| \to 0$$

• If $\frac{\|e^k\|}{h} = O(h^p)$, then the numerical method is "order p". • Forward Euler is an order 1 method, or first order method

Numerical Consistency

• More generally:
$$y^{k+1} = \sum_{n=k_1}^{k} \alpha_i y^i + h \sum_{n=k_2}^{k} \beta_i f(y^i, u^i)$$

• Truncation error: $e^{k} \coloneqq x(t^{k+1}) - \sum_{n=k_{1}}^{k} \alpha_{n} x(nh) - h \sum_{n=k_{2}}^{k} \beta_{i} f(x(nh), u^{i})$ • Consistency requires $\frac{\|e^{k}\|}{h} \to 0$ as $h \to 0$ • If $\frac{\|e^{k}\|}{h} = O(h^{p})$, then the numerical method is "order p".

Numerical Stability: Forward Euler

•
$$y^{k+1} = y^k + hf(y^k, u^k)$$

- A map from y^k to y^{k+1}
- Stability means y^k does not "blow up" when the true solution $x(t^k)$ is bounded
- Usually, stability requires that the time step h cannot be too large
- Example: $\dot{x} = ax$, a < 0
 - $y^{k+1} = (1+ah)y^k$
 - Stability requires $|1 + ah| \le 1 \Leftrightarrow -ah \le 2$
 - For a = -10, we have $|1 10h| \le 1 \Leftrightarrow h \le 0.2$

Numerical Stability: Backward Euler

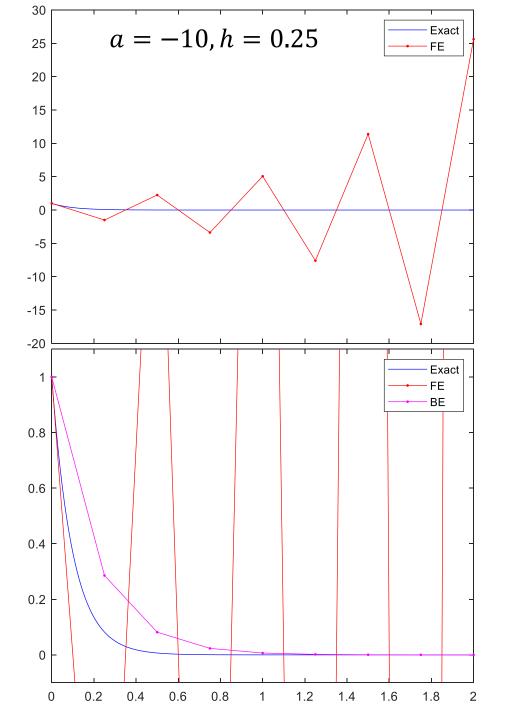
•
$$y^{k+1} = y^k + hf(y^{k+1}, u^k)$$

- A map from y^{κ} to $y^{\kappa+1}$
- Stability means y^k does not "blow up" when the true solution $x(t^k)$ is bounded
- Usually, stability requires that the time step h cannot be too large
- Example: $\dot{x} = ax$, a < 0

 - $y^{k+1} = \frac{y^k}{1+ah}$ Stability requires $\left|\frac{1}{1-ah}\right| \le 1$
 - No restrictions on h, for any a!

Numerical Stability

- Example: ẋ = ax with forward Euler
 If a = −10, h ≤ 0.2 is required for stability
- Example 2: $\dot{x} = ax$ with backward Euler
 - No restrictions on *h*, for any *a*



Numerical Stability

- More generally: $y^{k+1} = \sum_{n=k_1}^k \alpha_i y^i + h \sum_{n=k_2}^k \beta_i f(y^i, u^i)$
 - Desired property: the approximation y^k does not "blow up" when the true solution $x(t^k)$ is bounded
 - Usually, this means time step h cannot be too large
- Specifically, one typically considers $\dot{x} = ax$, a < 0.
 - A stable numerical approximation to $\dot{x} = ax$, a < 0 has the property that $y^k \rightarrow 0$

Numerical Convergence

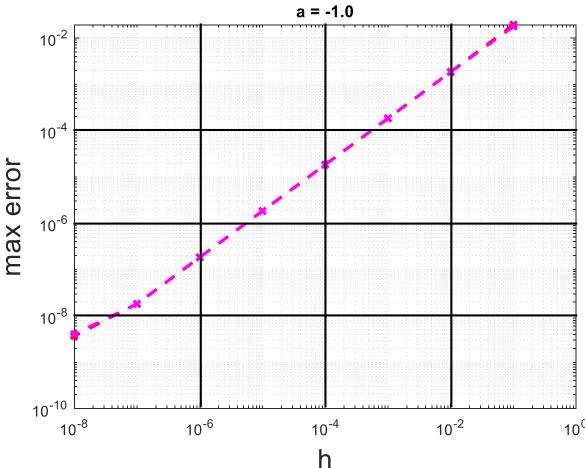
• Convergence: $\max_{k} ||x(t^k) - y^k|| \to 0 \text{ as } h \to 0$

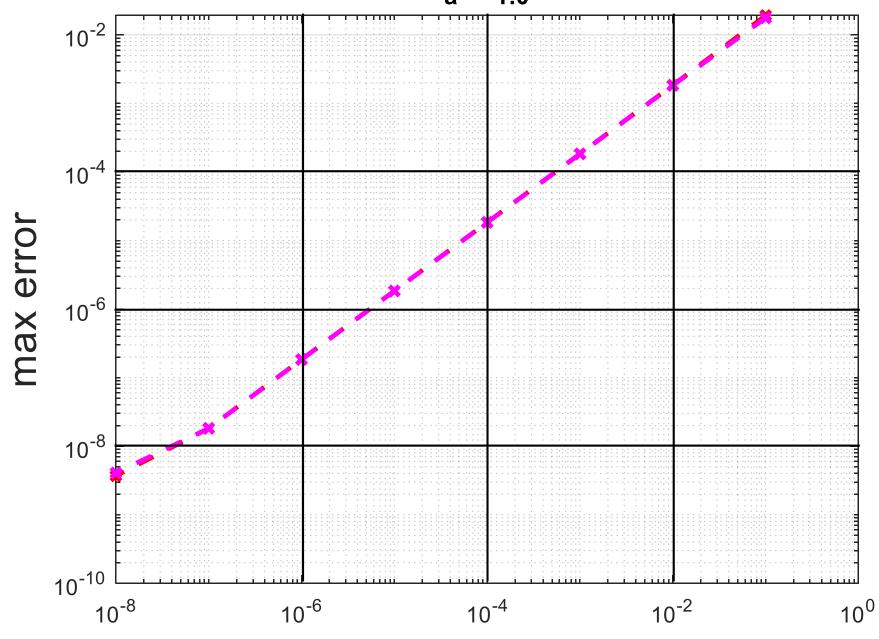
• Maximum error goes to zero as time step goes to 0

- Dahlquist Equivalence Theorem
 - Consistency + stability ⇔ convergence
- Convergence rate
 - For order p methods: $\max_{k} ||x(t^{k}) y^{k}|| \le O(h^{p+1})$
 - Forward and backward Euler: p = 1
 - If we half *h*, then the error also halves

Numerical Convergence

- Visualize convergence rate with Max error vs. *h* plot
- Forward and backward Euler are both 1st order
 - Half the size of *h* leads to half the error
- Usually, log-log plots are used to show a wide range of errors and h
 - Order *p* method has a slope of *p* (approximately).





a = -1.0

Stiff equations

- ODEs with components that have very fast rates of change
 - Usually requires very small step sizes for stability
- Example: $\dot{x}_1 = ax_1$ with forward Euler
 - Stability requires $|1 + ha| \le 1$
 - For a = -100, we have $|1 100h| \le 1 \Leftrightarrow h \le 0.02$
- Small step size is required even if there are other slower changing components like $\dot{x}_2 = x_1 x_2$ $\dot{x}_1 = -100x_1$

• Implicit methods (eg. backward Euler) are useful here

 $\dot{x}_2 = x_1 - x_2$ $\dot{x} = \begin{bmatrix} -100 & 0\\ 1 & -1 \end{bmatrix} x$