Numerical Solutions to ODEs

CMPT 882
Jan. 23

Numerical Solutions of ODEs

* In general, x = f(x, u) does not have a closed-form solution
* Instead, we usually compute numerical approximations to simulate system behaviour
» Done through discretization: t* = kh, u® := u(t*)
* hrepresents size of time step
» Goal: compute y* ~ x(t%)

* Key considerations
* Consistency: Does the approximation satisfy the ODE as h — 07
e Accuracy: How fast does the solution converge?
 Stability: Do approximation error remain bounded over time?
e Convergence: Does the solution converge the true solutionas h — 07?

Euler Methods

ODE..x —-f(-x, u)k) o ¢ = ™~
e Discretization: t™ = kh, u™ := u(t) x(£5+1) — x(£¥)
* Want: Approximate solution: y* ~ x(kh) n ~ f(x(t°),u¥)
yk+1 _ yk
- — f(yk,uk)

e Forward Euler -

* Most naive method (explicit method)

yk+1 _ yk
- = f(y*,uk) = yk+1 = yk 4 hf (v¥,uk)
e Backward Euler
k+1_

k
> = f(y**1,u*) = solve for y**1 implicitly

h

Visualizing Euler Methods

* Main consideration: what slope to use?

* Forward Euler: slope at beginning
yk+l = yk 4 hf(yk’uk)

* Backward Euler: slope at the end
yk+1 — yk + hf(yk+1,uk)

3

25r

15

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

tk tk +h

Example

x =ax, x(0) = x,
* Analytic solution: x(t) = x,e?

e Forward Euler
o yk+1 — yk 1 hf(yk,uk)
. yk+1 _ yk n hayk
e y**1 = (1 + ha)y"

t

0.9

0.8 |

0.7 1

0.6

0.5

0.4

0.3

0.2

0171

-1.0

Exact

Approx. | 7

Example

%% Problem setup

X0 = 1;

a = -1;

h =0.1;

T =5;

tau = 0:h:T;

%% Exact solution
x_exact = @(t) exp(a*t);

figure
plot(tau, x _exact(tau), 'b.-")

o8l
0.7
06
0.5
0.4}

031

0.2

011

09

Example

%% Forward Euler

f = @(x) a*x;

y_approx = -ones(size(tau));
y _approx(1l) = x0;

% Initialize vector
for i = 2:1ength(tau)

y _approx(i) = y approx(i-1)*(1+h*a);

end

hold on

plot(tau, y_approx, 'r.-")
title(sprintf('a = %.1f"', a))
legend('Exact', 'Approx.")

0.9

0.8+

0.7 1

0.6

0.5

0.4

0.3

0.2

0.1

Exact

Approx. | 7

Example

x =ax, x(0) = x,
* Analytic solution: x(t) = x,e?

e Backward Euler
o yk+1 — yk 1 hf(y"“)

Y S A

o yRHL _ payk+l = Kk

* (1-ha)y**™* = y*
k

y
1-ha

.yt =

t

0.9

0.8

0.7 1

0.6

0.5

0.4

0.3

0.2

0.1

Exact
FE
BE

Numerical Consistency: Forward Euler

* Consistency: ODE is satisfiedash — 0

* Forward Euler: y*+1 = yk 4 hf(yk,uk) - = f(y*, u¥)

leXl

—-0ash—-0

k|| Error induced during one step, assuming perfect previous information
* Forward Euler approximate solution:

y*+l = x(t%) + hf (x(t*), uk)

h? d2
x(t%*1) = x(t* + h) = x(t*) + h— (¢°) + = 7= () + 0(h®)

* Local truncation error: Analysis requires —

 True solution:

W2 42
= x(t*) + hf (x(tk), u*) + = > Z = (%) + 0(h®)

Numerical Consistency: Forward Euler

e Local truncation error: e* = x(tk+1) — yk+1

h? d2
= x(t*) + hf (x(t*), uk) o2 (tk) + 0(h3) — (x(tk) + hf(x(t%),u))
h2 d?x
= — 72 (t") + 0(h?)
= 0(h?)
* Consistency requires — lle"] - 0ash—-0 h? d?x o 3
e _ [z O] e
R h ‘Zdz(t)JrO(h)
k
o |f — ”e | - = 0(hP), then the numerical method is “order p”.

. Forward Euler is an order 1 method, or first order method

Numerical Consistency

* More generally: y*+ K —k, XY’ +hYk_ K, ,Blf(y u)

* Truncation error:)

k
ok — x(tk+1) _ z a,x(nh) — h z ,Bif(x(nh),ui)

n==kq n=~k,

lle*ll

* Consistency requires—— - 0ash — 0

“I _

o |f — ”e = 0(hP), then the numerical method is “order p”.

Numerical Stability: Forward Euler

k — Ak k
+ YK = y* + hf(y¥, uk)
A map from y* to y**1

* Stability means y* does not “blow up” when the true solution x(tk) is
bounded

» Usually, stability requires that the time step h cannot be too large

* Example: x = ax,a <0
o yk+1 — (1 + ah)yk
e Stability requires |1 + ah| <1 & —ah < 2
e Fora =—-10,wehave |1 —10h| <1 h<0.2

Numerical Stability: Backward Euler

. yk+1 — yk 1 hf(yk+1,uk)
A map from y* to y**1
* Stability means y* does not “blow up” when the true solution x(tk) is
bounded
» Usually, stability requires that the time step h cannot be too large

e Example: x = ax,a <0

k
. yk+1 _ Y

"~ 1+ah
 Stability requires ‘

1\s1
1—ah

* No restrictions on h, for any a!

Numerical Stability

 Example: x = ax with forward Euler
e Ifa=—10, h < 0.2 is required for stability

* Example 2: x = ax with backward Euler
* No restrictions on h, for any a

30

20

15 |

25+ a = —10,h = 0.25

Exact

. \/ \/
5k
-10
15 -

0 0.2 0.4 0.6 0.8

1

1.2

14

1.6

1.8

2

Numerical Stability

* More generally: y*+1 = ﬁzkl a;yt + hZ,’,‘lzkz ,Bif(yi,ui)
* Desired property: the approximation y* does not “blow up” when the true
solution x(t*) is bounded

e Usually, this means time step h cannot be too large

* Specifically, one typically considers x = ax,a < 0.

* A stable numerical approximation to x = ax,a < 0 has the property that
k
y* =0

Numerical Convergence

» Convergence: mI?xHx(tk) —y*|| > 0ash -0

* Maximum error goes to zero as time step goes to O

* Dahlquist Equivalence Theorem
* Consistency + stability & convergence

* Convergence rate
* For order p methods: mgx”x(t") — y*|| < 0(hP*1)

* Forward and backward Euler:p = 1
* |f we half h, then the error also halves

Numerical Convergence

* Visualize convergence rate with Max
error vs. h plot

 Forward and backward Euler are both
15t order

e Half the size of h leads to half the error

* Usually, log-log plots are used to
show a wide range of errors and h

* Order p method has a slope of p
(approximately).

max error

1072 ¢
1
107
F 7
- Y
: V4
1076 :
i 4
: 7
1078 3
»
10-10 i
1078 107 10 1072 10¢

a=-1.0

10'2 3
10'10

JOJJo XeW

10°

1072

107

1078

Stiff equations

* ODEs with components that have very fast rates of change
* Usually requires very small step sizes for stability

* Example: x; = ax; with forward Euler
e Stability requires |1 + ha| < 1
* Fora = —100,we have |1 — 100h| <1 < h < 0.02

* Small step size is required even if there are other slower changing
components like x, = x1 — x, % = —100x,
* Implicit methods (eg. backward Euler) are useful here X, = X — X,

e=[100 0],

