
Numerical Solutions to ODEs
CMPT 882

Jan. 23



Numerical Solutions of ODEs

• In general, ሶ𝑥 = 𝑓 𝑥, 𝑢 does not have a closed-form solution
• Instead, we usually compute numerical approximations to simulate system behaviour

• Done through discretization: 𝑡𝑘 = 𝑘ℎ, 𝑢𝑘 ≔ 𝑢 𝑡𝑘

• ℎ represents size of time step

• Goal: compute 𝑦𝑘 ≈ 𝑥 𝑡𝑘

• Key considerations
• Consistency: Does the approximation satisfy the ODE as ℎ → 0?
• Accuracy: How fast does the solution converge?
• Stability: Do approximation error remain bounded over time?
• Convergence: Does the solution converge the true solution as ℎ → 0?



Euler Methods

• ODE: ሶ𝑥 = 𝑓 𝑥, 𝑢
• Discretization: 𝑡𝑘 = 𝑘ℎ, 𝑢𝑘 ≔ 𝑢 𝑡𝑘

• Want: Approximate solution: 𝑦𝑘 ≈ 𝑥 𝑘ℎ

• Forward Euler
• Most naïve method (explicit method)

• Backward Euler
𝑦𝑘+1−𝑦𝑘

ℎ
= 𝑓 𝑦𝑘+1, 𝑢𝑘 ⇒ solve for 𝑦𝑘+1 implicitly

ሶ𝑥 = 𝑓 𝑥, 𝑢

𝑥 𝑡𝑘+1 − 𝑥 𝑡𝑘

ℎ
≈ 𝑓 𝑥 𝑡𝑘 , 𝑢𝑘

𝑦𝑘+1 − 𝑦𝑘

ℎ
= 𝑓 𝑦𝑘 , 𝑢𝑘

⇒ 𝑦𝑘+1 = 𝑦𝑘 + ℎ𝑓 𝑦𝑘 , 𝑢𝑘
𝑦𝑘+1 − 𝑦𝑘

ℎ
= 𝑓 𝑦𝑘 , 𝑢𝑘



Visualizing Euler Methods

• Main consideration: what slope to use? 
• Forward Euler: slope at beginning

𝑦𝑘+1 = 𝑦𝑘 + ℎ𝑓 𝑦𝑘 , 𝑢𝑘

• Backward Euler: slope at the end
𝑦𝑘+1 = 𝑦𝑘 + ℎ𝑓 𝑦𝑘+1, 𝑢𝑘

ሶ𝑥 = 𝑥, 𝑥 𝑡 = 0.5𝑒𝑡

𝑡𝑘 + ℎ𝑡𝑘

ℎ



Example

• ሶ𝑥 = 𝑎𝑥, 𝑥 0 = 𝑥0
• Analytic solution: 𝑥 𝑡 = 𝑥0𝑒

𝑎𝑡

• Forward Euler
• 𝑦𝑘+1 = 𝑦𝑘 + ℎ𝑓 𝑦𝑘 , 𝑢𝑘

• 𝑦𝑘+1 = 𝑦𝑘 + ℎ𝑎𝑦𝑘

• 𝑦𝑘+1 = 1 + ℎ𝑎 𝑦𝑘



Example

%% Problem setup

x0 = 1;

a = -1;

h = 0.1; 

T = 5; 

tau = 0:h:T; 

%% Exact solution

x_exact = @(t) exp(a*t);

figure

plot(tau, x_exact(tau), 'b.-')



Example

%% Forward Euler

f = @(x) a*x;

y_approx = -ones(size(tau)); 

y_approx(1) = x0;

% Initialize vector

for i = 2:length(tau)

y_approx(i) = y_approx(i-1)*(1+h*a);

end

hold on

plot(tau, y_approx, 'r.-') 

title(sprintf('a = %.1f', a))

legend('Exact', 'Approx.')



Example

• ሶ𝑥 = 𝑎𝑥, 𝑥 0 = 𝑥0
• Analytic solution: 𝑥 𝑡 = 𝑥0𝑒

𝑎𝑡

• Backward Euler
• 𝑦𝑘+1 = 𝑦𝑘 + ℎ𝑓 𝑦𝑘+1

• 𝑦𝑘+1 = 𝑦𝑘 + ℎ𝑎𝑦𝑘+1

• 𝑦𝑘+1 − ℎ𝑎𝑦𝑘+1 = 𝑦𝑘

• 1 − ℎ𝑎 𝑦𝑘+1 = 𝑦𝑘

• 𝑦𝑘+1 =
𝑦𝑘

1−ℎ𝑎



Numerical Consistency: Forward Euler

• Consistency: ODE is satisfied as ℎ → 0

• Forward Euler:

• Local truncation error: Analysis requires 
𝑒𝑘

ℎ
→ 0 as ℎ → 0

• 𝑒𝑘 : Error induced during one step, assuming perfect previous information
• Forward Euler approximate solution:

𝑦𝑘+1 = 𝑥 𝑡𝑘 + ℎ𝑓 𝑥 𝑡𝑘 , 𝑢𝑘

• True solution:

𝑦𝑘+1 = 𝑦𝑘 + ℎ𝑓 𝑦𝑘 , 𝑢𝑘
𝑦𝑘+1 − 𝑦𝑘

ℎ
= 𝑓 𝑦𝑘 , 𝑢𝑘

𝑥 𝑡𝑘+1 = 𝑥 𝑡𝑘 + ℎ = 𝑥 𝑡𝑘 + ℎ
𝑑𝑥

𝑑𝑡
𝑡𝑘 +

ℎ2

2

𝑑2𝑥

𝑑𝑥2
𝑡𝑘 + 𝑂 ℎ3

= 𝑥 𝑡𝑘 + ℎ𝑓 𝑥 𝑡𝑘 , 𝑢𝑘 +
ℎ2

2

𝑑2𝑥

𝑑𝑥2
𝑡𝑘 + 𝑂 ℎ3



Numerical Consistency: Forward Euler

• Local truncation error:

• Consistency requires 
𝑒𝑘

ℎ
→ 0 as ℎ → 0

• If 
𝑒𝑘

ℎ
= 𝑂 ℎ𝑝 , then the numerical method is “order 𝑝”.

• Forward Euler is an order 1 method, or first order method

𝑒𝑘 = 𝑥 𝑡𝑘+1 − 𝑦𝑘+1

= 𝑥 𝑡𝑘 + ℎ𝑓 𝑥 𝑡𝑘 , 𝑢𝑘 +
ℎ2

2

𝑑2𝑥

𝑑𝑥2
𝑡𝑘 + 𝑂 ℎ3 − 𝑥 𝑡𝑘 + ℎ𝑓 𝑥 𝑡𝑘 , 𝑢𝑘

=
ℎ2

2

𝑑2𝑥

𝑑𝑥2
𝑡𝑘 + 𝑂 ℎ3

= 𝑂 ℎ2

𝑒𝑘

ℎ
=

ℎ2

2
𝑑2𝑥
𝑑𝑥2

𝑡𝑘 + 𝑂 ℎ3

ℎ
=

ℎ

2

𝑑2𝑥

𝑑𝑥2
𝑡𝑘 + 𝑂 ℎ2 → 0



Numerical Consistency

• More generally: 𝑦𝑘+1 = σ𝑛=𝑘1
𝑘 𝛼𝑖𝑦

𝑖 + ℎσ𝑛=𝑘2
𝑘 𝛽𝑖𝑓 𝑦𝑖 , 𝑢𝑖

• Truncation error: 

𝑒𝑘 ≔ 𝑥 𝑡𝑘+1 − ෍

𝑛=𝑘1

𝑘

𝛼𝑛𝑥 𝑛ℎ − ℎ ෍

𝑛=𝑘2

𝑘

𝛽𝑖𝑓 𝑥 𝑛ℎ , 𝑢𝑖

• Consistency requires 
𝑒𝑘

ℎ
→ 0 as ℎ → 0

• If 
𝑒𝑘

ℎ
= 𝑂 ℎ𝑝 , then the numerical method is “order 𝑝”.



Numerical Stability: Forward Euler

• 𝑦𝑘+1 = 𝑦𝑘 + ℎ𝑓 𝑦𝑘 , 𝑢𝑘

• A map from 𝑦𝑘 to 𝑦𝑘+1

• Stability means 𝑦𝑘 does not “blow up” when the true solution 𝑥 𝑡𝑘 is 
bounded

• Usually, stability requires that the time step ℎ cannot be too large

• Example: ሶ𝑥 = 𝑎𝑥, 𝑎 < 0
• 𝑦𝑘+1 = 1 + 𝑎ℎ 𝑦𝑘

• Stability requires 1 + 𝑎ℎ ≤ 1 ⇔ −𝑎ℎ ≤ 2

• For 𝑎 = −10, we have 1 − 10ℎ ≤ 1 ⇔ ℎ ≤ 0.2



Numerical Stability: Backward Euler

• 𝑦𝑘+1 = 𝑦𝑘 + ℎ𝑓 𝑦𝑘+1, 𝑢𝑘

• A map from 𝑦𝑘 to 𝑦𝑘+1

• Stability means 𝑦𝑘 does not “blow up” when the true solution 𝑥 𝑡𝑘 is 
bounded

• Usually, stability requires that the time step ℎ cannot be too large

• Example: ሶ𝑥 = 𝑎𝑥, 𝑎 < 0

• 𝑦𝑘+1 =
𝑦𝑘

1+𝑎ℎ

• Stability requires 
1

1−𝑎ℎ
≤ 1

• No restrictions on ℎ, for any 𝑎!



Numerical Stability

• Example: ሶ𝑥 = 𝑎𝑥 with forward Euler
• If 𝑎 = −10, ℎ ≤ 0.2 is required for stability

• Example 2: ሶ𝑥 = 𝑎𝑥 with backward Euler
• No restrictions on ℎ, for any 𝑎

𝑎 = −10, ℎ = 0.25



Numerical Stability

• More generally: 𝑦𝑘+1 = σ𝑛=𝑘1
𝑘 𝛼𝑖𝑦

𝑖 + ℎσ𝑛=𝑘2
𝑘 𝛽𝑖𝑓 𝑦𝑖 , 𝑢𝑖

• Desired property: the approximation 𝑦𝑘 does not “blow up” when the true 
solution 𝑥 𝑡𝑘 is bounded

• Usually, this means time step ℎ cannot be too large

• Specifically, one typically considers ሶ𝑥 = 𝑎𝑥, 𝑎 < 0.
• A stable numerical approximation to ሶ𝑥 = 𝑎𝑥, 𝑎 < 0 has the property that 
𝑦𝑘 → 0



Numerical Convergence

• Convergence: max
𝑘

𝑥 𝑡𝑘 − 𝑦𝑘 → 0 as ℎ → 0

• Maximum error goes to zero as time step goes to 0

• Dahlquist Equivalence Theorem
• Consistency + stability ⇔ convergence

• Convergence rate
• For order 𝑝 methods: max

𝑘
𝑥 𝑡𝑘 − 𝑦𝑘 ≤ 𝑂 ℎ𝑝+1

• Forward and backward Euler: 𝑝 = 1
• If we half ℎ, then the error also halves



Numerical Convergence

• Visualize convergence rate with Max 
error vs. ℎ plot

• Forward and backward Euler are both 
1st order
• Half the size of ℎ leads to half the error

• Usually, log-log plots are used to 
show a wide range of errors and ℎ
• Order 𝑝 method has a slope of 𝑝

(approximately).





Stiff equations

• ODEs with components that have very fast rates of change
• Usually requires very small step sizes for stability

• Example: ሶ𝑥1 = 𝑎𝑥1 with forward Euler
• Stability requires 1 + ℎ𝑎 ≤ 1
• For 𝑎 = −100, we have 1 − 100ℎ ≤ 1 ⇔ ℎ ≤ 0.02

• Small step size is required even if there are other slower changing 
components like ሶ𝑥2 = 𝑥1 − 𝑥2
• Implicit methods (eg. backward Euler) are useful here

ሶ𝑥1 = −100𝑥1
ሶ𝑥2 = 𝑥1 − 𝑥2

ሶ𝑥 =
−100 0
1 −1

𝑥


