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Nonlinear Systems Roadmap: Today

• Analysis
• Bifurcations

• Control
• Lyapunov functions
• Linearization by State Feedback



Bifurcations

• Parameters in ODE models of systems that determine key behaviours 
of the system
• Sometimes, a small change in the parameter leads to big changes in system 

behaviour

• Example: , is a parameter
• Equilibrium points: 



Bifurcations

• Example: ,  is a parameter
• Equilibrium points: 

• Stability:  

±

Equilibrium always exists
• Stable when 𝜇 < 0
• Unstable when 𝜇 > 0

Equilibria exist only when 𝜇 ≥ 0
• Stable when they exist
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Bifurcations
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“Pitchfork” bifurcation
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Some Bifurcation Types
• Pitchfork bifurcation

• Fold bifurcation
• Example: 

• Transcritical bifurcation
• Example: 

• Hopf bifurcation (2D, in your 
homework)



Bifurcation: 2D Example

• Example 2:

• Equilibrium points:
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Bifurcation: 2D Example

• Example 2:

• Starting at large values of , there is only one 
equilibrium point at the origin

• As decreases, eventually another equilibrium 
point spawns

𝑥
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Bifurcation: 2D Example

• Example 2:

• Starting at large values of , there is only one 
equilibrium point at the origin

• As decreases, eventually another equilibrium 
point spawns

• For even smaller values of , there are three 
equilibrium points in total
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More Complete Analysis
𝑥

𝑥

• Vertical flow field

• Horizontal flow field

𝑥 = 𝑎𝑥 ⇒ �̇�𝟏 = 𝟎

𝑥 > 𝑎𝑥 ⇒ �̇�𝟏 > 𝟎

𝑥 < 𝑎𝑥 ⇒ �̇�𝟏 < 𝟎

𝑥 =
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1 + 𝑥
⇒ �̇�𝟐 = 𝟎

𝑥 >
2𝑥

1 + 𝑥
⇒ �̇�𝟐 < 𝟎
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1 + 𝑥
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• General stability theory for nonlinear systems
• No need to solve ODE
• No need to linearize: direct analysis of nonlinear systems

A system is stable in the sense of Lyapunov if  such 
that 

Lyapunov Stability
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Lyapunov Stability Main Result

• Let be an equilibrium point
• Suppose there is a function such that 

if and only if ,
if and only if .

• If for all , then is 
stable in the sense of Lyapunov

• If for all , then is 
asymptotically stable

• is called a Lyapunov function



Lyapunov Stability Example in 

• Damped spring system: 
• Intuition: The system should be stable due to friction
• Let 

• Let 
• Potential energy plus kinetic energy

for all 

=
𝜕𝑉

𝜕𝑥

𝜕𝑉

𝜕𝑥

�̇�
�̇�



Lyapunov Stability: Discussion

• What if there is control? 
• Need at least one control that makes non-increasing

• Advantages
• Direct nonlinear analysis
• “Global” result
• “Region of attraction”

• How to find a Lyapunov function?
• Intuition  Guess something that works
• Computational techniques 

• Optimization 
• Optimal control



Feedback Stabilization

• Given control affine dynamics , design control 
policy such that is asymptotically stable.

• Take a Lyapunov approach
• Suppose we have a stabilizing control policy and Lyapunov function for 

with and such that 
• Given this, consider the special case where we need to come up with a 

stabilizing policy for 



Feedback Stabilization
• Consider the special case

• Lucky guess: 

Change of variables
𝑧 ≔ �̅� − 𝛼 𝑋
�̅� = 𝑧 + 𝛼 𝑋

< 0, by assumption < 0 if 𝑢 = �̇� 𝑋 − 𝐺 𝑋 − 𝑘𝑧, 𝑘 > 0

�̇� 𝑋 =
𝜕𝛼

𝜕𝑋
𝐹 𝑋 + 𝐺 𝑋 �̅�

Suppose we have a stabilizing policy 
for with such that 



Feedback Stabilization

• Example:
•
•

• Treat as a “virtual” control in :
•
• This is easy to stabilize and find Lyapunov function:

• Apply previous result:
•

•

�̇� 𝑥 =
𝜕𝛼

𝜕𝑥
𝑥 + 𝑥

𝜕𝑉

𝜕𝑥
= 𝑥 , 𝐺 𝑥 = 1

𝑧 = 𝑥 − 𝛼 𝑥 = 𝑥 + 𝑥 + 𝑘𝑥

𝑢 = 𝛼 𝑥 = −𝑥 − 𝑘𝑥 , 𝑘 > 0; 𝑉 𝑥 =
1

2
𝑥

�̇� 𝑥 = 𝑥 �̇�

= 𝑥 𝑥 + 𝑢

= 𝑥 𝑥 − 𝑥 − 𝑘𝑥

= 𝑥 −𝑘𝑥

= −𝑘𝑥

= −2𝑥 − 𝑘 𝑥 + 𝑥



Numerical Solutions of ODEs

• Discretization: 
• Approximate solution: 

• Simplest methods:
• Forward Euler

• Backward Euler

solve for implicitly

�̇� = 𝑓 𝑥, 𝑢

𝑥 𝑘 + 1 ℎ − 𝑥 𝑘ℎ

ℎ
= 𝑓 𝑥 𝑘ℎ , 𝑢

𝑦 − 𝑦

ℎ
= 𝑓 𝑦 , 𝑢



Example

•
• Analytic solution: 



Consistency

• ODE is satisfied as 

• Forward Euler:

• More generally: 𝑦 = ∑ 𝛼 𝑦 + ℎ∑ 𝛽 𝑓 𝑦 , 𝑢

• Truncation error: 
• induced during one step, assuming perfect information

𝑒 ≔ 𝑦 − 𝛼 𝑥 𝑛ℎ − ℎ 𝛽 𝑓 𝑥 𝑛ℎ , 𝑢

• Consistency requires → 0 as ℎ → 0

• If = 𝑂 ℎ , then the numerical method is “order 𝑝”.



Numerical stability

•

• A map from to 

• Stability is desirable (at least for ODEs with stable solutions)

• Example: with forward Euler
•
•
• Stability requires 
• For , we have 



Numerical convergence

• Definition: as 
• Basic requirement for numerical solutions

• Dahlquist Equivalence Theorem
• Consistency + stability convergence

• Convergence rate
• Typically, for order methods:

• Forward and backward Euler: 



Stiff equations

• ODEs with components that have very fast rates of change
• Usually requires very small step sizes for stability

• Example: with forward Euler
• Stability requires 
• For , we have 

• Small step size is required even if there are other slower changing 
components like 
• Implicit methods are useful here (accuracy limited to order 2)



Classical Runge-Kutta Method (RK4)

• Main consideration: what slope to use?
• Weighted average

•

• 𝑘 = ℎ𝑓 𝑡 , 𝑦

• 𝑘 = ℎ𝑓 𝑡 + , 𝑦 +

• 𝑘 = ℎ𝑓 𝑡 + , 𝑦 +

• 𝑘 = ℎ𝑓 𝑡 + ℎ, 𝑦 + 𝑘

• Properties
• Equivalent to Simpson’s rule
• 4th order acccuracy

�̇� = 𝑦, 𝑦 𝑡 = 0.5𝑒

𝑡 + ℎ𝑡

ℎ
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Numerical solutions: issues

• Stiff equations

• Approximation errors
• Typically cannot be used to prove system properties


