Nonlinear Systems II

CMPT 882

Jan. 19

Nonlinear Systems Roadmap

- Introduction
- Analysis
- Control
- Numerical solutions

Nonlinear Systems Roadmap: Today

- Analysis
 - Bifurcations
- Control
 - Lyapunov functions
 - Linearization by State Feedback

Bifurcations

- Parameters in ODE models of systems that determine key behaviours of the system
 - Sometimes, a small change in the parameter leads to big changes in system behaviour
- Example: $\dot{x} = \mu x x^3$, μ is a parameter
 - Equilibrium points: $0 = \dot{x}$ $= \mu x - x^{3}$ $= x(\mu - x^{2})$ $x = 0, \pm \sqrt{\mu}$

Bifurcations

• Example: $\dot{x} = \mu x - x^3$, μ is a parameter

 $x = \pm \sqrt{\mu}$:

• Equilibrium points: $x = 0, \pm \sqrt{\mu}$

• Stability:
$$\frac{\partial f}{\partial x} = \mu - 3x^2$$

$$x = 0$$
:

$$\left. \frac{\partial f}{\partial x} \right|_{x=0} = \mu$$

Equilibrium always exists

- Stable when $\mu < 0$
- Unstable when $\mu > 0$

$$\left. \frac{\partial f}{\partial x} \right|_{x = \pm \sqrt{\mu}} = -2\mu$$

Equilibria exist only when $\mu \ge 0$

• Stable when they exist

Bifurcations

Some Bifurcation Types

Pitchfork bifurcation

Fold bifurcation

- Transcritical bifurcation
 - Example: $\dot{x} = \mu x x^2$

Hopf bifurcation (2D, in your homework)

• Example 2:

$$\dot{x}_1 = -ax_1 + x_2$$
$$\dot{x}_2 = \frac{x_1^2}{1 + x_1^2} - \frac{1}{2}x_2$$

• Equilibrium points:

$$\dot{x}_2 = 0 \Rightarrow x_2 = \frac{2x_1^2}{1 + x_1^2}$$
$$\dot{x}_1 = 0 \Rightarrow x_2 = ax_1$$

• Example 2:

$$\dot{x}_1 = -ax_1 + x_2$$
$$\dot{x}_2 = \frac{x_1^2}{1 + x_1^2} - \frac{1}{2}x_2$$

• Equilibrium points:

$$\dot{x}_2 = 0 \Rightarrow x_2 = \frac{2x_1^2}{1 + x_1^2}$$
$$\dot{x}_1 = 0 \Rightarrow x_2 = ax_1$$

• Example 2:

$$\dot{x}_1 = -ax_1 + x_2$$
$$\dot{x}_2 = \frac{x_1^2}{1 + x_1^2} - \frac{1}{2}x_2$$

• Equilibrium points:

- Example 2: $\dot{x}_1 = -ax_1 + x_2$ $\dot{x}_2 = \frac{x_1^2}{1 + x_1^2} - \frac{1}{2}x_2$
 - Starting at large values of *a*, there is only one equilibrium point at the origin
 - As *a* decreases, eventually another equilibrium point spawns

- Example 2: $\dot{x}_1 = -ax_1 + x_2$ $\dot{x}_2 = \frac{x_1^2}{1 + x_1^2} - \frac{1}{2}x_2$
 - Starting at large values of *a*, there is only one equilibrium point at the origin
 - As *a* decreases, eventually another equilibrium point spawns
 - For even smaller values of *a*, there are three equilibrium points in total

More Complete Analysis

$$\dot{x}_1 = -ax_1 + x_2$$
$$\dot{x}_2 = \frac{x_1^2}{1 + x_1^2} - \frac{1}{2}x_2$$

 $\dot{x}_1 = 0 \Rightarrow x_2 = ax_1$ • Vertical flow field

$$\dot{x}_2 = 0 \Rightarrow x_2 = \frac{2x_1^2}{1 + x_1^2}$$

• Horizontal flow field

More Complete Analysis

Lyapunov Stability

- General stability theory for nonlinear systems
 - No need to solve ODE
 - No need to linearize: direct analysis of nonlinear systems

A system is **stable in the sense of Lyapunov** if $\forall \epsilon > 0, \exists \delta(\epsilon) > 0$ such that

$$x(t)$$

$$x_{0} \delta$$

$$\epsilon x_{e}$$

$$||x_0 - x_e|| < \delta(\epsilon) \Rightarrow \forall t \ge t_0, ||x(t) - x_e|| < \epsilon$$

Lyapunov Stability Main Result

- Let x = 0 be an equilibrium point
- Suppose there is a function $V(x): \mathbb{R}^n \to \mathbb{R}$ such that V(x) = 0 if and only if x = 0, V(x) > 0 if and only if $x \neq 0$.
 - If for all $x \neq 0$, $\dot{V}(x) = \nabla V^{\top} f(x) \le 0$, then x = 0 is stable in the sense of Lyapunov
 - If for all $x \neq 0$, $\dot{V}(x) = \nabla V^{\top} f(x) < 0$, then x = 0 is asymptotically stable
- *V*(*x*) is called a **Lyapunov function**

Lyapunov Stability Example in \mathbb{R}^2

- Damped spring system: $\ddot{x} + b\dot{x} + kx = 0, b \ge 0$
 - Intuition: The system should be stable due to friction

• Let
$$x_1 = x, x_2 = \dot{x} \implies \dot{x}_1 = x_2$$

 $\dot{x}_2 = -kx_1 - bx_2$

• Let
$$V(x_1, x_2) = \frac{1}{2}kx_1^2 + \frac{1}{2}x_2^2$$

• Potential energy plus kinetic energy

$$\Rightarrow \dot{V}(x_1, x_2) = \nabla V^{\mathsf{T}} f(x)$$

$$= \left[\frac{\partial V}{\partial x_1} \quad \frac{\partial V}{\partial x_2} \right] \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix}$$

$$= k x_1 \dot{x}_1 + x_2 \dot{x}_2$$

$$= k x_1 x_2 - k x_1 x_2 - b x_2^2$$

$$= -b x_2^2$$

$$< 0 \text{ for all } x \neq (0,0)$$

Lyapunov Stability: Discussion

- What if there is control? $\dot{x} = f(x, u)$
 - Need at least one control that makes V non-increasing
- Advantages
 - Direct nonlinear analysis
 - "Global" result
 - "Region of attraction"
- How to find a Lyapunov function?
 - Intuition \rightarrow Guess something that works
 - Computational techniques
 - Optimization
 - Optimal control

Feedback Stabilization

- Given control affine dynamics $\dot{x} = f(x) + g(x)u$, design control policy $u = \alpha(x)$ such that x = 0 is asymptotically stable.
- Take a Lyapunov approach
 - Suppose we have a stabilizing control policy and Lyapunov function for $\dot{X} = F(X) + G(X)u$,

with $u = \alpha(X)$ and $\overline{V}(X)$ such that $\dot{\overline{V}}(X) = \frac{\partial \overline{V}}{\partial X} (F(X) + G(X)\alpha(X)) < 0$

• Given this, consider the special case where we need to come up with a stabilizing policy for

$$\dot{X} = F(X) + G(X)\bar{x}$$
$$\dot{\bar{x}} = u$$

Feedback Stabilization

Consider the special case

Suppose we have a stabilizing policy $u = \alpha(X)$ for $\dot{X} = F(X) + G(X)u$, with $\overline{V}(X)$ such that $\dot{\overline{V}}(X) = \frac{\partial \overline{V}}{\partial X} (F(X) + G(X)\alpha(X)) < 0$ Change of variables $z \coloneqq \overline{x} - \alpha(X)$

 $\dot{X} = F(X) + G(X)\bar{x} \qquad \begin{array}{c} z \coloneqq \bar{x} - \alpha(X) \\ \bar{x} \equiv z + \alpha(X) \\ \dot{\bar{x}} \equiv u \end{array} \qquad \begin{array}{c} \dot{X} = F(X) + G(X)z + G(X)\alpha(X) \\ \dot{\bar{x}} = u - \dot{\alpha}(X) \end{array}$

• Lucky guess:
$$V(X, z) = \overline{V}(X) + \frac{1}{2}z^2$$

 $\dot{V}(X, z) = \dot{\overline{V}}(X) + z\dot{z}$
 $= \frac{\partial \overline{V}}{\partial X}(F(X) + G(X)\alpha(X) + G(X)z) + z(u - \dot{\alpha}(X))$
 $= \frac{\partial \overline{V}}{\partial X}(F(X) + G(X)\alpha(X)) + z\left(\frac{\partial \overline{V}}{\partial X}G(X) + u - \dot{\alpha}(X)\right)$
 $< 0 \text{ if } u = \dot{\alpha}(X) - \frac{\partial \overline{v}}{\partial X}G(X) - kz, k > 0$
 $\dot{\alpha}(X) = \frac{\partial \alpha}{\partial X}(F(X) + G(X)\overline{x})$

Feedback Stabilization

- Example:
 - $\dot{x}_1 = x_1^2 + x_2$
 - $\dot{x}_2 = u$
- Treat x_2 as a "virtual" control in \dot{x}_1 :
 - $\dot{x}_1 = x_1^2 + u$
 - This is easy to stabilize and find Lyapunov function:

$$u = \alpha(x_1) = -x_1^2 - \bar{k}x_1, \bar{k} > 0; \quad \bar{V}(x_1) = \frac{1}{2}x_1^2$$

• Apply previous result:

•
$$u = \dot{\alpha}(x_1) - \frac{\partial \overline{V}}{\partial x_1}G(x_1) - kz$$

 $\dot{\alpha}(x_1) = \frac{\partial \alpha}{\partial x_1}(x_1^2 + x_2) = (-2x_1 - \overline{k})(x_1^2 + x_2)$

•
$$u = (-2x_1 - \bar{k})(x_1^2 + x_2) - x_1 - k(x_2 + x_1^2 + \bar{k}x_1)$$
 $\frac{\partial v}{\partial x_1} = x_1, G(x_1) = 1$

$$z = x_2 - \alpha(x_1) = x_2 + x_1^2 + \bar{k}x_1$$

 $\dot{\vec{V}}(x_1) = x_1 \dot{x}_1$

 $= x_1(x_1^2 + u)$

 $= x_1(-\overline{k}x_1)$

 $=-\overline{k}x_{1}^{2}$

 $= x_1 \left(x_1^2 - x_1^2 - \bar{k} x_1 \right)$

Numerical Solutions of ODEs

- Discretization: $t^k = kh$, $u^k \coloneqq u(t^k)$
- Approximate solution: $y^k \approx x(kh)$
- Simplest methods:
 - Forward Euler

$$\frac{y^{k+1} - y^k}{h} = f(y^k, u^k) \Rightarrow y^{k+1} = y^k + hf(y^k, u^k)$$

 $\dot{x} = f(x, u)$

 $\frac{x\big((k+1)h\big) - x(kh)}{h} = f\big(x(kh), u^k\big)$

 $y \frac{y^{k+1} - y^k}{dk} = f(y^k, u^k)$

• Backward Euler

$$\frac{y^{k+1}-y^k}{h} = f(y^{k+1}, u^k) \Rightarrow \text{ solve for } y^{k+1} \text{ implicitly}$$

Example

•
$$\dot{x} = \lambda x$$
, $x(0) = x_0$

• Analytic solution: $x(t) = x_0 e^{\lambda t}$

Consistency

- ODE is satisfied as $h \rightarrow 0$
 - Forward Euler: $\frac{y^{k+1} y^k}{h} = f(y^k, u^k)$
 - More generally: $y^{k+1} = \sum_{n=k}^{k} \alpha_i y^i + h \sum_{n=k}^{k} \beta_i f(y^i, u^i)$

Truncation error:

induced during one step, assuming perfect information

$$e^{k} \coloneqq y^{k+1} - \sum_{n=\underline{k}}^{n} \alpha_{n} x(nh) - h \sum_{n=\underline{k}}^{n} \beta_{i} f(x(nh), u^{i})$$

- Consistency requires ^{||e^k||}/_h → 0 as h → 0
 If ^{||e^k||}/_h = O(h^p), then the numerical method is "order p".

Numerical stability

•
$$y^{k+1} = \sum_{n=\underline{k}}^{k} \alpha_i y^i + h \sum_{n=\underline{k}}^{k} \beta_i f(y^i, u^i)$$

- A map from $\{y^i\}_{n=\underline{k}}^k$ to y^{k+1}
- Stability is desirable (at least for ODEs with stable solutions)
- Example: $\dot{x} = \lambda x$ with forward Euler
 - $y^{k+1} = y^k + h\lambda y^k$
 - $y^{k+1} = (1 + h\lambda)y^k$
 - Stability requires $|1 + h\lambda| \le 1$
 - For $\lambda = -1$, we have $|1 h| \le 1 \Leftrightarrow h \le 2$

Numerical convergence

- Definition: $\max_{k} \|x(kh) y^k\| \to 0 \text{ as } h \to 0$
 - Basic requirement for numerical solutions
- Dahlquist Equivalence Theorem
 - Consistency + stability ⇔ convergence
- Convergence rate
 - Typically, for order p methods: $\max_{k} ||x(kh) y^{k}|| \le O(h^{p})$
 - Forward and backward Euler: p = 1

Stiff equations

- ODEs with components that have very fast rates of change
 - Usually requires very small step sizes for stability
- Example: $\dot{x}_1 = \lambda x_1$ with forward Euler
 - Stability requires $|1 + h\lambda| \leq 1$
 - For $\lambda = -100$, we have $|1 100h| \le 1 \Leftrightarrow h \le 0.02$
- Small step size is required even if there are other slower changing components like $\dot{x}_2 = x_1$
 - Implicit methods are useful here (accuracy limited to order 2)

)

- Main consideration: what slope to use?
 - Weighted average

•
$$y^{k+1} = y^k + ($$

)

- Main consideration: what slope to use?
 - Weighted average

•
$$y^{k+1} = y^k + (k_1$$

• $k_1 = hf(t^k, y^k)$

- Main consideration: what slope to use?
 - Weighted average

•
$$y^{k+1} = y^k + (k_1 \quad k_2)$$

• $k_1 = hf(t^k, y^k)$

• $k_2 = hf\left(t^{\kappa} + \frac{\pi}{2}, y^{\kappa} + \frac{\pi}{2}\right)$

- Main consideration: what slope to use?
 - Weighted average

•
$$y^{k+1} = y^k + (k_1 \quad k_2)$$

• $k_1 = hf(t^k, y^k)$

• $k_2 = hf\left(t^{\kappa} + \frac{\pi}{2}, y^{\kappa} + \frac{\pi}{2}\right)$

- Main consideration: what slope to use?
 - Weighted average

•
$$y^{k+1} = y^k + (k_1 \quad k_2 \quad)$$

• $k_1 = hf(t^k, y^k)$

• $k_2 = hf\left(t^k + \frac{\pi}{2}, y^k + \frac{\pi}{2}\right)$

- Main consideration: what slope to use?
 - Weighted average

•
$$y^{k+1} = y^k + (k_1 \quad k_2 \quad k_3)$$

• $k_1 = hf(t^k, y^k)$
• $k_2 = hf(t^k + \frac{h}{2}, y^k + \frac{k_1}{2})$
• $k_3 = hf(t^k + \frac{h}{2}, y^k + \frac{k_2}{2})$

- Main consideration: what slope to use?
 - Weighted average

•
$$y^{k+1} = y^k + (k_1 \quad k_2 \quad k_3)$$

• $k_1 = hf(t^k, y^k)$
• $k_2 = hf(t^k + \frac{h}{2}, y^k + \frac{k_1}{2})$
• $k_3 = hf(t^k + \frac{h}{2}, y^k + \frac{k_2}{2})$

- Main consideration: what slope to use?
 - Weighted average

•
$$y^{k+1} = y^k + (k_1 \quad k_2 \quad k_3)$$

• $k_1 = hf(t^k, y^k)$
• $k_2 = hf(t^k + \frac{h}{2}, y^k + \frac{k_1}{2})$
• $k_3 = hf(t^k + \frac{h}{2}, y^k + \frac{k_2}{2})$

- Main consideration: what slope to use?
 - Weighted average

•
$$y^{k+1} = y^k + (k_1 \quad k_2 \quad k_3 \quad k_4)$$

• $k_1 = hf(t^k, y^k)$
• $k_2 = hf(t^k + \frac{h}{2}, y^k + \frac{k_1}{2})$
• $k_3 = hf(t^k + \frac{h}{2}, y^k + \frac{k_2}{2})$
• $k_4 = hf(t^k + h, y^k + k_3)$

- Main consideration: what slope to use?
 - Weighted average

•
$$y^{k+1} = y^k + (k_1 \quad k_2 \quad k_3 \quad k_4)$$

• $k_1 = hf(t^k, y^k)$
• $k_2 = hf(t^k + \frac{h}{2}, y^k + \frac{k_1}{2})$
• $k_3 = hf(t^k + \frac{h}{2}, y^k + \frac{k_2}{2})$
• $k_4 = hf(t^k + h, y^k + k_3)$

- Main consideration: what slope to use?
 - Weighted average

•
$$y^{k+1} = y^k + (k_1 \quad k_2 \quad k_3 \quad k_4)$$

• $k_1 = hf(t^k, y^k)$
• $k_2 = hf(t^k + \frac{h}{2}, y^k + \frac{k_1}{2})$
• $k_3 = hf(t^k + \frac{h}{2}, y^k + \frac{k_2}{2})$
• $k_4 = hf(t^k + h, y^k + k_3)$

- Main consideration: what slope to use?
 - Weighted average
- $y^{k+1} = y^k + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$ • $k_1 = hf(t^k, y^k)$
 - $k_2 = hf\left(t^k + \frac{h}{2}, y^k + \frac{k_1}{2}\right)$
 - $k_3 = hf\left(t^k + \frac{h}{2}, y^k + \frac{k_2}{2}\right)$
 - $k_4 = hf(t^k + h, y^k + k_3)$

- Main consideration: what slope to use?
 - Weighted average
- $y^{k+1} = y^k + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$ • $k_1 = hf(t^k, y^k)$
 - $k_1 = h f(t^k, y^k)$ • $k_2 = h f(t^k + \frac{h}{2}, y^k + \frac{k_1}{2})$
 - $k_3 = hf\left(t^k + \frac{h}{2}, y^k + \frac{k_2}{2}\right)$
 - $k_4 = hf(t^k + h, y^k + k_3)$
- Properties
 - Equivalent to Simpson's rule
 - 4th order acccuracy

Numerical solutions: issues

- Stiff equations
- Approximation errors
 - Typically cannot be used to prove system properties