Nonlinear Systems I

CMPT 882

Jan. 16

Nonlinear Systems Roadmap

- Introduction
- Analysis
- Control
- Numerical solutions

Nonlinear Systems Roadmap: Today

- Introduction
- Analysis
 - Equilibrium points
 - Limit cycles

Nonlinear systems

- $\dot{x} = f(x, u)$
 - State: $x(t) \in \mathbb{R}^n$, $x(t_0) = x_0$
 - Control: $u(t) \in \mathcal{U}$
- Existence and uniqueness of solutions
 - *f* is a nonlinear function
 - Lipschitz continuous in *x*

$$\exists L > 0, \forall u, \| f(x_1, u) - f(x_2, u) \| \le L \| x_1 - x_2 \|$$

• $u(\cdot)$ is piecewise continuous

Study of Nonlinear Systems

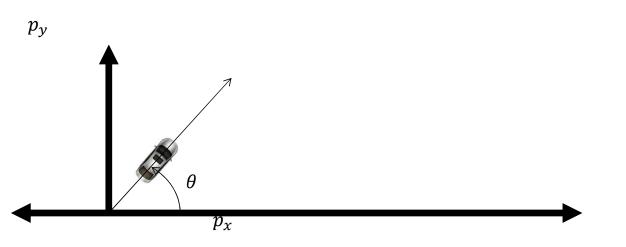
- In general, no closed form solutions
- Numerical approximations of solutions can be helpful
 - Widely used for simulations to predict system behaviour
- Analysis involves studying
 - equilibrium points
 - stability
 - limit cycles
 - bifurcations

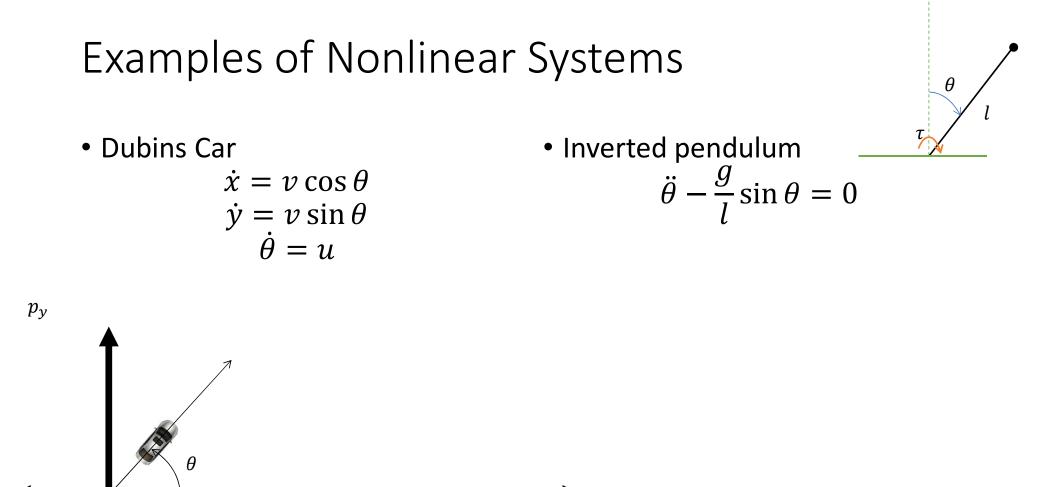
Features of nonlinear systems

• Almost all real-world robots are modelled by nonlinear systems

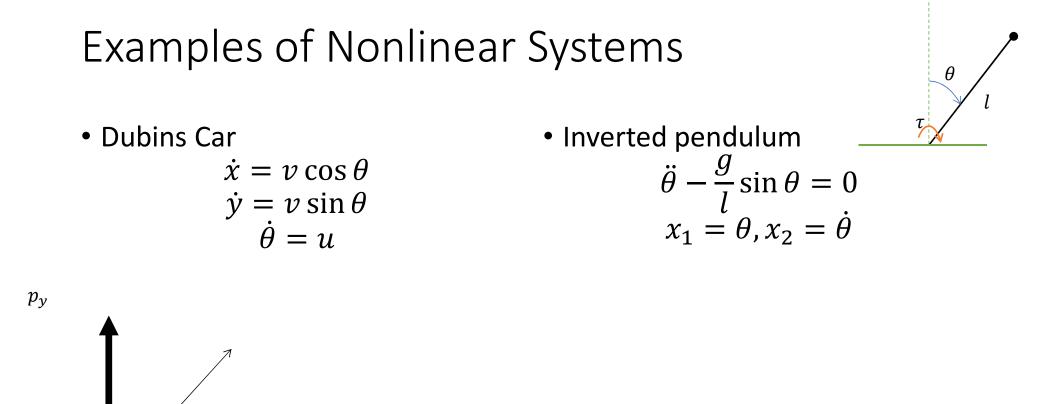
Examples of Nonlinear Systems

- Dubins Car
 - $\dot{x} = v \cos \theta$ $\dot{y} = v \sin \theta$ $\dot{\theta} = u$

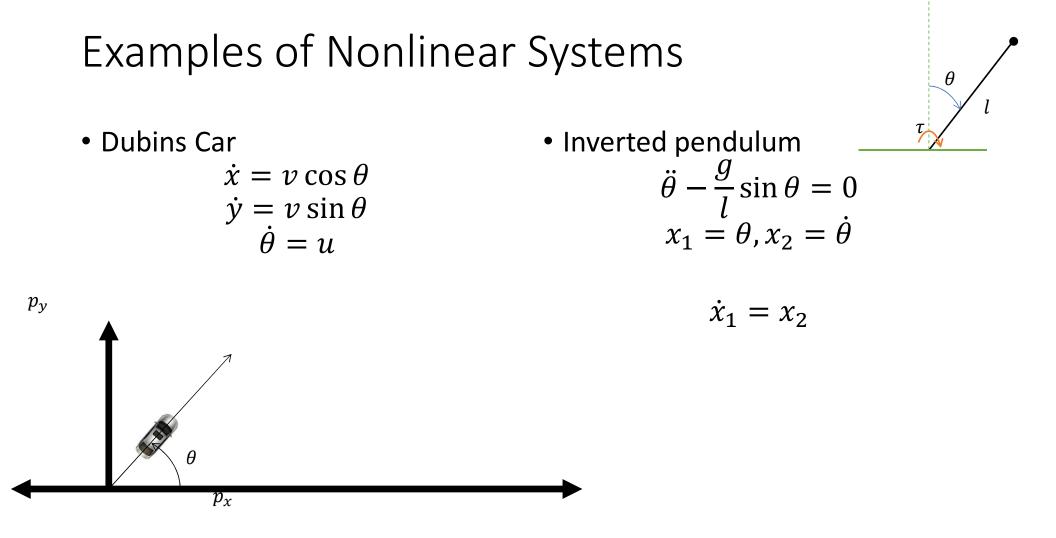


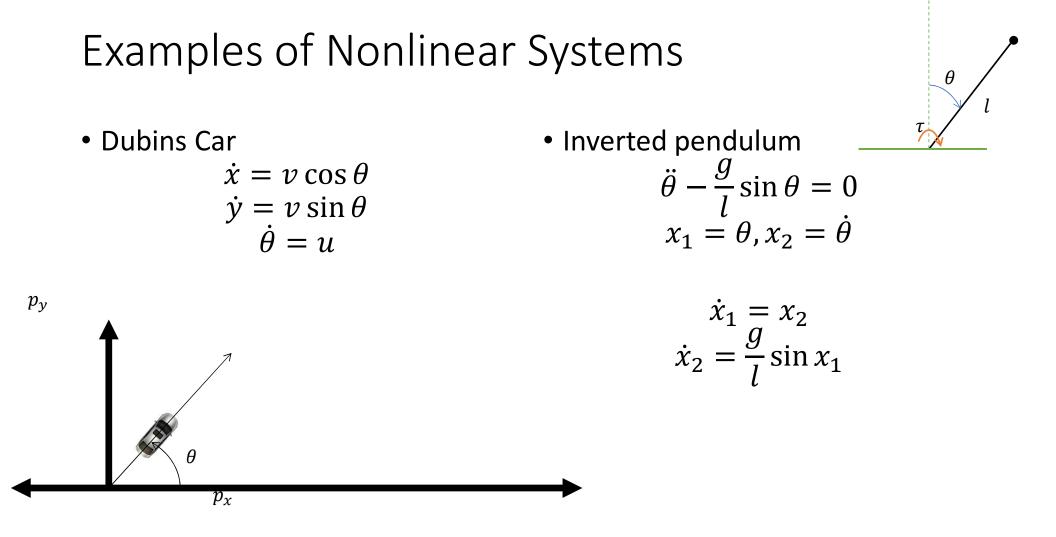


 p_{x}



 p_{x}



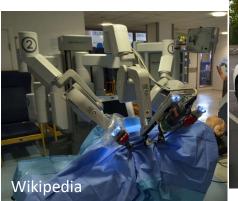


Examples of Nonlinear Systems

• Bicycle

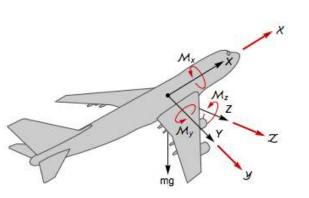
$$\begin{aligned} \dot{x} &= v_x \\ \dot{v}_x &= \omega v_y + u_1 \\ \dot{y} &= v_y \\ \dot{v}_y &= -\omega v_x + \frac{2}{m} \left(F_{c,f} \cos u_2 + F_{c,r} \right) \\ \dot{\psi} &= \omega \\ \dot{\omega} &= \frac{2}{I_z} \left(l_f F_{c,f} - l_r F_{c,r} \right) \\ \dot{X} &= v_x \cos \psi - v_y \sin \psi \\ \dot{Y} &= v_x \sin \psi + v_y \cos \psi \end{aligned}$$

Examples of Nonlinear Systems



iStock

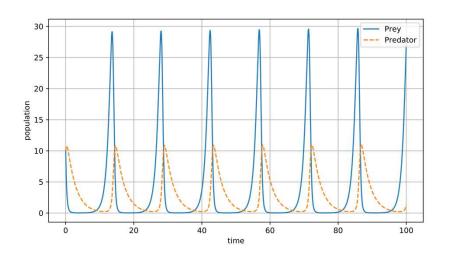
×



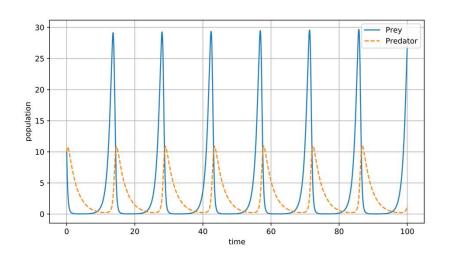
Features of Nonlinear Systems

- Almost all real-world robots are modelled by nonlinear systems
- Limit cycles

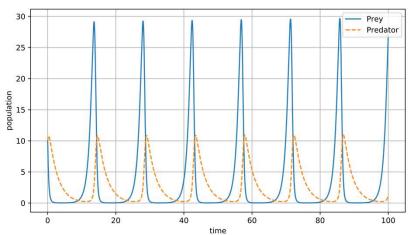
- Predator-prey model: x is number of preys, y is number of predators $\dot{x} = \alpha x - \beta x y$ $\dot{y} = \delta x y - \gamma y$
 - α : prey natural growth rate



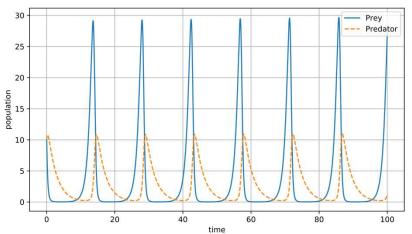
- Predator-prey model: x is number of preys, y is number of predators $\dot{x} = \alpha x - \beta x y$ $\dot{y} = \delta x y - \gamma y$
 - α : prey natural growth rate
 - β : prey decline rate due to interaction with predator



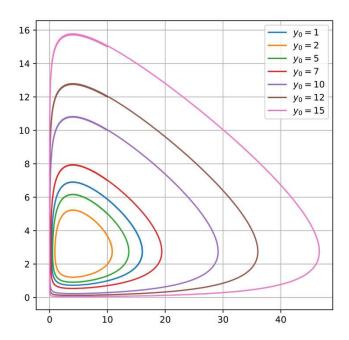
- Predator-prey model: x is number of preys, y is number of predators $\dot{x} = \alpha x - \beta x y$ $\dot{y} = \delta x y - \gamma y$
 - α : prey natural growth rate
 - β : prey decline rate due to interaction with predator
 - δ : predator growth rate due to interaction with prey



- Predator-prey model: x is number of preys, y is number of predators $\dot{x} = \alpha x - \beta x y$ $\dot{y} = \delta x y - \gamma y$
 - α : prey natural growth rate
 - β : prey decline rate due to interaction with predator
 - $\delta:$ predator growth rate due to interaction with prey
 - γ : prey natural decline rate

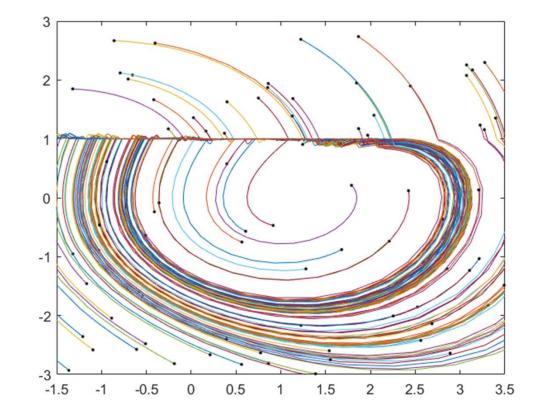


- Predator-prey model: x is number of preys, y is number of predators $\dot{x} = \alpha x - \beta x y$ $\dot{y} = \delta x y - \gamma y$
 - α : prey natural growth rate
 - β : prey decline rate due to interaction with predator
 - δ : predator growth rate due to interaction with prey
 - γ : prey natural decline rate



Rayleigh's Model of Violin String

• See assignment 1



Features of Nonlinear Systems

- Almost all real-world robots are modelled by nonlinear systems
- Limit cycles
- Multiple isolated equilibrium points

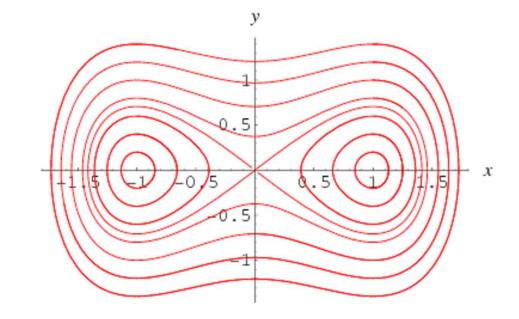
Duffing's Equation

• More complex model of oscillators compared to the simple harmonic oscillator, which is a linear system

Duffing's Equation

- More complex model of oscillators compared to the simple harmonic oscillator, which is a linear system
- No damping and no forcing:

$$\dot{x} = y$$
$$\dot{y} = x - x^3$$



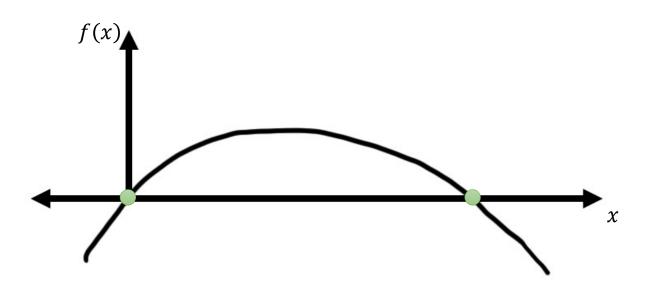
Features of Nonlinear Systems

- Almost all real-world robots are modelled by nonlinear systems
- Limit cycles
- Multiple isolated equilibrium points
- Bifurcations

Bifurcations

• Sudden changes in system behaviour for small changes in parameter

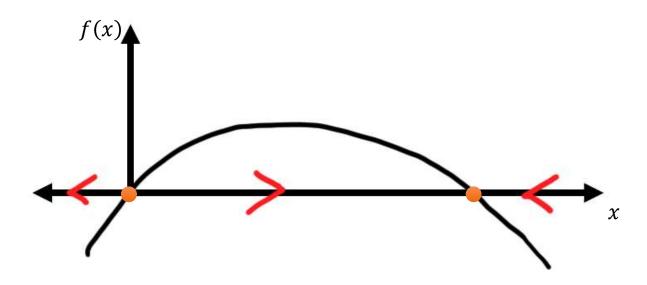
- General nonlinear system: $\dot{x} = f(x)$
 - If f(x) = 0, then x is an equilibrium point, denoted x_e
- Example: f(x) = -x(x 1)



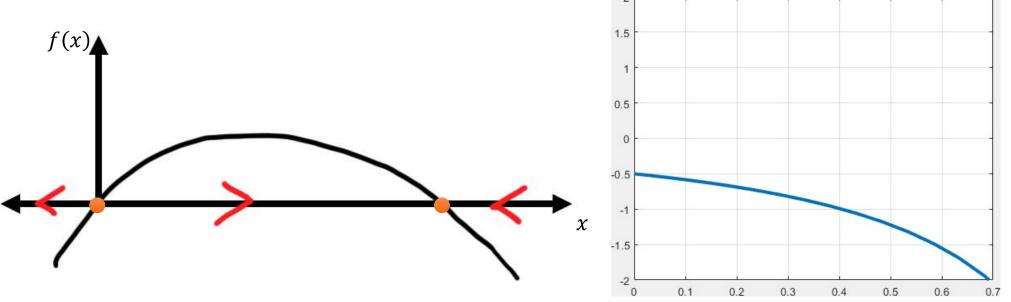
• $\dot{x} = f(x)$

• If f(x) = 0, then x is an equilibrium point, denoted x_e

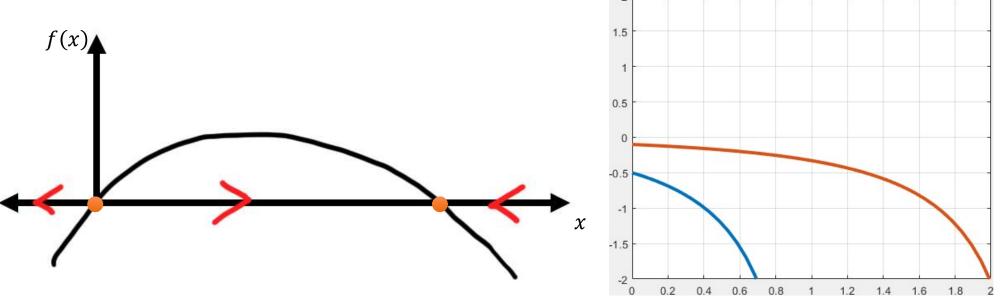
• Example: f(x) = -x(x - 1)



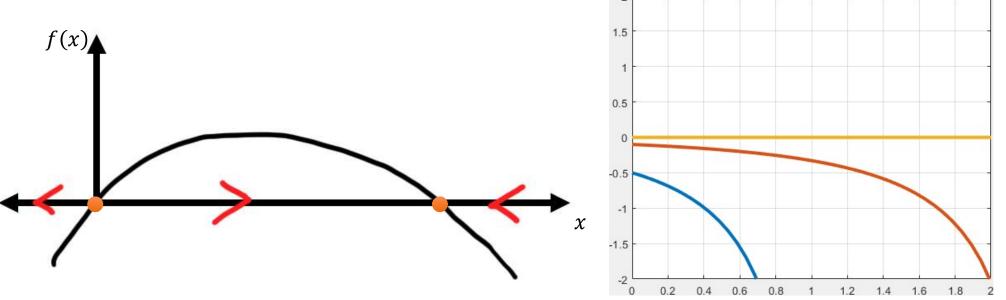
- $\dot{x} = f(x)$
 - If f(x) = 0, then x is an equilibrium point, denoted x_e
- Example: f(x) = -x(x 1)



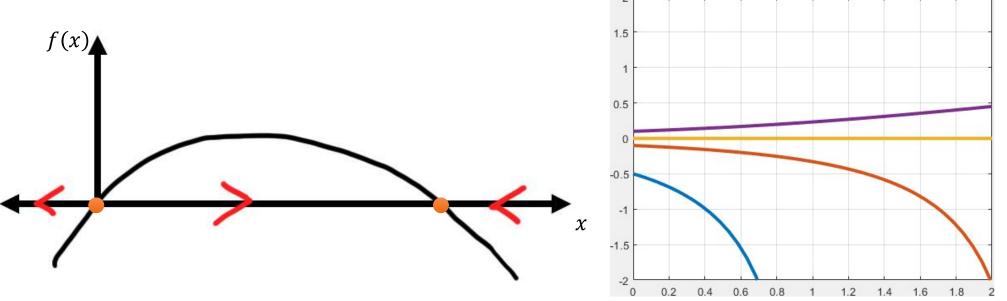
- $\dot{x} = f(x)$
 - If f(x) = 0, then x is an equilibrium point, denoted x_e
- Example: f(x) = -x(x 1)



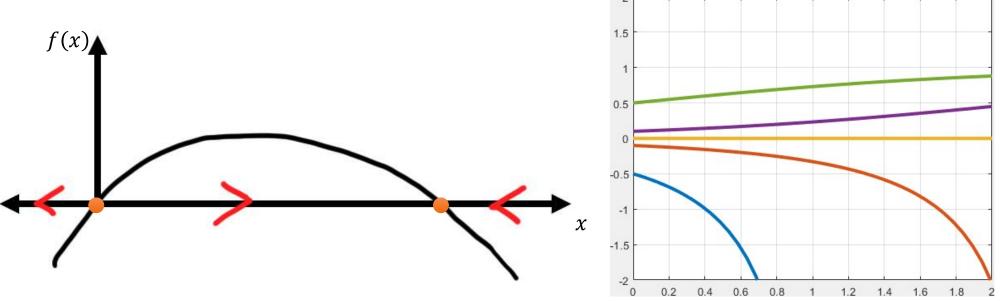
- $\dot{x} = f(x)$
 - If f(x) = 0, then x is an equilibrium point, denoted x_e
- Example: f(x) = -x(x 1)



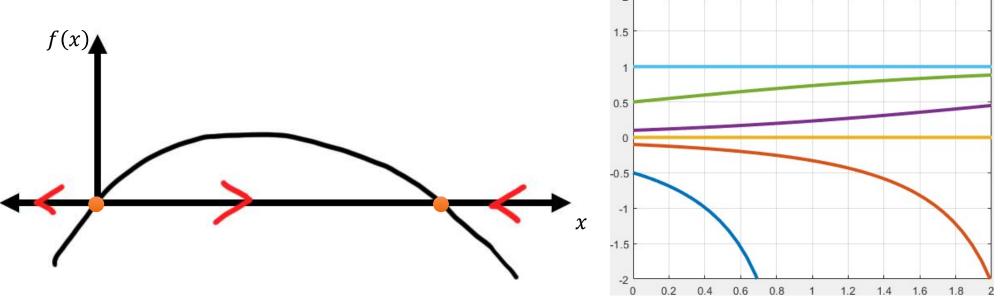
- $\dot{x} = f(x)$
 - If f(x) = 0, then x is an equilibrium point, denoted x_e
- Example: f(x) = -x(x 1)



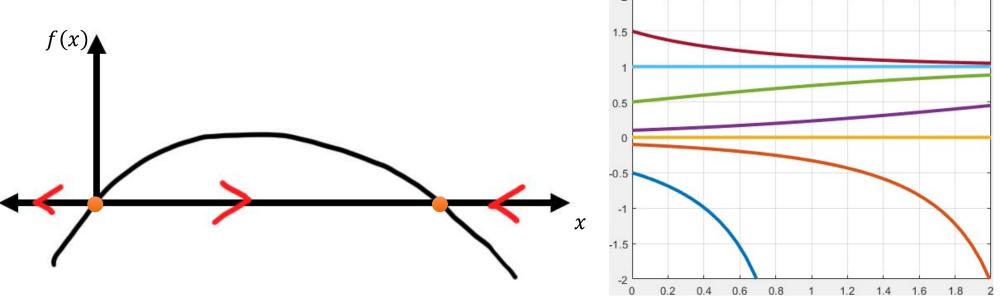
- $\dot{x} = f(x)$
 - If f(x) = 0, then x is an equilibrium point, denoted x_e
- Example: f(x) = -x(x 1)



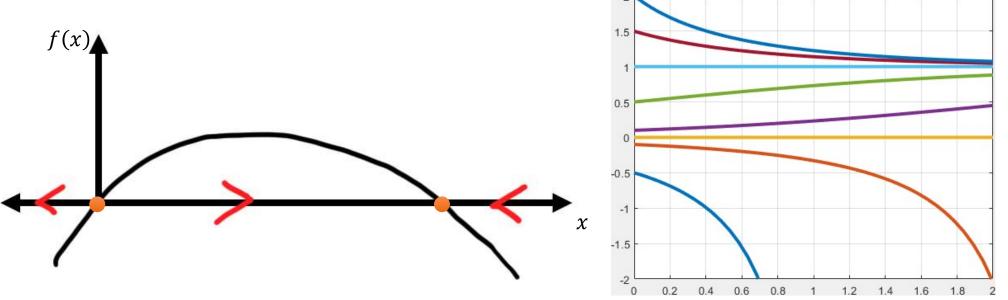
- $\dot{x} = f(x)$
 - If f(x) = 0, then x is an equilibrium point, denoted x_e
- Example: f(x) = -x(x 1)



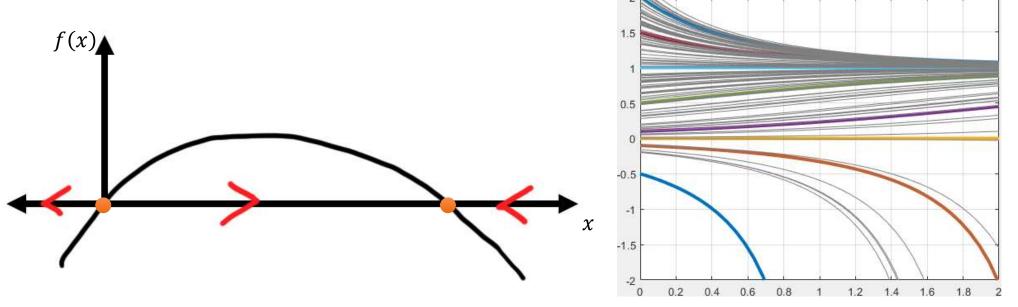
- $\dot{x} = f(x)$
 - If f(x) = 0, then x is an equilibrium point, denoted x_e
- Example: f(x) = -x(x 1)



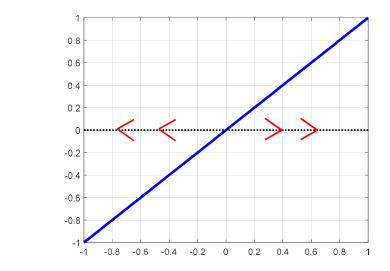
- $\dot{x} = f(x)$
 - If f(x) = 0, then x is an equilibrium point, denoted x_e
- Example: f(x) = -x(x 1)



- $\dot{x} = f(x)$
 - If f(x) = 0, then x is an equilibrium point, denoted x_e
- Example: f(x) = -x(x 1)



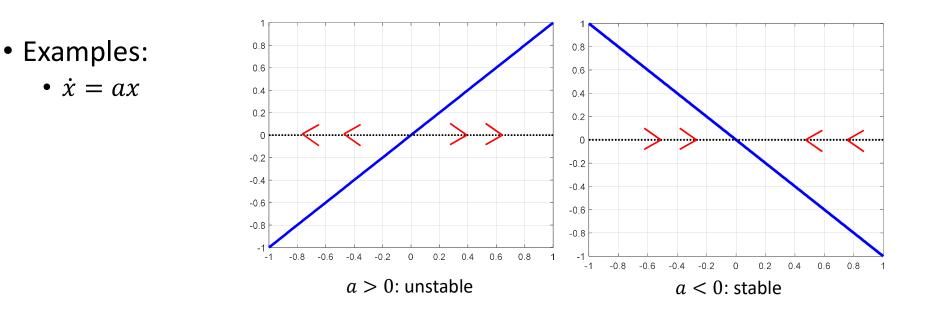
• Look at eigenvalues of linearization around equilibrium point



• Examples:

• $\dot{x} = ax$

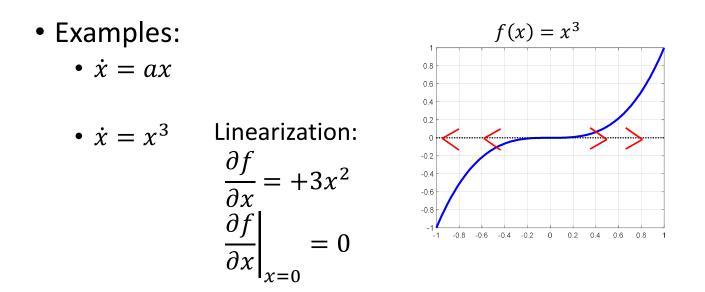
• Look at eigenvalues of linearization around equilibrium point



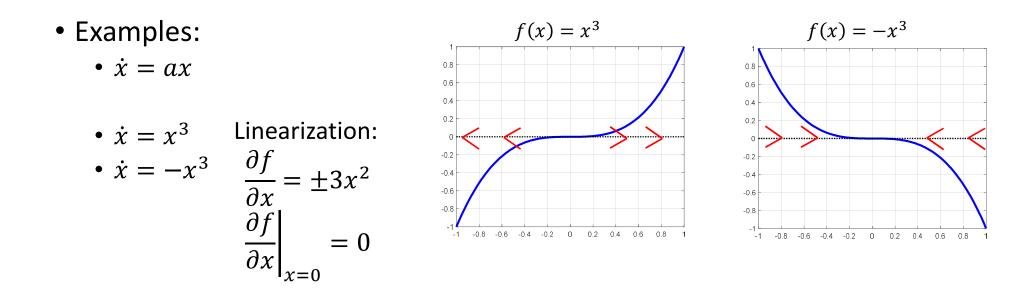
- Look at eigenvalues of linearization around equilibrium point
 - Sometimes does not apply if there are eigenvalues on the imaginary axis
- Examples:
 - $\dot{x} = ax$
 - $\dot{x} = x^3$

- Look at eigenvalues of linearization around equilibrium point
 - Sometimes does not apply if there are eigenvalues on the imaginary axis
- Examples:
 - $\dot{x} = ax$
 - $\dot{x} = x^3$ Linearization: $\frac{\partial f}{\partial x} = +3x^2$ $\frac{\partial f}{\partial x}\Big|_{x=0} = 0$

- Look at eigenvalues of linearization around equilibrium point
 - Sometimes does not apply if there are eigenvalues on the imaginary axis



- Look at eigenvalues of linearization around equilibrium point
 - Sometimes does not apply if there are eigenvalues on the imaginary axis



• Damped ($\delta > 0$) and no forcing:

$$\begin{aligned} \dot{x} &= y \\ \dot{y} &= x - y - x^3 \end{aligned}$$

• Equilibrium points:

$$\dot{x} = 0 \Rightarrow y = 0$$

 $\dot{y} = 0 \Rightarrow x = -1,0,1$

• Damped ($\delta > 0$) and no forcing:

$$\dot{x} = y \\ \dot{y} = x - y - x^3$$

• Equilibrium points:

$$\dot{x} = 0 \Rightarrow y = 0$$

 $\dot{y} = 0 \Rightarrow x = -1,0,1$

$$\frac{\partial f}{\partial(x,y)} = \begin{bmatrix} 0 & 1\\ 1 - 3x^2 & -1 \end{bmatrix}$$

$$\left. \frac{\partial f}{\partial(x,y)} \right|_{(\pm 1,0)} = \begin{bmatrix} 0 & 1\\ -2 & -1 \end{bmatrix}$$

• Damped ($\delta > 0$) and no forcing:

$$\begin{aligned} \dot{x} &= y \\ \dot{y} &= x - y - x^3 \end{aligned}$$

• Equilibrium points:

$$\dot{x} = 0 \Rightarrow y = 0$$

 $\dot{y} = 0 \Rightarrow x = -1,0,1$

$$\frac{\partial f}{\partial(x,y)} = \begin{bmatrix} 0 & 1\\ 1 - 3x^2 & -1 \end{bmatrix}$$

$$\frac{\partial f}{\partial(x,y)}\Big|_{(\pm 1,0)} = \begin{bmatrix} 0 & 1\\ -2 & -1 \end{bmatrix}$$

Eigenvalues: $s^2 + s + 2 = 0$

• Damped ($\delta > 0$) and no forcing:

$$\dot{x} = y \\ \dot{y} = x - y - x^3$$

• Equilibrium points:

$$\dot{x} = 0 \Rightarrow y = 0$$

 $\dot{y} = 0 \Rightarrow x = -1,0,1$

$$\frac{\partial f}{\partial(x,y)} = \begin{bmatrix} 0 & 1\\ 1 - 3x^2 & -1 \end{bmatrix}$$

$$\frac{\partial f}{\partial(x,y)}\Big|_{(\pm 1,0)} = \begin{bmatrix} 0 & 1\\ -2 & -1 \end{bmatrix}$$

Eigenvalues:

$$s^{2} + s + 2 = 0$$

$$s = \frac{-1 \pm \sqrt{1 - 8}}{2}$$

• Damped ($\delta > 0$) and no forcing:

$$\dot{x} = y \\ \dot{y} = x - y - x^3$$

• Equilibrium points:

$$\dot{x} = 0 \Rightarrow y = 0$$

 $\dot{y} = 0 \Rightarrow x = -1,0,1$

$$\frac{\partial f}{\partial(x,y)} = \begin{bmatrix} 0 & 1\\ 1 - 3x^2 & -1 \end{bmatrix}$$

• Damped ($\delta > 0$) and no forcing:

$$\begin{aligned} \dot{x} &= y \\ \dot{y} &= x - y - x^3 \end{aligned}$$

• Equilibrium points:

$$\dot{x} = 0 \Rightarrow y = 0$$

 $\dot{y} = 0 \Rightarrow x = -1,0,1$

• Linearization:

$$\frac{\partial f}{\partial(x,y)} = \begin{bmatrix} 0 & 1\\ 1 - 3x^2 & -1 \end{bmatrix}$$

$$\frac{\partial f}{\partial(x,y)}\Big|_{(\pm 1,0)} = \begin{bmatrix} 0 & 1\\ -2 & -1 \end{bmatrix}$$

Eigenvalues:

$$s^{2} + s + 2 = 0$$

$$s = \frac{-1 \pm \sqrt{1 - 8}}{2}$$

- Complex conjugate pairs
- Negative real part
- "Stable focus"

• Damped (
$$\delta > 0$$
) and no forcing:

$$\dot{x} = y \\ \dot{y} = x - y - x^3$$

• Equilibrium points:

$$\dot{x} = 0 \Rightarrow y = 0$$

 $\dot{y} = 0 \Rightarrow x = -1,0,1$

• Linearization:

$$\frac{\partial f}{\partial(x,y)} = \begin{bmatrix} 0 & 1\\ 1 - 3x^2 & -1 \end{bmatrix}$$

$$\frac{\partial f}{\partial(x,y)}\Big|_{(\pm 1,0)} = \begin{bmatrix} 0 & 1 \\ -2 & -1 \end{bmatrix} \qquad \frac{\partial f}{\partial(x,y)}\Big|_{(0,0)} = \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix}$$

Eigenvalues:

$$s^{2} + s + 2 = 0$$

 $s = \frac{-1 \pm \sqrt{1-8}}{2}$

- Complex conjugate pairs
- Negative real part
- "Stable focus"

• Damped (
$$\delta > 0$$
) and no forcing:

$$\dot{x} = y \\ \dot{y} = x - y - x^3$$

• Equilibrium points:

$$\dot{x} = 0 \Rightarrow y = 0$$

 $\dot{y} = 0 \Rightarrow x = -1,0,1$

• Linearization:

$$\frac{\partial f}{\partial(x,y)} = \begin{bmatrix} 0 & 1\\ 1 - 3x^2 & -1 \end{bmatrix}$$

$$\frac{\partial f}{\partial(x,y)}\Big|_{(\pm 1,0)} = \begin{bmatrix} 0 & 1\\ -2 & -1 \end{bmatrix}$$

Eigenvalues:

$$s^{2} + s + 2 = 0$$

$$s = \frac{-1 \pm \sqrt{1-8}}{2}$$

$$\left. \frac{\partial f}{\partial(x, y)} \right|_{(0,0)} = \begin{bmatrix} 0 & 1\\ 1 & -1 \end{bmatrix}$$

Eigenvalues: $s^2 + s - 1 = 0$

- Negative real part
- "Stable focus"

• Damped ($\delta > 0$) and no forcing:

$$\dot{x} = y \\ \dot{y} = x - y - x^3$$

• Equilibrium points:

$$\dot{x} = 0 \Rightarrow y = 0$$

 $\dot{y} = 0 \Rightarrow x = -1,0,1$

• Linearization:

$$\frac{\partial f}{\partial(x,y)} = \begin{bmatrix} 0 & 1\\ 1 - 3x^2 & -1 \end{bmatrix}$$

$$\frac{\partial f}{\partial(x,y)}\Big|_{(\pm 1,0)} = \begin{bmatrix} 0 & 1\\ -2 & -1 \end{bmatrix}$$

Eigenvalues:

sinvalues:

$$s^{2} + s + 2 = 0$$

 $s = \frac{-1 \pm \sqrt{1 - 8}}{2}$

- Complex conjugate pairs
- Negative real part
- "Stable focus"

$$\frac{\partial f}{\partial(x,y)}\Big|_{(0,0)} = \begin{bmatrix} 0 & 1\\ 1 & -1 \end{bmatrix}$$

Eigenvalues: $s^{2} + s - 1 = 0$ $s = \frac{-1 \pm \sqrt{1+4}}{2}$

• Damped (
$$\delta > 0$$
) and no forcing:

$$\dot{x} = y \\ \dot{y} = x - y - x^3$$

• Equilibrium points:

$$\dot{x} = 0 \Rightarrow y = 0$$

 $\dot{y} = 0 \Rightarrow x = -1,0,1$

• Linearization:

$$\frac{\partial f}{\partial(x,y)} = \begin{bmatrix} 0 & 1\\ 1 - 3x^2 & -1 \end{bmatrix}$$

$$\frac{\partial f}{\partial(x,y)}\Big|_{(\pm 1,0)} = \begin{bmatrix} 0 & 1\\ -2 & -1 \end{bmatrix}$$

Eigenvalues:

$$s^{2} + s + 2 = 0$$

$$s = \frac{-1 \pm \sqrt{1 - 8}}{2}$$

- Complex conjugate pairs
- Negative real part
- "Stable focus"

$$\left. \frac{\partial f}{\partial(x,y)} \right|_{(0,0)} = \begin{bmatrix} 0 & 1\\ 1 & -1 \end{bmatrix}$$

Eigenvalues:

$$s^{2} + s - 1 = 0$$

$$s = \frac{-1 \pm \sqrt{1 + 4}}{2}$$

- Real and opposite sign
- "Saddle"

• Damped ($\delta > 0$) and no forcing

 $\begin{aligned} \dot{x} &= y \\ \dot{y} &= x - y - x^3 \end{aligned}$

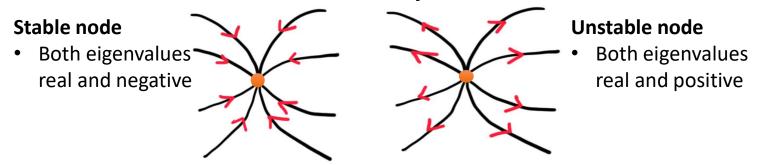
- Equilibrium points: $\dot{x} = 0 \Rightarrow y = 0$ $\dot{y} = 0 \Rightarrow x = -1,0,1$
- Linearization:

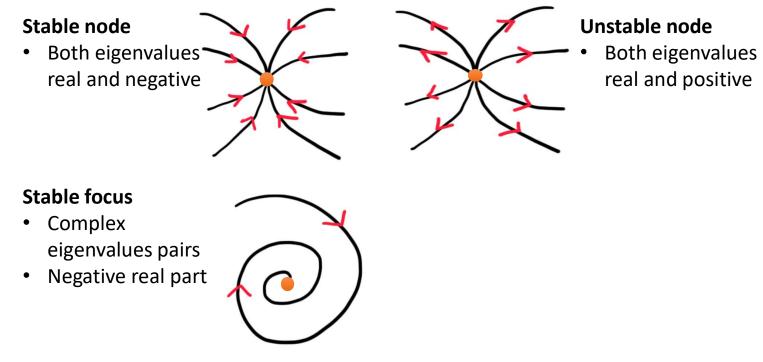
$$\frac{\partial f}{\partial(x,y)} = \begin{bmatrix} 0 & 1\\ 1 - 3x^2 & -1 \end{bmatrix}$$

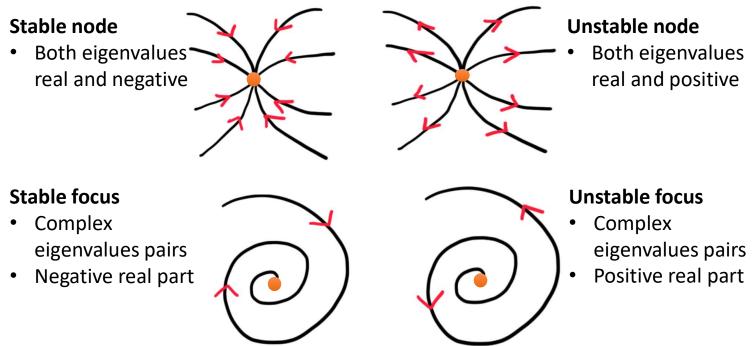
$$\frac{\partial f}{\partial(x,y)}\Big|_{(\pm 1,0)} = \begin{bmatrix} 0 & 1 \\ -2 & -1 \end{bmatrix} \qquad \frac{\partial f}{\partial(x,y)}\Big|_{(0,0)} = \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix}$$

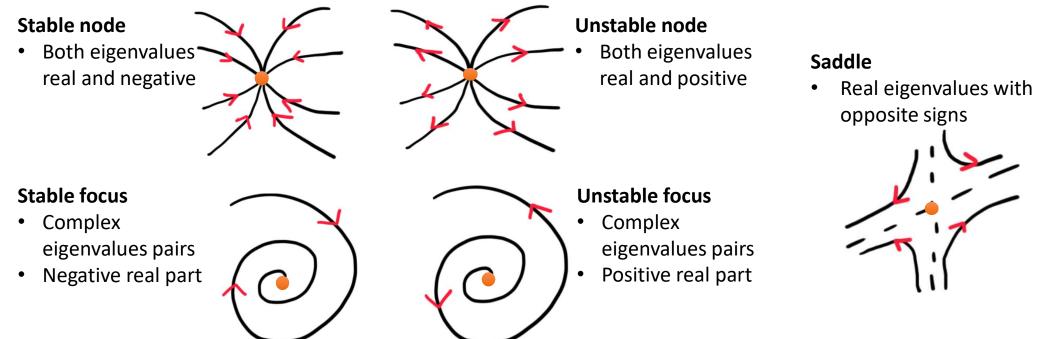
Eigenvalues:
 $s^2 + s + 2 = 0$
Second s

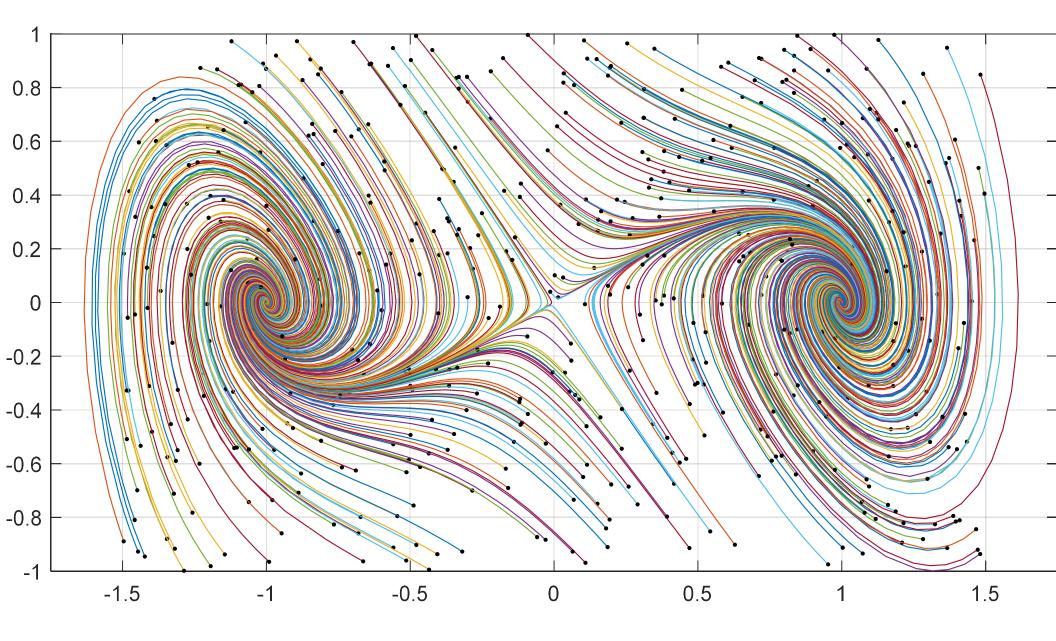
- Phase portraits: Graphs of y(t) vs. x(t) for 2D systems
- Stable node
- Both eigenvalues
 real and negative





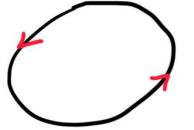






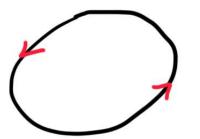
Closed orbits

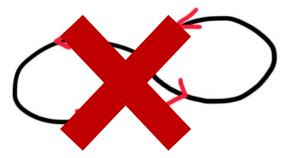
• Closed orbit: trace of the trajectory of a periodic solution



Closed orbits

• Closed orbit: trace of the trajectory of a periodic solution





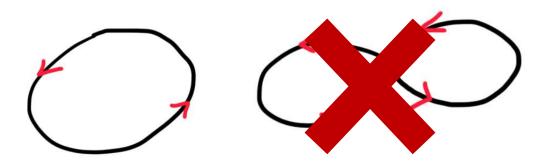
Duffing's Equation (Undamped)

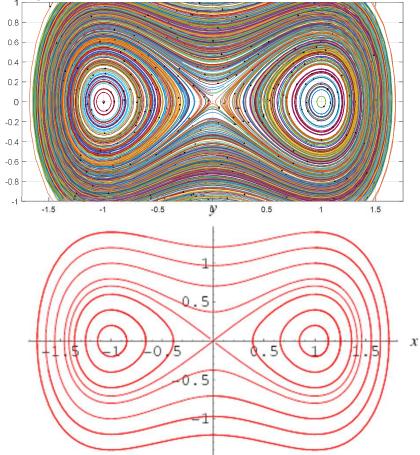
• Damped ($\delta > 0$) and no forcing:

 $\begin{aligned} \dot{x} &= y \\ \dot{y} &= x - x^3 \end{aligned}$

• Equilibrium points:

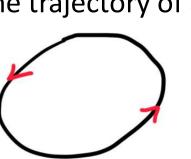
 $\dot{x} = 0 \Rightarrow y = 0$ $\dot{y} = 0 \Rightarrow x = -1,0,1$



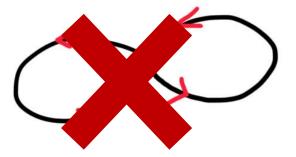


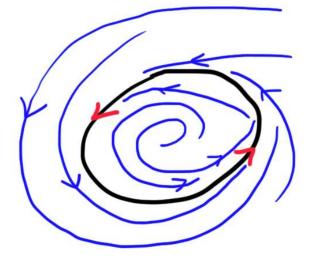
Closed orbits

• Closed orbit: trace of the trajectory of a periodic solution



• Limit cycle: a closed orbit γ such that there is an initial condition x_0 such that $x(t) \rightarrow \gamma$ as $t \rightarrow \pm \infty$ starting from x_0 .





Rayleigh's Model of Violin String

• See assignment 1

