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Nonlinear systems

x = f(x,u)
e State: x(t) € R™, x(ty) = x,
e Control: u(t) € U

 Existence and uniqueness of solutions
* fisanonlinear function

* Lipschitz continuous in x
AL > 0,Vu, || f (xg, w) — f a2, Wl < Lllx; — x|

* u(-) is piecewise continuous



Study of Nonlinear Systems

* In general, no closed form solutions

* Numerical approximations of solutions can be helpful
* Widely used for simulations to predict system behaviour

* Analysis involves studying
e equilibrium points
* stability
* limit cycles
* bifurcations



Features of nonlinear systems

* Almost all real-world robots are modelled by nonlinear systems



Examples of Nonlinear Systems

e Dubins Car
X =vcos6
y =vsinf
6 =u
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Examples of Nonlinear Systems

* Dubins Car * Inverted pendulum
X =vCcost §—Zsino =0
y =vsinf [ .
é = U x1 — 9, xz — 9

5C1=x2

Xy = Tsin X1
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Examples of Nonlinear Systems

* Bicycle

X =0,
Uy = WUy + Uy

y =7y

2
Uy = —wly + -~ (Fc,f cosu, + FC’,,)

=I (lfFCf l FCT)

X =v,cosyp — vy siny
Y = v, siny + vy, cosy




Google Inc.

W/ikipedia




Features of Nonlinear Systems

* Almost all real-world robots are modelled by nonlinear systems

* Limit cycles



Predator-Prey Model

* Predator-prey model: x is number of preys, y is number of predators
X = ax — fxy
y =0xy —vy
e a: prey natural growth rate
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* Predator-prey model: x is number of preys, y is number of predators
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Predator-Prey Model

* Predator-prey model: x is number of preys, y is number of predators
X = ax — fxy
y =0xy—vy
e a: prey natural growth rate
* [: prey decline rate due to interaction with predator
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Predator-Prey Model

* Predator-prey model: x is number of preys, y is number of predators
X = ax — fxy
y =0xy —vy

16

e a: prey natural growth rate
* [: prey decline rate due to interaction with predator
* §: predator growth rate due to interaction with prey

* y: prey natural decline rate 101 (\
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Rayleigh’s Model of Violin String

* See assignment 1




Features of Nonlinear Systems

* Almost all real-world robots are modelled by nonlinear systems
* Limit cycles

* Multiple isolated equilibrium points



Duffing’s Equation

* More complex model of oscillators compared to the
simple harmonic oscillator, which is a linear system



Duffing’s Equation

* More complex model of oscillators compared to the
simple harmonic oscillator, which is a linear system

* No damping and no forcing:

X =y
y=x—x3




Features of Nonlinear Systems

* Almost all real-world robots are modelled by nonlinear systems
* Limit cycles
* Multiple isolated equilibrium points

e Bifurcations



Bifurcations

e Sudden changes in system behaviour for small changes in parameter



Equilibrium Points and Stability: 1D

 General nonlinear system: x = f(x)
* If f(x) = 0, then x is an equilibrium point, denoted x,

* Example: f(x) = —x(x — 1)

f(x)

7 N
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Equilibrium Points and Stability: 1D
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Equilibrium Points and Stability: 1D

'3 = ()

* If f(x) = 0, then x is an equilibrium point, denoted x,

* Example: f(x) = —x(x — 1)
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Equilibrium Points and Stability: 2D and Up

* Look at eigenvalues of linearization around equilibrium point

* Examples:
* X =ax

......... Gyl Do S ]




Equilibrium Points and Stability: 2D and Up

* Look at eigenvalues of linearization around equilibrium point

* Examples: | |
* X = ax 0.4 1 o4l
oper oiGorrrgfom D - T opm R G

-1 -08 -06 -04 -02 0 0.2 0.4 0.6 0.8 1

a > 0: unstable a < 0: stable



Equilibrium Points and Stability: 2D and Up

* Look at eigenvalues of linearization around equilibrium point
* Sometimes does not apply if there are eigenvalues on the imaginary axis

* Examples:
* X =ax



Equilibrium Points and Stability: 2D and Up

* Look at eigenvalues of linearization around equilibrium point
* Sometimes does not apply if there are eigenvalues on the imaginary axis

* Examples:
* X =ax

o x = x3 Linearization:

of 5
a—+3x
9,

f _ 0

0x
x=0



Equilibrium Points and Stability: 2D and Up

* Look at eigenvalues of linearization around equilibrium point
* Sometimes does not apply if there are eigenvalues on the imaginary axis

* Examples: =2
+ 1= ax ) /
o x = x3 Linearization: < SO
of _ +3x2 -z.‘z‘i |
d0x
of
=0

0x
x=0



Equilibrium Points and Stability: 2D and Up

* Look at eigenvalues of linearization around equilibrium point
* Sometimes does not apply if there are eigenvalues on the imaginary axis

* Examples:
* X =ax
¢ x = x3
* X =—X

3

Linearization:

af
— = 43x?2
0x £3x
d

a_f =0
xx=0

fx) =x° fx) = —x°




Duffing’s Equation

* Damped (6 > 0) and no forcing:
X=y

y=x-y—-x°

e Equilibrium points:
x=0=>y=0
y=0=>x=-1,0,1



Duffing’s Equation

* Damped (6 > 0) and no forcing:
X=y

y=x—y—x°>
e Equilibrium points:
x=0=>y=0
y=0=>x=-1,0,1
* Linearization:
aof [ 0 1 ]
d(x,y) l11-3x%2 -1




daf
Duffing’s Equation 2=

0 1]

(+1,0) 2 1

* Damped (6 > 0) and no forcing:
X=y

y=x—y—x°>
e Equilibrium points:
x=0=>y=0
y=0=>x=-1,0,1
* Linearization:
aof [ 0 1 ]
d(x,y) l11-3x%2 -1




af 70 1
Duffing’s Equation  &»le, 2 =1
Eigenvalues:
s“+s+2=0
* Damped (6 > 0) and no forcing:
X=y
y=x-y-x°
e Equilibrium points:
x=0=>y=0

y=0=>x=-1,0,1
* Linearization:

of 1 0 1
a(x,y)_ll—sz —1]




af 10 1
Duffing’s Equation  9&»le, 2 =1
Eigenvalues:
s+s+2=0
* Damped (6 > 0) and no forcing: e &= V1—38
X =1y 2
y=x—y-x°
e Equilibrium points:
x=0=>y=0

y=0=>x=-1,0,1
* Linearization:

of 1 0 1
a(x,y)_[1—3x2 —1]




Duffing’s Equation

* Damped (6 > 0) and no forcing:

X=y
y=x—y—x°>
e Equilibrium points:
x=0=>y=0
y=0=>x=-1,0,1
* Linearization:
af _[ 0 1]
d(x,y) l11-3x%2 -1

a(x,y)

af 0 1]

-2 -1

(+1,0)

Eigenvalues:

s+s5+2=0
—-1++v1—-8

B 2

Complex conjugate pairs

Negative real part

“Stable focus”

S



Duffing’s Equation

* Damped (6 > 0) and no forcing:

X=y
y=x—y—x°>
e Equilibrium points:
x=0=>y=0
y=0=>x=-1,0,1
* Linearization:
af _[ 0 1]
d(x,y) l11-3x%2 -1

of _10 1 ] of
0| (pyg 2 —1 a(x,y)
Eigenvalues:
s“+s+2=0
_—1+v1-38
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Complex conjugate pairs
Negative real part
“Stable focus”
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1

1
-1

|



Duffing’s Equation

* Damped (6 > 0) and no forcing:

X=y
y=x—y—x°>
e Equilibrium points:
x=0=>y=0
y=0=>x=-1,0,1
* Linearization:
of [ 0 1 ]
d(x,y) l11-3x%2 -1

af
a(x,y)

Eigenvalues:

s+s5+2=0
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Complex conjugate pairs
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Duffing’s Equation

* Damped (6 > 0) and no forcing:

X=y
y=x—y—x°>
e Equilibrium points:
x=0=>y=0
y=0=>x=-1,0,1
* Linearization:
of [ 0 1 ]
d(x,y) l11-3x%2 -1

af
a(x,y)

Eigenvalues:

s+s5+2=0
—-1++v1—-8

B 2

Complex conjugate pairs

Negative real part

“Stable focus”

0 1]

(+1,0) 2 1

S

of _0 1
0¥y 1 1
Eigenvalues:
s?+s—-1=0
-1+ V1+4

S
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Duffing’s Equation

X=y

e Equilibrium points:
x=0=>y=0

y=0=x=-1,01

* Linearization:
of _ [ 0
d(x,y) 11— 3x?

1
-1

* Damped (6 > 0) and no forcing:

y=x-y—-x°

|

af
a(x,y)

Eigenvalues:

s+s5+2=0
—-1++v1—-8

B 2

* Complex conjugate pairs

* Negative real part

« “Stable focus”

0 1]

(+1,0) 2 1

S

of _0 1 ]
a(x,y) (0.0) 1 -1
Eigenvalues:
st4+s—-1=0
—-1+vV1+4
S =

2
e Real and opposite sign

e “Saddle”



af 0 1
. / . — —
Duffing’s Equation  9&»le, 2 ]
Eigenvalues:
s?2+s+2=0
* Damped (6 > 0) and no forcing: O V1—=38
. 2
D,C =Yy 3 * Complex conjugate pairs
y=XxXxX—y—X * Negative real part

af
a(x,y)

_(1) —11]

(0,0)

Eigenvalues:
s’+s—1=0
—-1+v1+4
2
* Real and opposite sign
 “Saddle”

S =

e “Stable focus”
e Equilibrium points: 1 e N\

x=0=>y=0
y=0=>x=-1,0,1
* Linearization:

of 1 0 1 ol
a(x,y)_ll—sz —1] wal




Phase Portraits

* Phase portraits: Graphs of y(t) vs. x(t) for 2D systems
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Phase Portraits

* Phase portraits: Graphs of y(t) vs. x(t) for 2D systems

Stable node Unstable node
* Both eigenvalues\\ /g——- \ ﬂ——— * Both eigenvalues Saddle

real and negative i real and positive * Real eigenvalues with

ZAN

7& opposite signs
Stable focus Unstable focus ~
* Complex * Complex ~ ’_.
eigenvalues pairs - ;
e Positive real part \

eigenvalues pairs
* Negative real part



0.8

0.6

0.4

0.2

-0.2

-0.4

-0.6

-0.8




Closed orbits

* Closed orbit: trace of the trajectory of a
periodic solution



Closed orbits

* Closed orbit: trace of the trajectory of a
periodic solution




Duffing’s Equation (Undamped)

1

 Damped (6 > 0) and no forcing: -
X =1y
y — x —_ x3 04

e Equilibrium points: "L

i=0=y=0 4
y=0=x=-1,01




Closed orbits

* Closed orbit: trace of the trajectory of a
periodic solution

* Limit cycle: a closed orbit y such that
there is an initial condition x such that
x(t) = y as t = too starting from x,.



Rayleigh’s Model of Violin String

* See assignment 1




