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Nonlinear systems

•
• State: ௡

଴ ଴

• Control:

• Existence and uniqueness of solutions
• is a nonlinear function
• Lipschitz continuous in 

ଵ ଶ ଵ ଶ

• is piecewise continuous



Study of Nonlinear Systems

• In general, no closed form solutions

• Numerical approximations of solutions can be helpful
• Widely used for simulations to predict system behaviour

• Analysis involves studying
• equilibrium points
• stability
• limit cycles
• bifurcations



Features of nonlinear systems

• Almost all real-world robots are modelled by nonlinear systems

• Limit cycles

• Multiple isolated equilibrium points

• Bifurcations
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Examples of Nonlinear Systems

• Bicycle

𝑥̇ = 𝑣௫
𝑣̇௫ = 𝜔𝑣௬ + 𝑢ଵ
𝑦̇ = 𝑣௬

𝑣̇௬ = −𝜔𝑣௫ +
2

𝑚
𝐹௖,௙ cos 𝑢ଶ + 𝐹௖,௥

𝜓̇ = 𝜔

𝜔̇ =
2

𝐼௭
𝑙௙𝐹௖,௙ − 𝑙௥𝐹௖,௥

𝑋̇ = 𝑣௫ cos𝜓 − 𝑣௬ sin𝜓

𝑌̇ = 𝑣௫ sin𝜓 + 𝑣௬ cos𝜓



Examples of Nonlinear Systems

Amazon.com Inc.

iStock

Wikipedia
Google Inc.
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Rayleigh’s Model of Violin String

• See assignment 1
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Features of Nonlinear Systems

• Almost all real-world robots are modelled by nonlinear systems

• Limit cycles

• Multiple isolated equilibrium points

• Bifurcations



Bifurcations

• Sudden changes in system behaviour for small changes in parameter



Equilibrium Points and Stability: 1D

• General nonlinear system: 
• If , then is an equilibrium point, denoted ௘

• Example: 
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Equilibrium Points and Stability: 2D and Up

• Look at eigenvalues of linearization around equilibrium point
• Sometimes does not apply if there are eigenvalues on the imaginary axis

• Examples: 
•

• ଷ

• ଷ

Linearization:
ଶ

௫ୀ଴
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Phase Portraits

• Phase portraits: Graphs of vs. for 2D systems
Unstable node
• Both eigenvalues

real and positive

Stable node
• Both eigenvalues

real and negative

Stable focus
• Complex 

eigenvalues pairs 
• Negative real part

Unstable focus
• Complex 

eigenvalues pairs 
• Positive real part

Saddle
• Real eigenvalues with 

opposite signs
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Duffing’s Equation (Undamped)

• Damped ( ) and no forcing:

• Equilibrium points: 

ଷ
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