

Linear Systems II
CMPT 882
Jan. 14

State Feedback Control

- Suppose $\dot{x}=A x+B u$, can we design u to make $x=\mathbf{0}_{n}$ stable?

State Feedback Control

- Suppose $\dot{x}=A x+B u$, can we design u to make $x=\mathbf{0}_{n}$ stable?
- Try linear state feedback: $u=-K x \Rightarrow \dot{x}=(A-B K) x$

State Feedback Control

- Suppose $\dot{x}=A x+B u$, can we design u to make $x=\mathbf{0}_{n}$ stable?
- Try linear state feedback: $u=-K x \Rightarrow \dot{x}=(A-B K) x$
- Define $\bar{A}=A-B K$, and we have $\dot{x}=\bar{A} x$

State Feedback Control

- Suppose $\dot{x}=A x+B u$, can we design u to make $x=\mathbf{0}_{n}$ stable?
- Try linear state feedback: $u=-K x \Rightarrow \dot{x}=(A-B K) x$
- Define $\bar{A}=A-B K$, and we have $\dot{x}=\bar{A} x$
- We can try to choose the elements of K, such that the eigenvalues of \bar{A} are in the left half-plane

State Feedback Control

- Suppose $\dot{x}=A x+B u$, can we design u to make $x=\mathbf{0}_{n}$ stable?
- Try linear state feedback: $u=-K x \Rightarrow \dot{x}=(A-B K) x$
- Define $\bar{A}=A-B K$, and we have $\dot{x}=\bar{A} x$
- We can try to choose the elements of K, such that the eigenvalues of \bar{A} are in the left half-plane
- Issues
- Controller saturation
- Full state information required

State Feedback

- System: $\dot{x}=A x+B u$
- Open-loop control: $u=u(t)$

State Feedback

- System: $\dot{x}=A x+B u$
- Open-loop control: $u=u(t)$

- Closed-loop (linear state feedback) control: $u=-K x$
- $\dot{x}=A x-B K x$

State Feedback

- System: $\dot{x}=A x+B u$
- Open-loop control: $u=u(t)$

- Closed-loop (linear state feedback) control: $u=-K x$
- $\dot{x}=A x-B K x$
- $\dot{x}=(A-B K) x$
- $\dot{x}=\bar{A} x$, where $\bar{A}=A-B K$

State Feedback

- System: $\dot{x}=A x+B u$
- Open-loop control: $u=u(t)$

- Closed-loop (linear state feedback) control: $u=-K x$
- $\dot{x}=A x-B K x$
- $\dot{x}=(A-B K) x$
- $\dot{x}=\bar{A} x$, where $\bar{A}=A-B K$

Controllability

- A system is controllable on $\left[t_{0}, t_{1}\right]$ if for all pairs of states x_{0}, x_{1}, there exists a control function $u_{\left[t_{0}, t_{1}\right]}(\cdot)$ which steers the system from x_{0} at t_{0} to x_{1} at t_{1}

Controllability

- A system is controllable on $\left[t_{0}, t_{1}\right]$ if for all pairs of states x_{0}, x_{1}, there exists a control function $u_{\left[t_{0}, t_{1}\right]}(\cdot)$ which steers the system from x_{0} at t_{0} to x_{1} at t_{1}
- Special case for a controllable system in the form $\dot{x}=A x=B u$:
- For all $x_{0} \in \mathbb{R}^{n}$, there exists $u_{\left[t_{0}, t_{1}\right]}(\cdot)$ that steers $\left(x_{0}, t_{0}\right)$ to $\left(\theta_{n}, t_{1}\right)$
- For all $x_{1} \in \mathbb{R}^{n}$, there exists $u_{\left[t_{0}, t_{1}\right]}(\cdot)$ that steers $\left(\theta_{n}, t_{0}\right)$ to $\left(x_{1}, t_{1}\right)$

Controllability

- The following are equivalent
- The system $\dot{x}=A x+B u$ is controllable on the time interval $[0, \Delta]$

Controllability

- The following are equivalent
- The system $\dot{x}=A x+B u$ is controllable on the time interval $[0, \Delta]$
- $\operatorname{rank}\left(\left[\begin{array}{llll}B & A B & \cdots & A^{n-1} B\end{array}\right]\right)=n$

Controllability

- The following are equivalent
- The system $\dot{x}=A x+B u$ is controllable on the time interval $[0, \Delta]$
- $\operatorname{rank}\left(\left[\begin{array}{llll}B & A B & \cdots & A^{n-1} B\end{array}\right]\right)=n$
- Observations: suppose $x \in \mathbb{R}^{n}, u \in \mathbb{R}^{n_{i}}$.
- $\left[\begin{array}{llll}B & A B & \cdots & A^{n-1} B\end{array}\right] \in \mathbb{R}^{n \times n n_{i}}$

Controllability

- The following are equivalent
- The system $\dot{x}=A x+B u$ is controllable on the time interval $[0, \Delta]$
- $\operatorname{rank}\left(\left[\begin{array}{llll}B & A B & \cdots & A^{n-1} B\end{array}\right]\right)=n$
- $\forall s \in \mathbb{C}, \operatorname{rank}([s I-A \quad B])=n$
- Observations: suppose $x \in \mathbb{R}^{n}, u \in \mathbb{R}^{n_{i}}$.
- $\left[\begin{array}{llll}B & A B & \cdots & A^{n-1} B\end{array}\right] \in \mathbb{R}^{n \times n n_{i}}$

Controllability

- The following are equivalent
- The system $\dot{x}=A x+B u$ is controllable on the time interval $[0, \Delta]$
- $\operatorname{rank}\left(\left[\begin{array}{llll}B & A B & \cdots & A^{n-1} B\end{array}\right]\right)=n$
- $\forall s \in \mathbb{C}, \operatorname{rank}([s I-A \quad B])=n$
- Observations: suppose $x \in \mathbb{R}^{n}, u \in \mathbb{R}^{n_{i}}$.
- $\left[\begin{array}{llll}B & A B & \cdots & A^{n-1} B\end{array}\right] \in \mathbb{R}^{n \times n n_{i}}$
- $\left[\begin{array}{ll}s I-A & B\end{array}\right] \in \mathbb{C}^{n \times\left(n+n_{i}\right)}$

Controllability

- The following are equivalent
- The system $\dot{x}=A x+B u$ is controllable on the time interval $[0, \Delta]$
- $\operatorname{rank}\left(\left[\begin{array}{llll}B & A B & \cdots & A^{n-1} B\end{array}\right]\right)=n$
- $\forall s \in \mathbb{C}, \operatorname{rank}([s I-A \quad B])=n$
- Observations: suppose $x \in \mathbb{R}^{n}, u \in \mathbb{R}^{n_{i}}$.
- $\left[\begin{array}{llll}B & A B & \cdots & A^{n-1} B\end{array}\right] \in \mathbb{R}^{n \times n n_{i}}$
- $\left.\begin{array}{ll}s I-A & B\end{array}\right] \in \mathbb{C}^{n \times\left(n+n_{i}\right)}$
- For all $\mathrm{s} \notin \sigma(A), \operatorname{rank}\left(\left[\begin{array}{ll}s I-A & B\end{array}\right]\right)=n$

Eigenvalues of A

Controllable Canonical Form

- Suppose we have the system $\dot{x}=A x+B u$, where

$$
A=\left[\begin{array}{cccc}
0 & 1 & & \\
& \ddots & \ddots & \\
& & \ddots & 1 \\
-\alpha_{0} & -\alpha_{1} & \cdots & -\alpha_{n-1}
\end{array}\right], B=\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
1
\end{array}\right]
$$

Controllable Canonical Form

- Suppose we have the system $\dot{x}=A x+B u$, where

$$
A=\left[\begin{array}{cccc}
0 & 1 & & \\
& \ddots & \ddots & \\
& & \ddots & 1 \\
-\alpha_{0} & -\alpha_{1} & \cdots & -\alpha_{n-1}
\end{array}\right], B=\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
1
\end{array}\right]
$$

- Observation 1: writing out the dynamics explicitly, we have
- $\dot{x}_{1}=x_{2}, \dot{x}_{2}=x_{3}, \ldots, \dot{x}_{n-1}=x_{n}$

Controllable Canonical Form

- Suppose we have the system $\dot{x}=A x+B u$, where

$$
A=\left[\begin{array}{cccc}
0 & 1 & & \\
& \ddots & \ddots & \\
& & \ddots & 1 \\
-\alpha_{0} & -\alpha_{1} & \cdots & -\alpha_{n-1}
\end{array}\right], B=\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
1
\end{array}\right]
$$

- Observation 1: writing out the dynamics explicitly, we have
- $\dot{x}_{1}=x_{2}, \dot{x}_{2}=x_{3}, \ldots, \dot{x}_{n-1}=x_{n}$
- $\dot{x}_{n}=-\alpha_{0} x_{1}-\alpha_{1} x_{2}-\cdots \alpha_{n-1} x_{n}$

Controllable Canonical Form

- Suppose we have the system $\dot{x}=A x+B u$, where

$$
A=\left[\begin{array}{cccc}
0 & 1 & & \\
& \ddots & \ddots & \\
& & \ddots & 1 \\
-\alpha_{0} & -\alpha_{1} & \cdots & -\alpha_{n-1}
\end{array}\right], B=\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
1
\end{array}\right]
$$

- Observation 1: writing out the dynamics explicitly, we have
- $\dot{x}_{1}=x_{2}, \dot{x}_{2}=x_{3}, \ldots, \dot{x}_{n-1}=x_{n}$
- $\dot{x}_{n}=-\alpha_{0} x_{1}-\alpha_{1} x_{2}-\cdots \alpha_{n-1} x_{n}$
- $x_{1}^{(n-1)}=-\alpha_{0} x_{1}-\alpha_{1} \dot{x}_{1}-\cdots \alpha_{n-1} x_{n}^{(n-1)}+u$

Controllable Canonical Form

- Observation 2: Eigenvalues, $\operatorname{det}(A-s I)=0$:
$\operatorname{det}\left(\left[\begin{array}{cccc}-s & 1 & & \\ & -s & 1 & \\ -\alpha_{0} & -\alpha_{1} & -\alpha_{2} & -s-\alpha_{3}\end{array}\right]\right)$

Controllable Canonical Form

- Observation 2: Eigenvalues, $\operatorname{det}(A-s I)=0$:

$$
\operatorname{det}\left(\left[\begin{array}{cccc}
-s & 1 & & \\
& -s & 1 & \\
-\alpha_{0} & -\alpha_{1} & -\alpha_{2} & -s-\alpha_{3}
\end{array}\right]\right)=-s \operatorname{det}\left(\left[\begin{array}{ccc}
-s & 1 & \\
& -s & 1 \\
-\alpha_{1} & -\alpha_{2} & -s-\alpha_{3}
\end{array}\right]\right)+\alpha_{0} \operatorname{det}\left(\left[\begin{array}{ccc}
1 & 0 & 0 \\
-s & 1 & 0 \\
0 & -s & 1
\end{array}\right]\right)
$$

Controllable Canonical Form

- Observation 2: Eigenvalues, $\operatorname{det}(A-s I)=0$:

$$
\begin{aligned}
\operatorname{det}\left(\left[\begin{array}{cccc}
-s & 1 & & \\
& -s & 1 & \\
-\alpha_{0} & -\alpha_{1} & -\alpha_{2} & -s-\alpha_{3}
\end{array}\right]\right) & =-s \operatorname{det}\left(\left[\begin{array}{ccc}
-s & 1 & \\
& -s & 1 \\
-\alpha_{1} & -\alpha_{2} & -s-\alpha_{3}
\end{array}\right]\right)+\alpha_{0} \operatorname{det}\left(\left[\begin{array}{ccc}
1 & 0 & 0 \\
-s & 1 & 0 \\
0 & -s & 1
\end{array}\right]\right) \\
& =-s\left(-s \operatorname{det}\left[\begin{array}{cc}
-s & 1 \\
-\alpha_{2} & -s-\alpha_{3}
\end{array}\right]+\alpha_{1} \operatorname{det}\left(\left[\begin{array}{cc}
1 & 0 \\
-s & 1
\end{array}\right]\right)+\alpha_{0}\right.
\end{aligned}
$$

Controllable Canonical Form

- Observation 2: Eigenvalues, $\operatorname{det}(A-s I)=0$:

$$
\begin{aligned}
\operatorname{det}\left(\left[\begin{array}{cccc}
-s & 1 & & \\
& -s & 1 & \\
-\alpha_{0} & -\alpha_{1} & -\alpha_{2} & -s-\alpha_{3}
\end{array}\right]\right) & =-s \operatorname{det}\left(\left[\begin{array}{ccc}
-s & 1 & \\
& -s & 1 \\
-\alpha_{1} & -\alpha_{2} & -s-\alpha_{3}
\end{array}\right]\right)+\alpha_{0} \operatorname{det}\left(\left[\begin{array}{ccc}
1 & 0 & 0 \\
-s & 1 & 0 \\
0 & -s & 1
\end{array}\right]\right) \\
& =-s\left(-s \operatorname{det}\left[\begin{array}{cc}
-s & 1 \\
-\alpha_{2} & -s-\alpha_{3}
\end{array}\right]+\alpha_{1} \operatorname{det}\left(\left[\begin{array}{cc}
1 & 0 \\
-s & 1
\end{array}\right]\right)\right)+\alpha_{0} \\
& =-s\left(-s\left(-s\left(-s-\alpha_{3}\right)+\alpha_{2}\right)+\alpha_{1} \operatorname{det}\left(\left[\begin{array}{cc}
1 & 0 \\
-s & 1
\end{array}\right]\right)\right)+\alpha_{0}
\end{aligned}
$$

Controllable Canonical Form

- Observation 2: Eigenvalues, $\operatorname{det}(A-s I)=0$:

$$
\begin{aligned}
\operatorname{det}\left(\left[\begin{array}{cccc}
-s & 1 & & \\
& -s & 1 & \\
-\alpha_{0} & -\alpha_{1} & -\alpha_{2} & -s-\alpha_{3}
\end{array}\right]\right) & =-s \operatorname{det}\left(\left[\begin{array}{ccc}
-s & 1 & \\
& -s & 1 \\
-\alpha_{1} & -\alpha_{2} & -s-\alpha_{3}
\end{array}\right]\right)+\alpha_{0} \operatorname{det}\left(\left[\begin{array}{ccc}
1 & 0 & 0 \\
-s & 1 & 0 \\
0 & -s & 1
\end{array}\right]\right) \\
& =-s\left(-s \operatorname{det}\left[\begin{array}{cc}
-s & 1 \\
-\alpha_{2} & -s-\alpha_{3}
\end{array}\right]+\alpha_{1} \operatorname{det}\left(\left[\begin{array}{cc}
1 & 0 \\
-s & 1
\end{array}\right]\right)+\alpha_{0}\right. \\
& =-s\left(-s\left(-s\left(-s-\alpha_{3}\right)+\alpha_{2}\right)+\alpha_{1} \operatorname{det}\left(\left[\begin{array}{cc}
1 & 0 \\
-s & 1
\end{array}\right]\right)\right)+\alpha_{0} \\
& =-s\left(-s\left(s^{2}+\alpha_{3} s+\alpha_{2}\right)+\alpha_{1}\right)+\alpha_{0}
\end{aligned}
$$

Controllable Canonical Form

- Observation 2: Eigenvalues, $\operatorname{det}(A-s I)=0$:

$$
\begin{aligned}
\operatorname{det}\left(\left[\begin{array}{cccc}
-s & 1 & & \\
& -s & 1 & \\
-\alpha_{0} & -\alpha_{1} & -\alpha_{2} & -s-\alpha_{3}
\end{array}\right]\right) & =-s \operatorname{det}\left(\left[\begin{array}{ccc}
-s & 1 & \\
-\alpha_{1} & -\alpha_{2} & -s-\alpha_{3}
\end{array}\right]\right)+\alpha_{0} \operatorname{det}\left(\left[\begin{array}{ccc}
1 & 0 & 0 \\
-s & 1 & 0 \\
0 & -s & 1
\end{array}\right]\right) \\
& =-s\left(-s \operatorname{det}\left[\begin{array}{cc}
-s & 1 \\
-\alpha_{2} & -s-\alpha_{3}
\end{array}\right]+\alpha_{1} \operatorname{det}\left(\left[\begin{array}{cc}
1 & 0 \\
-s & 1
\end{array}\right]\right)\right)+\alpha_{0} \\
& =-s\left(-s\left(-s\left(-s-\alpha_{3}\right)+\alpha_{2}\right)+\alpha_{1} \operatorname{det}\left(\left[\begin{array}{cc}
1 & 0 \\
-s & 1
\end{array}\right]\right)\right)+\alpha_{0} \\
& =-s\left(-s\left(s^{2}+\alpha_{3} s+\alpha_{2}\right)+\alpha_{1}\right)+\alpha_{0} \\
& =-s\left(-s^{3}-\alpha_{4} s^{2}-\alpha_{3} s+\alpha_{2}\right)+\alpha_{1}
\end{aligned}
$$

Controllable Canonical Form

- Observation 2: Eigenvalues, $\operatorname{det}(A-s I)=0$:

$$
\begin{aligned}
\operatorname{det}\left(\left[\begin{array}{cccc}
-s & 1 & & \\
& -s & 1 & \\
-\alpha_{0} & -\alpha_{1} & -\alpha_{2} & -s-\alpha_{3}
\end{array}\right]\right) & =-s \operatorname{det}\left(\left[\begin{array}{ccc}
-s & 1 & \\
-\alpha_{1} & -\alpha_{2} & -s-\alpha_{3}
\end{array}\right]\right)+\alpha_{0} \operatorname{det}\left(\left[\begin{array}{ccc}
1 & 0 & 0 \\
-s & 1 & 0 \\
0 & -s & 1
\end{array}\right]\right) \\
& =-s\left(-s \operatorname{det}\left[\begin{array}{cc}
-s & 1 \\
-\alpha_{2} & -s-\alpha_{3}
\end{array}\right]+\alpha_{1} \operatorname{det}\left(\left[\begin{array}{cc}
1 & 0 \\
-s & 1
\end{array}\right]\right)\right)+\alpha_{0} \\
& =-s\left(-s\left(-s\left(-s-\alpha_{3}\right)+\alpha_{2}\right)+\alpha_{1} \operatorname{det}\left(\left[\begin{array}{cc}
1 & 0 \\
-s & 1
\end{array}\right]\right)\right)+\alpha_{0} \\
& =-s\left(-s\left(s^{2}+\alpha_{3} s+\alpha_{2}\right)+\alpha_{1}\right)+\alpha_{0} \\
& =-s\left(-s^{3}-\alpha_{4} s^{2}-\alpha_{3} s+\alpha_{2}\right)+\alpha_{1} \\
& =s^{4}+\alpha_{3} s^{3}+\alpha_{2} s^{2}+\alpha_{1} s+\alpha_{0}=0
\end{aligned}
$$

Controllable Canonical Form

- Observation 2: Eigenvalues, $\operatorname{det}(A-s I)=0$:

$$
\begin{aligned}
\operatorname{det}\left(\left[\begin{array}{cccc}
-s & 1 & & \\
& -s & 1 & \\
-\alpha_{0} & -\alpha_{1} & -\alpha_{2} & -s-\alpha_{3}
\end{array}\right]\right) & =-s \operatorname{det}\left(\left[\begin{array}{ccc}
-s & 1 & \\
-\alpha_{1} & -\alpha_{2} & -s-\alpha_{3}
\end{array}\right]\right)+\alpha_{0} \operatorname{det}\left(\left[\begin{array}{ccc}
1 & 0 & 0 \\
-s & 1 & 0 \\
0 & -s & 1
\end{array}\right]\right) \\
& =-s\left(-s \operatorname{det}\left[\begin{array}{ccc}
-s & 1 \\
-\alpha_{2} & -s-\alpha_{3}
\end{array}\right]+\alpha_{1} \operatorname{det}\left(\left[\begin{array}{cc}
1 & 0 \\
-s & 1
\end{array}\right]\right)\right)+\alpha_{0} \\
& =-s\left(-s\left(-s\left(-s-\alpha_{3}\right)+\alpha_{2}\right)+\alpha_{1} \operatorname{det}\left(\left[\begin{array}{cc}
1 & 0 \\
-s & 1
\end{array}\right]\right)\right)+\alpha_{0} \\
& =-s\left(-s\left(s^{2}+\alpha_{3} s+\alpha_{2}\right)+\alpha_{1}\right)+\alpha_{0} \\
& =-s\left(-s^{3}-\alpha_{4} s^{2}-\alpha_{3} s+\alpha_{2}\right)+\alpha_{1} \\
& =s^{4}+\alpha_{3} s^{3}+\alpha_{2} s^{2}+\alpha_{1} s+\alpha_{0}=0
\end{aligned} \begin{aligned}
& \text { Characteristic equation } \\
& \text { of the ODE }
\end{aligned}
$$

Controllable Canonical Form

- Observation 2: Eigenvalues, $\operatorname{det}(A-s I)=0$:

$$
\begin{aligned}
& \operatorname{det}\left(\left[\begin{array}{cccc}
-s & 1 & & \\
& -s & 1 & \\
-\alpha_{0} & -\alpha_{1} & -\alpha_{2} & -s-\alpha_{3}
\end{array}\right]\right)=-s \operatorname{det}\left(\left[\begin{array}{ccc}
-s & 1 & \\
& -s & 1 \\
-\alpha_{1} & -\alpha_{2} & -s-\alpha_{3}
\end{array}\right]\right)+\alpha_{0} \operatorname{det}\left(\left[\begin{array}{ccc}
1 & 0 & 0 \\
-s & 1 & 0 \\
0 & -s & 1
\end{array}\right]\right) \\
& =-s\left(-s \operatorname{det}\left[\begin{array}{cc}
-s & 1 \\
-\alpha_{2} & -s-\alpha_{3}
\end{array}\right]+\alpha_{1} \operatorname{det}\left(\left[\begin{array}{cc}
1 & 0 \\
-s & 1
\end{array}\right]\right)\right)+\alpha_{0} \\
& =-s\left(-s\left(-s\left(-s-\alpha_{3}\right)+\alpha_{2}\right)+\alpha_{1} \operatorname{det}\left(\left[\begin{array}{cc}
1 & 0 \\
-s & 1
\end{array}\right]\right)\right)+\alpha_{0} \\
& =-s\left(-s\left(s^{2}+\alpha_{3} s+\alpha_{2}\right)+\alpha_{1}\right)+\alpha_{0} \\
& A=\left[\begin{array}{cccc}
0 & 1 & & \\
& \ddots & \ddots & \\
& & \ddots & 1
\end{array}\right] \quad \begin{array}{ll}
=-s\left(-s^{3}-\alpha_{4} s^{2}-\alpha_{3} s+\alpha_{2}\right)+\alpha_{1} & \left.\begin{array}{l}
\text { Characteristic eq } \\
\\
\alpha_{0}
\end{array}\right] \alpha_{3} s^{3}+\alpha_{2} s^{2}+\alpha_{1} s+\alpha_{0}=0
\end{array} \begin{array}{l}
\text { of the ODE }
\end{array}
\end{aligned}
$$

- Eigenvalues are solutions to the polynomial with coefficients given by the negative of last row

Controllable Canonical Form
 $$
\text { Recall } A=\left[\begin{array}{cccc} 0 & 1 & & \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ -\alpha_{0} & -\alpha_{1} & \cdots & -\alpha_{n-1} \end{array}\right], B=\left[\begin{array}{c} 0 \\ \vdots \\ 0 \\ 1 \end{array}\right]
$$

- Observation 3: suppose $u=-K x, K \in \mathbb{R}^{1 \times n}: u=-k_{0} x_{1}-\cdots-k_{n-1} x_{n}$

Controllable Canonical Form
 $$
\text { Recall } A=\left[\begin{array}{cccc} 0 & 1 & & \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ -\alpha_{0} & -\alpha_{1} & \cdots & -\alpha_{n-1} \end{array}\right], B=\left[\begin{array}{c} 0 \\ \vdots \\ 0 \\ 1 \end{array}\right]
$$

- Observation 3: suppose $u=-K x, K \in \mathbb{R}^{1 \times n}: u=-k_{0} x_{1}-\cdots-k_{n-1} x_{n}$
- Writing out the last component in $\dot{x}=A x+B u$, we have
- $\dot{x}_{n}=-\alpha_{0} x_{1}-\cdots-\alpha_{n-1} x_{n}-k_{0} x_{1}-\cdots-k_{n-1} x_{n}$

Controllable Canonical Form
 $$
\text { Recall } A=\left[\begin{array}{cccc} 0 & 1 & & \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ -\alpha_{0} & -\alpha_{1} & \cdots & -\alpha_{n-1} \end{array}\right], B=\left[\begin{array}{c} 0 \\ \vdots \\ 0 \\ 1 \end{array}\right]
$$

- Observation 3: suppose $u=-K x, K \in \mathbb{R}^{1 \times n}: u=-k_{0} x_{1}-\cdots-k_{n-1} x_{n}$
- Writing out the last component in $\dot{x}=A x+B u$, we have
- $\dot{x}_{n}=-\alpha_{0} x_{1}-\cdots-\alpha_{n-1} x_{n}-k_{0} x_{1}-\cdots-k_{n-1} x_{n}$
- $\dot{x}_{n}=-\left(\alpha_{0}+k_{0}\right) x_{1}-\cdots-\left(\alpha_{n-1}+k_{n-1}\right) x_{n}$

Controllable Canonical Form
 $$
\text { Recall } A=\left[\begin{array}{cccc} 0 & 1 & & \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ -\alpha_{0} & -\alpha_{1} & \cdots & -\alpha_{n-1} \end{array}\right], B=\left[\begin{array}{c} 0 \\ \vdots \\ 0 \\ 1 \end{array}\right]
$$

- Observation 3: suppose $u=-K x, K \in \mathbb{R}^{1 \times n}: u=-k_{0} x_{1}-\cdots-k_{n-1} x_{n}$
- Writing out the last component in $\dot{x}=A x+B u$, we have
- $\dot{x}_{n}=-\alpha_{0} x_{1}-\cdots-\alpha_{n-1} x_{n}-k_{0} x_{1}-\cdots-k_{n-1} x_{n}$
- $\dot{x}_{n}=-\left(\alpha_{0}+k_{0}\right) x_{1}-\cdots-\left(\alpha_{n-1}+k_{n-1}\right) x_{n}$
- In matrix form, $\dot{x}=\bar{A} x$, with $\bar{A}=\left[\begin{array}{cccc}0 & 1 & & \\ & \ddots & \ddots & \\ -\alpha_{0}-k_{0} & -\alpha_{1}-k_{1} & \cdots & -\alpha_{n-1}-k_{n-1}\end{array}\right]$

Controllable Canonical Form
 $$
\text { Recall } A=\left[\begin{array}{cccc} 0 & 1 & & \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ -\alpha_{0} & -\alpha_{1} & \cdots & -\alpha_{n-1} \end{array}\right], B=\left[\begin{array}{l} 0 \\ \vdots \\ 0 \\ 1 \end{array}\right]
$$

- Observation 3: suppose $u=-K x, K \in \mathbb{R}^{1 \times n}: u=-k_{0} x_{1}-\cdots-k_{n-1} x_{n}$
- Writing out the last component in $\dot{x}=A x+B u$, we have
- $\dot{x}_{n}=-\alpha_{0} x_{1}-\cdots-\alpha_{n-1} x_{n}-k_{0} x_{1}-\cdots-k_{n-1} x_{n}$
- $\dot{x}_{n}=-\left(\alpha_{0}+k_{0}\right) x_{1}-\cdots-\left(\alpha_{n-1}+k_{n-1}\right) x_{n}$
- In matrix form, $\dot{x}=\bar{A} x$, with $\bar{A}=\left[\begin{array}{cccc}0 & 1 & & \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ -\alpha_{0}-k_{0} & -\alpha_{1}-k_{1} & \cdots & -\alpha_{n-1}-k_{n-1}\end{array}\right]$
- Eigenvalues are solutions to $s^{n}+\left(\alpha_{n-1}+k_{n-1}\right) s^{n-1}+\cdots+\left(\alpha_{1}+k_{1}\right) s+\alpha_{0}+k_{0}=0$

Controllable Canonical Form
 $$
\text { Recall } A=\left[\begin{array}{cccc} 0 & 1 & & \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ -\alpha_{0} & -\alpha_{1} & \cdots & -\alpha_{n-1} \end{array}\right], B=\left[\begin{array}{c} 0 \\ \vdots \\ 0 \\ 1 \end{array}\right]
$$

- Observation 3: suppose $u=-K x, K \in \mathbb{R}^{1 \times n}: u=-k_{0} x_{1}-\cdots-k_{n-1} x_{n}$
- Writing out the last component in $\dot{x}=A x+B u$, we have
- $\dot{x}_{n}=-\alpha_{0} x_{1}-\cdots-\alpha_{n-1} x_{n}-k_{0} x_{1}-\cdots-k_{n-1} x_{n}$
- $\dot{x}_{n}=-\left(\alpha_{0}+k_{0}\right) x_{1}-\cdots-\left(\alpha_{n-1}+k_{n-1}\right) x_{n}$
- In matrix form, $\dot{x}=\bar{A} x$, with $\bar{A}=\left[\begin{array}{cccc}0 & 1 & & \\ & \ddots & \ddots & \\ -\alpha_{0}-k_{0} & -\alpha_{1}-k_{1} & \cdots & -\alpha_{n-1}-k_{n-1}\end{array}\right]$
- Eigenvalues are solutions to $s^{n}+\left(\alpha_{n-1}+k_{n-1}\right) s^{n-1}+\cdots+\left(\alpha_{1}+k_{1}\right) s+\alpha_{0}+k_{0}=0$

Controllable Canonical Form Example

- Suppose $A=\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -2 & -1\end{array}\right], B=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$
- Choose K such that if $u=-K x$, all eigenvalues of the closed-loop system has are - 1
- Characteristic polynomial of closed-loop system:

$$
s^{3}+\left(1+k_{2}\right) s^{2}+\left(2+k_{1}\right) s+\left(-1+k_{0}\right)
$$

- Desired characteristic polynomial: $(s+1)^{3}=s^{3}+3 s^{2}+3 s+1$
- Therefore, use $k_{2}=2, k_{1}=1, k_{0}=2$

Transformation Into Controllable Canonical Form

- Given a controllable system $\dot{x}=A x+B u$, with $x \in \mathbb{R}^{n}, u \in \mathbb{R}$, let

$$
T^{-1}=\left[\begin{array}{llll}
B & A B & \cdots & A^{n-1} B
\end{array}\right]\left[\begin{array}{ccccc}
\alpha_{1} & \alpha_{2} & \cdots & \alpha_{n-1} & 1 \\
\alpha_{2} & \therefore & \therefore & \therefore & 0 \\
\vdots & \therefore & 1 & \therefore & \vdots \\
\alpha_{n-1} & \therefore & \therefore & & \vdots \\
1 & 0 & \cdots & \cdots & 0
\end{array}\right]
$$

- Then, $\tilde{A}:=$ TAT $^{-1}=\left[\begin{array}{cccc}0 & 1 & & \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ -\alpha_{0} & -\alpha_{1} & \cdots & -\alpha_{n-1}\end{array}\right]$

The (A, B, C, D) representation

$$
\begin{aligned}
& \dot{x}=A x+B u \\
& y=C x+D u
\end{aligned}
$$

- $y \in \mathbb{R}^{n_{o}}$ is the output

Observability

- A dynamical system is observable on $\left[t_{0}, t_{1}\right]$ if for all $u_{\left[t_{0}, t_{1}\right]}(\cdot)$ and $\left.\left.y_{\left[t_{0}, t_{1}\right]}\right] \cdot\right), x_{0}$ at t_{0} is uniquely determined
- The following are equivalent
- The system $\dot{x}=A x$ with output $y=C x$ is observable on the time interval $[0, \Delta]$
- $\operatorname{rank}\left(\left[\begin{array}{c}C \\ C A \\ \vdots \\ C A^{n-1}\end{array}\right]\right)=n$
- $\forall s \in \mathbb{C}, \operatorname{rank}\binom{s I-A}{C}=n$

Controllability and Observability

- The following are equivalent
- The system $\dot{x}=A x+B u$ is controllable on the time interval $[0, \Delta]$
- $\operatorname{rank}\left(\left[\begin{array}{llll}B & A B & \cdots & A^{n-1} B\end{array}\right]\right)=n$
- $\forall s \in \mathbb{C}, \operatorname{rank}\left(\left[\begin{array}{ll}s I-A & B\end{array}\right]\right)=n$
- The following are equivalent
- The system $\dot{x}=A x$ with output $y=C x$ is observable on the time interval $[0, \Delta]$
- $\operatorname{rank}\left(\left[\begin{array}{c}C \\ C A \\ \vdots \\ C A^{n-1}\end{array}\right]\right)=n$
- $\forall s \in \mathbb{C}, \operatorname{rank}\binom{s I-A}{C}=n$

Stabilizability and Detectability

- The following are equivalent
- The system $\dot{x}=A x+B u$ is stabilizable on the time interval [$0, \Delta$]
- $\forall s \in \sigma(A) \cap \mathbb{C}_{+}$, $\operatorname{rank}\left(\left[\begin{array}{ll}s I-A & B\end{array}\right]\right)=n$
- The following are equivalent
- The system $\dot{x}=A x$ with output $y=C x$ is detectable on the time interval $[0, \Delta]$
- $\forall s \in \sigma(A) \cap \mathbb{C}_{+}$, $\operatorname{rank}\binom{S I-A}{C}=n$

Stabilizability and Detectability

- The following are equivalent
- The system $\dot{x}=A x+B u$ is stabilizable on the time interval [$0, \Delta$]
- $\forall s \in \sigma(A) \cap \mathbb{C}_{+}$, $\operatorname{rank}\left(\left[\begin{array}{ll}s I-A & B\end{array}\right]\right)=n$
- The following are equivalent
- The system $\dot{x}=A x$ with output $y=C x$ is detectable on the time interval $[0, \Delta]$
- $\forall s \in \sigma(A) \cap \mathbb{C}_{+}$,
$\operatorname{rank}\binom{s I-A}{C}=n$

Stabilizability and Detectability

- The following are equivalent
- The system $\dot{x}=A x+B u$ is stabilizable on the time interval [$0, \Delta$]
- $\forall s \in \sigma(A) \cap \mathbb{C}_{+}$, $\operatorname{rank}\left(\left[\begin{array}{ll}s I-A & B\end{array}\right]\right)=n$
- The following are equivalent
- The system $\dot{x}=A x$ with output $y=C x$ is detectable on the time interval $[0, \Delta]$
- $\forall s \in \sigma(A) \cap \mathbb{C}_{+}$, $\operatorname{rank}\binom{s I-A}{C}=n$
- The uncontrollable parts of the system are stable
- The unobservable parts of the system are stable

Other Important Topics in Linear Systems

- Singular value decomposition
- Controllable and observable subspaces
- Linear Time-Varying Systems
- Etc.
- F. Callier \& C. A. Desoer, Linear System Theory, Springer-Verlag, 1991.
- W. J. Rugh, Linear System Theory, Prentice-Hall, 1996.

