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Controllable Canonical Form Example

• Suppose 

• Choose such that if , all eigenvalues of the closed-loop system has are 

• Characteristic polynomial of closed-loop system:

• Desired characteristic polynomial: 

• Therefore, use Three eigenvalues at −1



Transformation Into Controllable Canonical Form

• Given a controllable system , with , let 

• Then, 



The representation

• is the output

𝐴

𝐵 +𝑢 ∫
𝑥�̇�

𝐶
𝑦

𝐷

+



Observability

• A dynamical system is observable on if for all , and 
, , at is uniquely determined

• The following are equivalent
• The system with output is observable on the time interval 

•

•



Controllability and Observability

• The following are equivalent
• The system is 

controllable on the time interval 

•
•

• The following are equivalent
• The system with output 

is observable on the time 
interval 

•

•



Stabilizability and Detectability

• The following are equivalent
• The system is 

stabilizable on the time interval 

•

• The following are equivalent
• The system with output 

is detectable on the time 
interval 

•



Stabilizability and Detectability

• The following are equivalent
• The system is 

stabilizable on the time interval 

•

• The uncontrollable parts of the 
system are stable

• The following are equivalent
• The system with output 

is detectable on the time 
interval 

•

• The unobservable parts of the 
system are stable

Eigenvalues of 𝑨 in the right half plane



Stabilizability and Detectability

• The following are equivalent
• The system is 

stabilizable on the time interval 

•

• The uncontrollable parts of the 
system are stable

• The following are equivalent
• The system with output 

is detectable on the time 
interval 

•

• The unobservable parts of the 
system are stable

Eigenvalues of 𝑨 in the right half plane



Other Important Topics in Linear Systems

• Singular value decomposition
• Controllable and observable subspaces
• Linear Time-Varying Systems
• Etc.

• F. Callier & C. A. Desoer, Linear System Theory, Springer-Verlag, 1991. 
• W. J. Rugh, Linear System Theory, Prentice-Hall, 1996. 


