Linear Systems ||

CMPT 882
Jan. 14




State Feedback Control

* Suppose x = Ax + Bu, can we design u to make x = 0,, stable?



State Feedback Control

* Suppose x = Ax + Bu, can we design u to make x = 0,, stable?

* Try linear state feedback: u = —Kx = x = (A — BK)x



State Feedback Control

* Suppose x = Ax + Bu, can we design u to make x = 0,, stable?

* Try linear state feedback: u = —Kx = x = (A — BK)x
 Define A = A — BK, and we have x = Ax



State Feedback Control

* Suppose x = Ax + Bu, can we design u to make x = 0,, stable?

* Try linear state feedback: u = —Kx = x = (A — BK)x
 Define A = A — BK, and we have x = Ax

* We can try to choose the elements of K, such that the eigenvalues of 4 are in
the left half-plane



State Feedback Control

* Suppose x = Ax + Bu, can we design u to make x = 0,, stable?

* Try linear state feedback: u = —Kx = x = (A — BK)x
 Define A = A — BK, and we have x = Ax

* We can try to choose the elements of K, such that the eigenvalues of 4 are in
the left half-plane

* |ssues
e Controller saturation
 Full state information required
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Controllability

* A system is controllable on [ty, t;] if for all pairs of states x,, x;, there
exists a control function up; ;. 1() which steers the system from x at
to to x; at t4

* Special case for a controllable system in the form x = Ax = Bu:
* Forall xo € R", there exists u;, ¢,1(-) that steers (xo, to) to (6, t1)
* Forall x; € R", there exists up;, ,1() that steers (8, to) to (x4, t1)
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Controllability

* The following are equivalent
* The system x = Ax + Bu is controllable on the time interval [0, A]

*rank([B AB - A™1B])=n
*Vs€C rank([sI—A B])=n

* Observations: suppose x € R™, u € R™,
*[B AB . A™1B] € RN
* [sI—A B]ecrxnin
* Foralls & o(4), rank([sI—A B])=n
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Eigenvalues of A



Controllable Canonical Form

e Suppose we have the system x = Ax + Bu, where

,B

:r—\




Controllable Canonical Form

e Suppose we have the system x = Ax + Bu, where

0 1 | 0
A= PR W:E
_ao _al .o —an_l_ _1

e Observation 1: writing out the dynamics explicitly, we have
¢ 5('1 = Xy, 5('2 = X3, ), 5Cn_1 = Xn



Controllable Canonical Form

e Suppose we have the system x = Ax + Bu, where
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Controllable Canonical Form

e Suppose we have the system x = Ax + Bu, where

0 1 | 0
A= 1 ,B = 0
—dyg —A1 0 —0p-1d 1.
e Observation 1: writing out the dynamics explicitly, we have
* X1 =Xy, Xop = X3, e, Xp_1 = X
* Xp = —@oX1 — Q1Xp — * Ap_1Xp

n-—1 . n-—1
¢ xi ) = _aoxl - a1x1 —_ e an_lel ) +u
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* Observation 2: Eigenvalues, det(4 — sI) = 0:

—S 1
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* Observation 2: Eigenvalues, det(4 — sI) = 0:

—S —15 1 —S 1
det = —sdet —S 1
—S 1 —a; —a, —-s—a
—ay —a; —a, —S—az 1 2 3
—S 1 1
= -5 (—S det[ ]+ aq det([
—0y; —S— Q3 —S
1
= —s (—S(—s(—s —a3) + a,) + a; det ([_
= —s(=s(s? + azs + ay) + a1) + ag
0 1 = —s(—s3—aus? —azs+ay) + a;
A _ . .-
1 =st+tazsd3+tays?+a;s+ay,=0
—dp — —an—1

1 0 0
+ a( det ([—s 1 OD
0 —-s 1

Characteristic equation
of the ODE
of the matrix

* Eigenvalues are solutions to the polynomial with coefficients given by the

negative of last row
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e Observation 3: suppose u = —Kx, K € R u = —kgx; — - — k,,_1x,,

* Writing out the last component in x = Ax + Bu, we have

* Xp = —QoXp == QpogXp — KoXp — = kg X
* X = —(@g + ko)x; — - — (A1 + kn_1)xy
0 1
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e Observation 3: suppose u = —Kx, K € R u = —kgx; — - — k,,_1x,,

* Writing out the last component in x = Ax + Bu, we have
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Recall 4 =

Controllable Canonical Form —a,

e Observation 3: supposeu = —Kx, K € R>™: u = —kgx; — -+

* Writing out the last component in x = Ax + Bu, we have
* Xp = —QoXp — = Apo1Xp — KXy — = ko1 Xy

.

* Xn = —(ao + ko)xl — (an—l + kn—l)xn
0 1

* In matrix form, x = Ax, with 4 =

—ag— ko —a;—ky

—p—1 — Kp—1

_al coe —an_l

_ kn—lxn

1

* Eigenvalues are solutionsto s™ + (ap_q + kpp_)s™ 1+ -+ (ay + ky)s+ay+ ky =0

Choosing K determines coefficients, and therefore eigenvalues



Controllable Canonical Form Example

0 1 0 0
e Supposed =10 O 11|,B=10
1 -2 -1 1
* Choose K such that if u = —Kx, all eigenvalues of the closed-loop system has are
—1

* Characteristic polynomial of closed-loop system:
3+ (1 +ky)s?+@+ky)s+ (—1+ky)

* Desired characteristic polynomial: (s + 1)? = s° 4+ 3s* 4+ 35 + 1

Three eigenvalues at —1

* Therefore,use k, = 2,k =1, kg = 2



Transformation Into Controllable Canonical Form

 Given a controllable system x = Ax + Bu, withx € R™",u € R, let

B . A T
az .'. ." .'. O
T"'=[p 4B - A™1B]| : ~ 1 '
Ap—1 g

1 0 0

0 1 )

e Then, A = TAT 1 = ,
—0p —Qq —0n-1




The (4, B, C, D) representation

* y € R"0 is the output

X = Ax + Bu
y =Cx+ Du
D




Observability

* A dynamical system is observable on [ty, t; | if for all uf¢, +,1(-) and
Vito,t,1()s Xo at Lo is uniquely determined

* The following are equivalent
* The system x = Ax with output y = Cx is observable on the time interval

[0, A]
C
* rank C:A —n
C A;‘"l_

¢ Vs €C, rank(SIgA) =n



Controllability and Observability

* The following are equivalent * The following are equivalent
* The systemx = Ax + Bu is * The system x = Ax with output
controllable on the time interval y = Cx is observable on the time
[0, A] interval [0,A]
rank([B AB -+ A" 1B]) =n C
*Vs€C rank([sI—A B])=n  rank C,A =n
_CA;Q_l_
sl — A\ _
Vs € C, rank( C )—n
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* The following are equivalent * The following are equivalent
* The systemx = Ax + Bu is * The system x = Ax with output
stabilizable on the time interval y = Cx is detectable on the time
[0, A] interval [0, A]
Vs eo(A) nCy, Vs €o(A) Ny,
rank([sI—A B])=n rank (SI ” A) =n
C
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* The following are equivalent * The following are equivalent
* The systemx = Ax + Bu is * The system x = Ax with output
stabilizable on the time interval y = Cx is detectable on the time
[0, A] interval [0, A]
*Vseaog(A)NnCy,, *Vseaog(A)NnCy,,
rank([sI —A B])=n rank (SI — A) — 7
C
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* The uncontrollable parts of the * The unobservable parts of the
system are stable system are stable



Other Important Topics in Linear Systems

* Singular value decomposition

* Controllable and observable subspaces
* Linear Time-Varying Systems

* Etc.

 F. Callier & C. A. Desoer, Linear System Theory, Springer-Verlag, 1991.
* W. J. Rugh, Linear System Theory, Prentice-Hall, 1996.



