Linear Systems |

CMPT 882
Jan. 11

Linear Systems

* Differential equations generally do not have closed-form solutions
* Numerical methods can be used to obtain approximate solutions
* Other analysis techniques offer insight into the solutions

Linear Systems

* Differential equations generally do not have closed-form solutions
* Numerical methods can be used to obtain approximate solutions
* Other analysis techniques offer insight into the solutions

* Linear time-invariant (LTI) systems: x = Ax + Bu
* Damped mass spring systems
e Circuits involving resistors, capacitors, inductors
e Approximations of nonlinear systems

Linear Systems

Hu et al., 2018 NN

(If flying near hover, and slowly)
Bouffard, 2012

Road Map

 Basic properties and closed form solution
e Stability
* Linearization

» Controllability and observability

Road Map

* Linear Systems (This and next lecture)
* Basic properties and closed form solution
e Stability
* Linearization
* Controllability and observability

* Nonlinear systems (Two lectures)

* Optimization and optimal control (New unit, ~8 lectures)

LTI Systems

* Linear time-invariant (LTI) systems: x = Ax + Bu

Linear System

* Existence and Uniqueness of Solutions of x = f(x, u)
* 3L > 0,Vu, xq, X2, || f (g, w) — f Qe Wl < Llxg — x5l

* Existence and Uniqueness of Solutions of x = Ax + Bu
« 3L > 0,Yu, xq,x,, ||Ax; + Bu — Ax, — Bu|| < L||x; — x,||

Linear System

* Existence and Uniqueness of Solutions of x = f(x, u)
* 3L > 0,Vu, xq, X2, || f (g, w) — f Qe Wl < Llxg — x5l

* Existence and Uniqueness of Solutions of x = Ax + Bu
e 3L > 0,Vu,xq, %y, ||Ax; + Bu — Ax, — Bu|| < L||x; — x5, ||
« © 3L > 0,Vu, xq, Xy, |[Axy — Ax;|| < Llx; — x|

Linear System

* Existence and Uniqueness of Solutions of x = f(x, u)
* 3L > 0,Vu, xq, X2, || f (g, w) — f Qe Wl < Llxg — x5l

* Existence and Uniqueness of Solutions of x = Ax + Bu
e 3L > 0,Vu,xq, %y, ||Ax; + Bu — Ax, — Bu|| < L||x; — x5, ||
« © 3L > 0,Vu, xq, Xy, |[Axy — Ax;|| < Llx; — x|

* But |[Ax; — Ax, || = [|A(xy — x) || < [|All; [l — x|
e Recall:
|| Ax|
e [|All.,; = su P
” ”p,l x:,tIg ”x”p

* |Alleo; = max2?=1|aij| (maximum row sum)
l

LTI systems: Closed form solution

 x = Ax + Bu, x(0) = x,

e x(t) = eflxy + foteA(t_T)Bu(T)dT -
At A“t
At —
et =1+ T + o1 +

LTI systems: Closed form solution

 x = Ax + Bu, x(0) = x,

e x(t) = eflxy + foteA(t_T)Bu(T)dT -
At A“t

At _
Matlab: expm e™ =1+ 1! t 21 +

LTI systems: Closed form solution

 x = Ax + Bu, x(0) = x,

e x(t) = eflxy + foteA(t_T)Bu(T)dT -
At A“t

At _
Matlab: expm e™ =1+ 1! t 21 +

e Zero input solution: x(t) = e4tx,

e z=Tx> z=TAT 1z, z, = Tx,

LTI systems: Closed form solution

 x = Ax + Bu, x(0) = x,

e x(t) = eflxy + foteA(t_T)Bu(T)dT -
At A“t

At _
Matlab: expm e™ =1+ 1! t 21 +

e Zero input solution: x(t) = e4tx,

e z=Tx> z=TAT 1z, z, = Tx,
e Define A=TAT ' = 2=z

LTI systems: Closed form solution

 x = Ax + Bu, x(0) = x,

e x(t) = eflxy + foteA(t_T)Bu(T)dT -
At A“t

At _
Matlab: expm e™ =1+ 1! t 21 +

e Zero input solution: x(t) = e4tx,

e z=Tx> z=TAT 1z, z, = Tx,
e Define A=TAT ' = 2=z
e Solution in terms of z: z(t) = e/tz,

LTI systems: Closed form solution

 x = Ax + Bu, x(0) = x,

e x(t) = eflxy + foteA(t_T)Bu(T)dT

LAt _ At A%t?
Matlab: expm +1_+ 21 te

e Zero input solution: x(t) = e4tx,
cz=Tx=> z=TAT 1z, z, =Tx,
* Define A=TAT 1= 2=z
e Solution in terms of z: z(t) = e/tz,

_ et Z10
* Diagonal J: z(t) = [/121:] [220

LTI systems: Closed form solution

* General J:

) =

f (A1)

f) f1(A1)
f(41)

1

f2) f'(A2) $f"(A2)

f(42)

2

f'(42)
f42) |

LTI systems: Closed form solution

* General J:

) =

f (A1)

f) f1(A1)
f(41)

1

f2) f'(A2) $f"(A2)

f(42)

2

f'(42)

f42) |

FU) = e
f()=et
f'e)=te*
fll(.) — tze-t

LTI systems: Closed form solution

* General J:

.e.]t=

ot

e

At

tellt

e

At

e

Aot pplat ltzeazt
2

Ayt

telzt

RN

\H
f.\?\Q
N S

.
-/

~
N
m'

ﬁ
Cb'm

o
¢ I

o~

o~

Matrix Exponential properties

* If x = Ax, x(0) = xy, then x(t) = e*'x,

\ eAt ”propagates" a state fOfWa rd

by a duration of t, according to
the system dynamics A

Matrix Exponential properties)

« If x = Ax, x(0) = xq, then x(t) = e4tx,

\ eAt upropagates" a state forward

by a duration of t, according to
the system dynamics A

P — eAS e
a - @
5 —_

t = t=20

Matrix Exponential properties

« If x = Ax, x(0) = xq, then x(t) = e4tx,

\ eAt upropagates" a state forward

by a duration of t, according to
the system dynamics A

A5

Matrix Exponential properties - - @

t=5 t =

« If x = Ax, x(0) = xq, then x(t) = e4tx,

\ eAt upropagates" a state forward

by a duration of t, according to
the system dynamics A
e State transition matrix

A5

Matrix Exponential properties - - @

t=5 t =

« If x = Ax, x(0) = xq, then x(t) = e4tx,

« ¢V =] (follows from the above) \
et “propagates” a state forward

by a duration of t, according to
the system dynamics A
State transition matrix

A5

Matrix Exponential properties - @

= t—O

« If x = Ax, x(0) = xq, then x(t) = e4tx,

« ¢V =] (follows from the above) \
. eA(H_S) _ eAt As At “propagates” a state forward

x(s
e (s) by a duration of t, according to
e x(t+s) = eA(t+S)x = eAteASxO the system dynamics A
* State transition matrix

Matrix Exponential properties - -

« If x = Ax, x(0) = xq, then x(t) = e4tx,

eV = I (follows from the above) \
et “propagates” a state forward

A(t+s) — At _As
*e — e e %) by a duration of t, according to
e x(t+s) = eA(t+S)x0 = eAteASxO the system dynamics A

State transition matrix
e(A+B)t — oAl pBL if and only if AB = BA

Matrix Exponential properties - -

If x = Ax, x(0) = x,, then x(t) = e4tx,

eV = I (follows from the above) \
et “propagates” a state forward

A(t+s) — At _As
*e — e e %) by a duration of t, according to
e x(t+s) = eA(t+S)x0 = eAteASxO the system dynamics A

State transition matrix
e(A+B)t — oAl pBL if and only if AB = BA

(eAt)~1 = At
e Soedte=4 =

A5

Matrix Exponential properties - - @

If x = Ax, x(0) = x,, then x(t) = e4tx,

eV = I (follows from the above) \
et “propagates” a state forward

A(t+s) — At _As
*e —e e x(s) by a duration of t, according to
e x(t+s) = eA(t"'S)xO = eAteASxO the system dynamics A

e(A+B)t _ eAteBt if and onIy £ AB = BA * State transition matrix
(eAt)—l — At
e Soedte ™t =]
d
EeAt — AeAt — eAtA
t , A%t?

* From definition: e/t =1 + % 2!

+ ...

Solution to LTI System: Proof

* If x = Ax + Bu, x(0) = xy, then x(t) = edtx, + foteA(t_T)Bu(T)dT

Solution to LTI System: Proof
* If x = Ax + Bu, x(0) = xy, then x(t) = edtx, + foteA(t_T)Bu(T)dT

* Initial conditions:

e Differentiate:

Solution to LTI System: Proof
* If x = Ax + Bu, x(0) = xy, then x(t) = edtx, + foteA(t_T)Bu(T)dT

* |nitial conditions:
e x(0) = eA@yx, + fOO eAt=DBu(r)dt = x,

e Differentiate:

Solution to LTI System: Proof
* If x = Ax + Bu, x(0) = xy, then x(t) = edtx, + foteA(t_T)Bu(T)dT

* |nitial conditions:
e x(0) = eA@yx, + fOO eAt=DBu(r)dt = x,

e Differentiate:
. d d t _
sk = (edtx,) + E(fo eA T)Bu(r)dr)

Solution to LTI System: Proof
* If x = Ax + Bu, x(0) = xy, then x(t) = edtx, + foteA(t_T)Bu(T)dT

* |nitial conditions:
e x(0) = eA@yx, + fOO eAt=DBu(r)dt = x,

d [t (t—) d [t
A(t—t — At ,—AT
T <j0 e Bu(r)dr) 7 <f0 e‘te Bu(r)dr)

e Differentiate:
. d d t _
sk = (edtx,) + E(fo eA T)Bu(r)dr)

e x = Aeftxy +

Solution to LTI System: Proof
* If x = Ax + Bu, x(0) = xy, then x(t) = edtx, + foteA(t_T)Bu(T)dT

* |nitial conditions:
e x(0) = eA@yx, + fOO eAt=DBu(r)dt = x,

d [t (t—) d [t
A(t—t — At ,—AT
T <j0 e Bu(r)dr) 7 <f0 e‘te Bu(r)dr)

* Differentiate:
. d At d t A(t-1) = i<eAtfl““”Bu(‘t’)d‘L’)
* X = (e*xy) + E(fo e Bu(r)dr) dt o

e x = Aeftxy +

Solution to LTI System: Proof
* If x = Ax + Bu, x(0) = xy, then x(t) = edtx, + foteA(t_T)Bu(T)dT

* |nitial conditions:
e x(0) = eA@yx, + fOO eAt=DBu(r)dt = x,

d t d t

—_ (t-1) _ = —

 Differentiate: dt <]o e Bu(T)dT> dt Uo effe™ Bu(r)dr)
d

t
. d d t _ —_ At —A’L’B d
sk =— (edtx,) + E(fo eAlt T)Bu(r)dr) dt <e foe u(7) T)

t
° X = AeAtXO + = AeAtf e A"Bu(1)dt + e4te 4 Bu(t)
0

Solution to LTI System: Proof
* If x = Ax + Bu, x(0) = xy, then x(t) = edtx, + foteA(t_T)Bu(T)dT

t
* Initial conditions: %J g(@dr = g(¢)

e x(0) = eA@yx, + fOO eAt=DBu(r)dt = x,
d<tA(t—)) d<tAt—A >
— e \'""YBu(t)dt | = — ete™"Bu(t)drt
* Differentiate: dt jo “;t fo

t
. d d t _ —_ At —A’L’B d
sk =— (edtx,) + E(fo eAlt T)Bu(r)dr) dt <e foe u(7) T)

t
° X = AeAtXO + = AeAtf e A"Bu(1)dt + e4te 4 Bu(t)
0

Solution to LTI System: Proof
* If x = Ax + Bu, x(0) = xy, then x(t) = edtx, + foteA(t_T)Bu(T)dT

t
* Initial conditions: %J g(@dr = g(¢)

d<t“')) d()
—| | e PBu(r)dr | = —| | e*e " Bu(r)dr
* Differentiate: dt fo dt fo

d ¢
¢ X = % (edtx,) + % (fot eA(t‘T)Bu(T)dT) - d_t<eAtf0 e Bu(r)dr)
t
° X = AeAtXO + = AeAtf e A"Bu(1)dt + e4te 4 Bu(t)
0

t
= Af eAt=D By (r)dt + Bu(t)
0

Solution to LTI System: Proof
* If x = Ax + Bu, x(0) = xy, then x(t) = edtx, + foteA(t_T)Bu(T)dT

t
* Initial conditions: %J g(@dr = g(¢)

d<t“')) d()
—| | e PBu(r)dr | = —| | e*e " Bu(r)dr
* Differentiate: dt fo dt fo

d t
. d d t _ —_ At —A’L’B d
sk =— (edtx,) + — (fo eAlt T)Bu(r)dr) dt <e foe u(® T)

t
« x = Aeflxy + A fot eA=D By (1)dt + Bu(t) ~ AeAtf e ATBu(T)dT + eAte™4 Bu(t)
0

t
= Af eAt=D By (r)dt + Bu(t)
0

Solution to LTI System: Proof
* If x = Ax + Bu, x(0) = xy, then x(t) = edtx, + foteA(t_T)Bu(T)dT

t
* Initial conditions: %J g(@dr = g(¢)

d<t‘“t')) d(>
—| | e YBu(r)dr | = | e**e™ Bu(r)dr
* Differentiate: dt fo dt fo

d t
. d d t - —_ At —-A B d
sk =— (edtx,) + — (fo eAlt T)Bu(r)dr) dt <e foe u(® T)

t
« x = Aeflxy + A fot eAt-D By (7)dt + Bu(t) = AeAtf e~4TBu(t)dt + eAte~AtBu(t)
0

« x = Ax(t) + Bu(t) t
= Af eAt=D By (r)dt + Bu(t)
0

LTI System: Stability of x = Ax

e Equilibrium point of x = f(x) is where f(x) =0
* For x = Ax, in general 0,, is an equilibrium point: x, = 0,
* Also, x, € N(A)

4 ;
‘ ’_/\ |
v

LTI System: Stability of x = Ax | / |

e Equilibrium point of x = f(x) is where f(x) =0
* For x = Ax, in general 0,, is an equilibrium point: x, = 0,
* Also, x, € N(A)

* Stable: x(t) is bounded for all t > 0, for all initial conditions x
* Asymptotically stable: x(t) - x, ast - o
* Exponentially stable: 3M, a > 0 such that [|x(t)]| < Me~%t|x,||

LTI System: Stability of x = Ax | /

e Equilibrium point of x = f(x) is where f(x) =0
* For x = Ax, in general 0,, is an equilibrium point: x, = 0,
* Also, x, € N(A)

* Stable: x(t) is bounded for all t > 0, for all initial conditions x
* Asymptotically stable: x(t) - x, ast - o
* Exponentially stable: 3M, a > 0 such that [|x(t)]| < Me~%t|x,||

* The system x = Ax is exponentially stable if and only if all eigenvalues
of A are in the open left half plane, i.e. Vk,Re(4;) < 0

LTI System: Stability

* The system x = Ax is exponentially stable if and only if all eigenvalues
of A are in the open left half plane, i.e. Vk,Re(1;) < 0

LTI System: Stability

* The system x = Ax is exponentially stable if and only if all eigenvalues
of A are in the open left half plane, i.e. Vk,Re(1;) < 0

e 7z =Tx

LTI System: Stability

* The system x = Ax is exponentially stable if and only if all eigenvalues
of A are in the open left half plane, i.e. Vk,Re(1;) < 0

cz=Tx=> z=TAT 'z = Az, z, = Tx,

LTI System: Stability

* The system x = Ax is exponentially stable if and only if all eigenvalues
of A are in the open left half plane, i.e. Vk,Re(1;) < 0

cz=Tx=> z=TAT 'z = Az, z, = Tx,

N I S [

LTI System: Stability

* The system x = Ax is exponentially stable if and only if all eigenvalues
of A are in the open left half plane, i.e. Vk,Re(1;) < 0

cz=Tx > z’=TAT_ z=AMAz, zy =Tx,

Lol -
@) Lo et [ZZO

* If Re(4;) <O, e’lkt — 0,50 2, (t) = eMlzy > 0 /)\

LTI System: Stability

* The system x = Ax is exponentially stable if and only if all eigenvalues
of A are in the open left half plane, i.e. Vk,Re(1;) < 0

cz=Tx > Z=TAT_Z—AZ zog = T'xg \

C[7(0] _ [e’lit] Z1o A
[Zz (t)] Lo et [ZZO

* If Re(1;,) <0, e’lkt - 0,50z, (t) = etklz,y > 0 /)\

* If max Re(1;) = 0, z(t) stays bounded only if A, has Jordan block of

size 1 \

Eigenvalue with largest real part

LTI System: Stability

* If max Re(1;) = 0, z(t) stays bounded only if A, has Jordan block of
sizel

LTI System: Stability

* If max Re(1;) = 0, z(t) stays bounded only if A, has Jordan block of
sizel

ot
it polit
o1t
Jt, — 1
e’"Zy = Z
0 plat pplat _2pM5t 0
2
pAat

* When 4; = O

LTI System: Stability

* If max Re(1;) = 0, z(t) stays bounded only if A, has Jordan block of
sizel]

1
1 ¢t
1
e]tZO: 1 ¢ ltz Ay
1 t
1 -

* When 4; = 0...

LTI System: Stability

* If max Re(4;,) = 0, z(t) stays bounded only if 1, has Jordan block of

size 1 -1
1 t
1
e]tZO = 1 ¢ ltz ZO
1 t
1

* When 4; = 0...
* Not stable!

Linearization

* Local behaviour of nonlinear system x = f(x, u) at operating point
(x,u) = (x,u)
* At the operating point, x = f (X, %)
* Define new variablesx =x —x, i =u—u

Linearization

* Local behaviour of nonlinear system x = f(x, u) at operating point
(x,u) = (x,u)
* At the operating point, x = f (X, %)
* Define new variablesx =x —x, i =u—u

* Taylor approximation:
e fx,u) =f(+x,u+1)

Linearization

* Local behaviour of nonlinear system x = f(x, u) at operating point
(x,u) = (x,u)
* At the operating point, x = f (X, %)
* Define new variablesx =x —x, i =u—u

~

(x,u)

* Taylor approximation:
fOou) = fE+ET+E) ~ f(FD) + 2

X

w4+
(%,7) ou

Linearization

* Local behaviour of nonlinear system x = f(x, u) at operating point
(x,u) = (x,u)
* At the operating point, x = f (X, %)
* Define new variablesx =x —x, i =u—u

~

(x,u)

* Taylor approximation:
fOou) = fE+ET+E) ~ f(FD) + 2

X

w4+
(%,7) ou

X =Xx+Xx

Linearization

* Local behaviour of nonlinear system x = f(x, u) at operating point
(x,u) = (X, u)
* At the operating point, x = f (X, %)
* Define new variablesx =x —x, i =u—u

* Taylor approximation:
s fx,uw)=fEx+x,u+1) = f(x, ﬁ)+

~

af
¥+ —=
x| (xw) ou

‘ i+ Y g
x| (xzm) oul (x,u)

(x,u)

cX=X XA f(RU) S

Linearization

* Local behaviour of nonlinear system x = f(x, u) at operating point
(x,u) = (X, u)
* At the operating point, x = f (X, %)
* Define new variablesx =x —x, i =u—u

* Taylor approximation:

_ of ~
x,u)=f(x+x,u+u) = xu+ X + —
« flx,u) = f() = f(x,u) (xu) ol x 2
_ of -
X=X+x=~ X, U) + X+ — u
&) ‘(x) oul(x,u)

0 ~ , 0 ~
=L 7 +L u

ox (%,7) ou (%,70)

[]
=N

Linearization

. . 2 d 6
* From previous slide: X = — f

f1(x U) []
: ,u =
fa(x,)

X1
. x=[5],f(x,u)—
xn

Linearization

af af

* From previous slide: X = —

X1 fl(xu)
°x=[5],f(x,u)— : u—[]
X

o)
dx; O0xy axn
op |22 2 . 0%
e —=|0x; 0x; dxn € R™*"
0x : : : :
U n .. O
axl axz axn = =

\ J

S, —

Linearization

af

0x

. . 2 0
* From previous slide: X = —f
X1 f1(x U)
cx=|:],flx,u) = :
Xn fn(x u)
0n 95 9
dx; O0xy dxn
%k 95 Of2
dxq; O0x, 0xXp
fn Ofn Ofn
axl axz axn (f,ﬁ)
[
A

af
= Rnxn a_f —_
"ou

[0f1 0f1
Juq, OJdu,
df2 0f>
Juq, OJu,
Ofn 0fn
[duqy Oduy

0f17
auk

2/
auk

ofn

ouy

Ral

<l

—\—

ool

E [RTle

Linearization

* Inverted pendulum

x T :
* Newton’s laws: 8 = — + gsm 6
ml? l

Linearization

* Inverted pendulum

X T
* Newton’s laws: 86 = —

g .
—> t7sind

: T .
e letx, =0,x, = 0,u = — (“normalized control”)
1 2 ml?

Linearization

* Inverted pendulum

X T
* Newton’s laws: 86 = —

g .
—> t7sind

: T .
e letx, =0,x, = 0,u = — (“normalized control”)
1 2 mlz
5(1 = xz

Xy = %sinxl +u

Linearization

* Inverted pendulum

X T
* Newton’s laws: 86 = —

g .
—> t7sind

: T .
e letx, =0,x, = 0,u = — (“normalized control”)
1 2 mlz
5(1 = xz

Xy = %sinxl +u

e Linearizearound 8 = x;, = 0,0 =x, = 0,u =0

X1 = X3

Linearization % =§Sinx1+u

* Linearize around 8 = x; = 0,9 =x,=0,u=0
i

ax (%,70) ou

~

(x,u)

Q

. X
ox

561 =x2
g .
=—Slnx; +u

Linearization i, =

* Linearize around 8 = x; = 0,9 =x,=0,u=0
i

i
ox ou (%,7)
1 0N

. 9f _|9x1 9xy
|2 95
axl a.X'z (0,0)

~

Q

(x,u)

X1 = X3

Linearization % =§Sinx1 +u
* Linearize around 8 = x; = 0,9 =x,=0,u=0
. Of Y N
* X == X+ ==
ox (%,70) ou (%,7)
Ofi Ofi
. 9f _|9x1 0xy — | 0 1
oxlgmy |92 0f2 ~|7cosx; 0 ©.0)

axl axz (0,0)

X1 = X3

Linearization % =§Sinx1 +u
* Linearize around 8 = x; = 0,9 =x,=0,u=0
. Of Y N
° ~ — _|__
X ox (f)ﬁ)x ou (%,7)
Ofi Ofi
. a_f _|9x1 0xy — | 0 1 . 2 1
oxlemy |9f2 Of =cosx; O ©.0) N 0

axl axz (0,0)

X1 = X3

Linearization % =§Sinx1 +u
* Linearizearound @ =x; =0,0 =x, =0,u=0
° = ~a_f Y a_f Y
X = ox (%,70) X+ ou (%,7)
0fi Of1
.a_f _|9x1 0xy —go 1 _21
ox (,g’ﬁ)_ 0f, 0fz - 7 COS X1 0 0 - 7 0
:axl dxy (0,0) (0,0)
af
. a_f _ | ou
ulgm |2f
_au (0’0)

X1 = X3

Linearization x2=§sinx1+u
* Linearize around 8 = x; = 0,9 =x,=0,u=0
. 9f . . 9f N
* X == X+ ==
ox (%,70) ou (%,7)
0fi Oh
L of _oxs o, B 0 1 [0 1
oxlisny — |0z 0F = 1Zcosx; 0 =12 o0
(x,u) Y2 Yi2] 1 0,0) I
_axl axz (0,0) !
0f1
. 9 _ |ou _ [0]
oulgwy |91z 1
_au (0’0)

X1 = X3

Linearization x2=§sinx1+u
* Linearize around 8 = x; = 0,9 =x,=0,u=0
. Of . . 9f N
* X == X+ ==
ox (%,70) ou (%,7)
0f1 0K
L of _oxs o, B 0 1 10
axl=n |8 0f = 1Zcosx; 0 =<
(x,u) Y2 Yi2 1 0,0) I
_axl axz (0,0) !
0f1
U —|ou _ [0]
oulgwy |91z 1
_au (0’0)

[0 1 0 X1 = X
-Soxz% Ox+[1]u = . Y

State Feedback Control

* Suppose x = Ax + Bu, can we design u to make x = 0,, stable?

State Feedback Control

* Suppose x = Ax + Bu, can we design u to make x = 0,, stable?

* Try linear state feedback: u = —Kx = x = (A — BK)x

State Feedback Control

* Suppose x = Ax + Bu, can we design u to make x = 0,, stable?

* Try linear state feedback: u = —Kx = x = (A — BK)x
 Define A = A — BK, and we have x = Ax

State Feedback Control

* Suppose x = Ax + Bu, can we design u to make x = 0,, stable?

* Try linear state feedback: u = —Kx = x = (A — BK)x
 Define A = A — BK, and we have x = Ax

* We can try to choose the elements of K, such that the eigenvalues of 4 are in
the left half-plane

State Feedback Control

* Suppose x = Ax + Bu, can we design u to make x = 0,, stable?

* Try linear state feedback: u = —Kx = x = (A — BK)x
 Define A = A — BK, and we have x = Ax

* We can try to choose the elements of K, such that the eigenvalues of 4 are in
the left half-plane

* |ssues
e Controller saturation
 Full state information required

State Feedback

e System: x = Ax + Bu
* Open-loop control: u = u(t)

State Feedback u—— B -+

e System: x = Ax + Bu

* Open-loop control: u = u(t)

 Closed-loop (linear state feedback) control: u = —Kx
 x = Ax — BKx

State Feedback u—— B -+ J
e System: x = Ax + Bu
* Open-loop control: u = u(t) B
 Closed-loop (linear state feedback) control: u = —Kx l
 x = Ax — BKx
*x =(A—BK)x . @ X [

e« x = Ax, where A = A — BK]
\— A —

State Feedback u—— B -+ J
e System: x = Ax + Bu
* Open-loop control: u = u(t) B
 Closed-loop (linear state feedback) control: u = —Kx l
 x = Ax — BKx
*x =(A—BK)x . @ X [

e« x = Ax, where A = A — BK]
X X ‘
+ — f > 4

N

