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* Differential equations generally do not have closed-form solutions
* Numerical methods can be used to obtain approximate solutions
* Other analysis techniques offer insight into the solutions

* Linear time-invariant (LTI) systems: x = Ax + Bu
* Damped mass spring systems
e Circuits involving resistors, capacitors, inductors
e Approximations of nonlinear systems
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(If flying near hover, and slowly)
Bouffard, 2012



Road Map

 Basic properties and closed form solution
e Stability
* Linearization

» Controllability and observability



Road Map

* Linear Systems (This and next lecture)
* Basic properties and closed form solution
e Stability
* Linearization
* Controllability and observability

* Nonlinear systems (Two lectures)

* Optimization and optimal control (New unit, ~8 lectures)
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* Existence and Uniqueness of Solutions of x = f(x, u)
* 3L > 0,Vu, xq, X2, || f (g, w) — f Qe Wl < Llxg — x5l

* Existence and Uniqueness of Solutions of x = Ax + Bu
e 3L > 0,Vu,xq, %y, ||Ax; + Bu — Ax, — Bu|| < L||x; — x5, ||
« © 3L > 0,Vu, xq, Xy, |[Axy — Ax;|| < Llx; — x|

* But |[Ax; — Ax, || = [|A(xy — x) || < [|All; [l — x|
e Recall:
|| Ax|
e [|All.,; = su P
” ”p,l x:,tIg ”x”p

* |Alleo; = max2?=1|aij| (maximum row sum)
l
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LTI systems: Closed form solution

 x = Ax + Bu, x(0) = x,

e x(t) = eflxy + foteA(t_T)Bu(T)dT

LAt _ At A%t?
Matlab: expm +1_+ 21 te

e Zero input solution: x(t) = e4tx,
cz=Tx=> z=TAT 1z, z, =Tx,
* Define A=TAT 1= 2=z
e Solution in terms of z: z(t) = e/tz,

_ et Z10
* Diagonal J: z(t) = [ /121:] [220
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If x = Ax, x(0) = x,, then x(t) = e4tx,

eV = I (follows from the above) \
et “propagates” a state forward
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Matrix Exponential properties - - @

If x = Ax, x(0) = x,, then x(t) = e4tx,

eV = I (follows from the above) \
et “propagates” a state forward

A(t+s) — At _As
*e —e e x(s) by a duration of t, according to
e x(t+s) = eA(t"'S)xO = eAteASxO the system dynamics A

e(A+B)t _ eAteBt if and onIy £ AB = BA * State transition matrix
(eAt)—l — At
e Soedte ™t =]
d
EeAt — AeAt — eAtA
t , A%t?

* From definition: e/t =1 + % 2!

+ ...
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* Initial conditions: %J g(@dr = g(¢)

d<t“') ) d( )
—| | e PBu(r)dr | = —| | e*e " Bu(r)dr
* Differentiate: dt fo dt fo
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Solution to LTI System: Proof
* If x = Ax + Bu, x(0) = xy, then x(t) = edtx, + foteA(t_T)Bu(T)dT

t
* Initial conditions: %J g(@dr = g(¢)
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LTI System: Stability

* The system x = Ax is exponentially stable if and only if all eigenvalues
of A are in the open left half plane, i.e. Vk,Re(1;) < 0

cz=Tx > Z=TAT_Z—AZ zog = T'xg \

C[7(0] _ [e’lit ] Z1o A
[Zz (t)] Lo et [ZZO

* If Re(1;,) <0, e’lkt - 0,50z, (t) = etklz,y > 0 /)\

* If max Re(1;) = 0, z(t) stays bounded only if A, has Jordan block of

size 1 \

Eigenvalue with largest real part
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* If max Re(1;) = 0, z(t) stays bounded only if A, has Jordan block of
sizel ]
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LTI System: Stability

* If max Re(4;,) = 0, z(t) stays bounded only if 1, has Jordan block of

size 1 -1
1 t
1
e]tZO = 1 ¢ ltz ZO
1 t
1

* When 4; = 0...
* Not stable!
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* Local behaviour of nonlinear system x = f(x, u) at operating point
(x,u) = (X, u)
* At the operating point, x = f (X, %)
* Define new variablesx =x —x, i =u—u

* Taylor approximation:
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* Local behaviour of nonlinear system x = f(x, u) at operating point
(x,u) = (X, u)
* At the operating point, x = f (X, %)
* Define new variablesx =x —x, i =u—u

* Taylor approximation:

_ of ~
x,u)=f(x+x,u+u) = xu+ X + —
« flx,u) = f( ) = f(x,u) (xu) ol x 2
_ of -
X=X+x=~ X, U) + X+ — u
&) ‘(x ) oul(x,u)

0 ~ , 0 ~
=L 7 +L u

ox (%,7) ou (%,70)

[ ]
=N
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af af

* From previous slide: X = —

X1 fl(xu)
°x=[5],f(x,u)— : u—[ ]
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Linearization

* Inverted pendulum

X T
* Newton’s laws: 86 = —

g .
—> t7sind

: T .
e letx, =0,x, = 0,u = — (“normalized control”)
1 2 mlz
5(1 = xz

Xy = %sinxl +u

e Linearizearound 8 = x;, = 0,0 =x, = 0,u =0
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Linearization % =§Sinx1+u

* Linearize around 8 = x; = 0,9 =x,=0,u=0
i

ax (%,70) ou

~

(x,u)

Q

. X
ox



561 =x2
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Linearization i, =

* Linearize around 8 = x; = 0,9 =x,=0,u=0
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X1 = X3

Linearization % =§Sinx1 +u
* Linearize around 8 = x; = 0,9 =x,=0,u=0
. Of Y N
* X == X+ ==
ox (%,70) ou (%,7)
Ofi Ofi
. 9f _|9x1 0xy — | 0 1
oxlgmy |92 0f2 ~|7cosx; 0 ©.0)
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Linearization % =§Sinx1 +u
* Linearize around 8 = x; = 0,9 =x,=0,u=0
. Of Y N
° ~ — _|__
X ox (f)ﬁ)x ou (%,7)
Ofi Ofi
. a_f _|9x1 0xy — | 0 1 . 2 1
oxlemy |9f2 Of =cosx; O ©.0) N 0
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Linearization % =§Sinx1 +u
* Linearizearound @ =x; =0,0 =x, =0,u=0
° = ~a_f Y a_f Y
X = ox (%,70) X+ ou (%,7)
0fi Of1
.a_f _|9x1 0xy —go 1 _21
ox (,g’ﬁ)_ 0f, 0fz - 7 COS X1 0 0 - 7 0
:axl dxy (0,0) (0,0)
af
. a_f _ | ou
ulgm |2f
_au (0’0)




X1 = X3

Linearization x2=§sinx1+u
* Linearize around 8 = x; = 0,9 =x,=0,u=0
. 9f . . 9f N
* X == X+ ==
ox (%,70) ou (%,7)
0fi Oh
L of _oxs o, B 0 1 [0 1
oxlisny — |0z 0F = 1Zcosx; 0 =12 o0
(x,u) Y2 Yi2 ] 1 0,0) I
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Linearization x2=§sinx1+u
* Linearize around 8 = x; = 0,9 =x,=0,u=0
. Of . . 9f N
* X == X+ ==
ox (%,70) ou (%,7)
0f1 0K
L of _oxs o, B 0 1 10
axl=n |8 0f = 1Zcosx; 0 =<
(x,u) Y2 Yi2 1 0,0) I
_axl axz (0,0) !
0f1
U —|ou _ [0]
oulgwy |91z 1
_au (0’0)

[0 1 0 X1 = X
-Soxz% Ox+[1]u = . Y



State Feedback Control

* Suppose x = Ax + Bu, can we design u to make x = 0,, stable?



State Feedback Control

* Suppose x = Ax + Bu, can we design u to make x = 0,, stable?

* Try linear state feedback: u = —Kx = x = (A — BK)x



State Feedback Control

* Suppose x = Ax + Bu, can we design u to make x = 0,, stable?

* Try linear state feedback: u = —Kx = x = (A — BK)x
 Define A = A — BK, and we have x = Ax



State Feedback Control

* Suppose x = Ax + Bu, can we design u to make x = 0,, stable?

* Try linear state feedback: u = —Kx = x = (A — BK)x
 Define A = A — BK, and we have x = Ax

* We can try to choose the elements of K, such that the eigenvalues of 4 are in
the left half-plane



State Feedback Control

* Suppose x = Ax + Bu, can we design u to make x = 0,, stable?

* Try linear state feedback: u = —Kx = x = (A — BK)x
 Define A = A — BK, and we have x = Ax

* We can try to choose the elements of K, such that the eigenvalues of 4 are in
the left half-plane

* |ssues
e Controller saturation
 Full state information required
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State Feedback u—— B -+ J
e System: x = Ax + Bu
* Open-loop control: u = u(t) B
 Closed-loop (linear state feedback) control: u = —Kx l
 x = Ax — BKx
*x =(A—BK)x . @ X [

e« x = Ax, where A = A — BK ]
X X ‘
+ — f > 4

N




