

Linear Systems I

CMPT 882
Jan. 11

Linear Systems

- Differential equations generally do not have closed-form solutions
- Numerical methods can be used to obtain approximate solutions
- Other analysis techniques offer insight into the solutions

Linear Systems

- Differential equations generally do not have closed-form solutions
- Numerical methods can be used to obtain approximate solutions
- Other analysis techniques offer insight into the solutions
- Linear time-invariant (LTI) systems: $\dot{x}=A x+B u$
- Damped mass spring systems
- Circuits involving resistors, capacitors, inductors

Linear Systems

(If flying near hover, and slowly)
Bouffard, 2012

Road Map

- Basic properties and closed form solution
- Stability
- Linearization
- Controllability and observability

Road Map

- Linear Systems (This and next lecture)
- Basic properties and closed form solution
- Stability
- Linearization
- Controllability and observability
- Nonlinear systems (Two lectures)
- Optimization and optimal control (New unit, ~ 8 lectures)

LTI Systems

- Linear time-invariant (LTI) systems: $\dot{x}=A x+B u$

Linear System

- Existence and Uniqueness of Solutions of $\dot{x}=f(x, u)$
- $\exists L>0, \forall u, x_{1}, x_{2},\left\|f\left(x_{1}, u\right)-f\left(x_{2}, u\right)\right\| \leq L\left\|x_{1}-x_{2}\right\|$
- Existence and Uniqueness of Solutions of $\dot{x}=A x+B u$
- $\exists L>0, \forall u, x_{1}, x_{2},\left\|A x_{1}+B u-A x_{2}-B u\right\| \leq L\left\|x_{1}-x_{2}\right\|$

Linear System

- Existence and Uniqueness of Solutions of $\dot{x}=f(x, u)$
- $\exists L>0, \forall u, x_{1}, x_{2},\left\|f\left(x_{1}, u\right)-f\left(x_{2}, u\right)\right\| \leq L\left\|x_{1}-x_{2}\right\|$
- Existence and Uniqueness of Solutions of $\dot{x}=A x+B u$
- $\exists L>0, \forall u, x_{1}, x_{2},\left\|A x_{1}+B u-A x_{2}-B u\right\| \leq L\left\|x_{1}-x_{2}\right\|$
- $\Leftrightarrow \exists L>0, \forall u, x_{1}, x_{2},\left\|A x_{1}-A x_{2}\right\| \leq L\left\|x_{1}-x_{2}\right\|$

Linear System

- Existence and Uniqueness of Solutions of $\dot{x}=f(x, u)$
- $\exists L>0, \forall u, x_{1}, x_{2},\left\|f\left(x_{1}, u\right)-f\left(x_{2}, u\right)\right\| \leq L\left\|x_{1}-x_{2}\right\|$
- Existence and Uniqueness of Solutions of $\dot{x}=A x+B u$
- $\exists L>0, \forall u, x_{1}, x_{2},\left\|A x_{1}+B u-A x_{2}-B u\right\| \leq L\left\|x_{1}-x_{2}\right\|$
- $\Leftrightarrow \exists L>0, \forall u, x_{1}, x_{2},\left\|A x_{1}-A x_{2}\right\| \leq L\left\|x_{1}-x_{2}\right\|$
- But $\left\|A x_{1}-A x_{2}\right\|=\left\|A\left(x_{1}-x_{2}\right)\right\| \leq\|A\|_{i}\left\|x_{1}-x_{2}\right\|$
- Recall:
- $\|A\|_{p, i}=\sup _{x \neq 0} \| \frac{\|x\|_{p}}{\|x\|_{p}}$
- $\|A\|_{\infty, i}=\max _{i} \sum_{j=1}^{n}\left|a_{i j}\right|$ (maximum row sum)

LTI systems: Closed form solution

- $\dot{x}=A x+B u, x(0)=x_{0}$
- $x(t)=e^{A t} x_{0}+\int_{0}^{t} e^{A(t-\tau)} B u(\tau) d \tau$

$$
e^{A t}=I+\frac{A t}{1!}+\frac{A^{2} t^{2}}{2!}+\cdots
$$

LTI systems: Closed form solution

- $\dot{x}=A x+B u, x(0)=x_{0}$
- $x(t)=e^{A t} x_{0}+\int_{0}^{t} e^{A(t-\tau)} B u(\tau) d \tau$

Matlab: expm

$$
e^{A t}=I+\frac{A t}{1!}+\frac{A^{2} t^{2}}{2!}+\cdots
$$

LTI systems: Closed form solution

- $\dot{x}=A x+B u, x(0)=x_{0}$
- $x(t)=e^{A t} x_{0}+\int_{0}^{t} e^{A(t-\tau)} B u(\tau) d \tau$

Matlab: expm

$$
e^{A t}=I+\frac{A t}{1!}+\frac{A^{2} t^{2}}{2!}+\cdots
$$

- Zero input solution: $x(t)=e^{A t} x_{0}$
$\cdot z=T x \Rightarrow \dot{z}=T A T^{-1} z, z_{0}=T x_{0}$

LTI systems: Closed form solution

- $\dot{x}=A x+B u, x(0)=x_{0}$
- $x(t)=e^{A t} x_{0}+\int_{0}^{t} e^{A(t-\tau)} B u(\tau) d \tau$

Matlab: expm

$$
e^{A t}=I+\frac{A t}{1!}+\frac{A^{2} t^{2}}{2!}+\cdots
$$

- Zero input solution: $x(t)=e^{A t} x_{0}$
- $z=T x \Rightarrow \dot{z}=T A T^{-1} z, z_{0}=T x_{0}$
- Define $\tilde{A}=T A T^{-1} \Rightarrow \dot{z}=J z$

LTI systems: Closed form solution

- $\dot{x}=A x+B u, x(0)=x_{0}$
- $x(t)=e^{A t} x_{0}+\int_{0}^{t} e^{A(t-\tau)} B u(\tau) d \tau$

Matlab: expm

$$
e^{A t}=I+\frac{A t}{1!}+\frac{A^{2} t^{2}}{2!}+\cdots
$$

- Zero input solution: $x(t)=e^{A t} x_{0}$
- $z=T x \Rightarrow \dot{z}=T A T^{-1} z, z_{0}=T x_{0}$
- Define $\tilde{A}=T A T^{-1} \Rightarrow \dot{z}=J z$
- Solution in terms of $z: z(t)=e^{J t} z_{0}$

LTI systems: Closed form solution

- $\dot{x}=A x+B u, x(0)=x_{0}$
- $x(t)=e^{A t} x_{0}+\int_{0}^{t} e^{A(t-\tau)} B u(\tau) d \tau$

Matlab: expm

$$
e^{A t}=I+\frac{A t}{1!}+\frac{A^{2} t^{2}}{2!}+\cdots
$$

- Zero input solution: $x(t)=e^{A t} x_{0}$
- $z=T x \Rightarrow \dot{z}=T A T^{-1} z, z_{0}=T x_{0}$
- Define $\tilde{A}=T A T^{-1} \Rightarrow \dot{z}=J z$
- Solution in terms of $z: z(t)=e^{J t} z_{0}$
- Diagonal J: $z(t)=\left[\begin{array}{cc}e^{\lambda_{1} t} & 0 \\ 0 & e^{\lambda_{2} t}\end{array}\right]\left[\begin{array}{l}z_{10} \\ z_{20}\end{array}\right]$

LTI systems: Closed form solution

- General J:
$\cdot f(J)=\left[\begin{array}{llllll}f\left(\lambda_{1}\right) & & & & & \\ & f\left(\lambda_{1}\right) & f^{\prime}\left(\lambda_{1}\right) & & & \\ & & f\left(\lambda_{1}\right) & & & \\ & & & f\left(\lambda_{2}\right) & f^{\prime}\left(\lambda_{2}\right) & \frac{1}{2} f^{\prime \prime}\left(\lambda_{2}\right) \\ & & & & f\left(\lambda_{2}\right) & f^{\prime}\left(\lambda_{2}\right) \\ & & & & & f\left(\lambda_{2}\right)\end{array}\right]$

LTI systems: Closed form solution

- General J :

$$
\begin{aligned}
f(J) & =e^{J t} \\
f(\cdot) & =e^{\cdot t} \\
f^{\prime}(\cdot) & =t e^{t} \\
f^{\prime \prime}(\cdot) & =t^{2} \cdot e^{\cdot t}
\end{aligned}
$$

$\cdot f(J)=\left[\begin{array}{llllll}f\left(\lambda_{1}\right) & & & & & \\ & f\left(\lambda_{1}\right) & f^{\prime}\left(\lambda_{1}\right) & & & \\ & & f\left(\lambda_{1}\right) & & & \\ & & & f\left(\lambda_{2}\right) & f^{\prime}\left(\lambda_{2}\right) & \frac{1}{2} f^{\prime \prime}\left(\lambda_{2}\right) \\ & & & & f\left(\lambda_{2}\right) & f^{\prime}\left(\lambda_{2}\right) \\ & & & & & f\left(\lambda_{2}\right)\end{array}\right]$

LTI systems: Closed form solution

$$
\begin{aligned}
f(J) & =e^{J t} \\
f(\cdot) & =e^{\cdot t} \\
f^{\prime}(\cdot) & =t e^{t} \\
f^{\prime \prime}(\cdot) & =t^{2} e^{\cdot t}
\end{aligned}
$$

- General J:
- $e^{J t}=\left[\begin{array}{cccccc}e^{\lambda_{1} t} & & & & & \\ & e^{\lambda_{1} t} & t e^{\lambda_{1} t} & & & \\ & & e^{\lambda_{1} t} & & & \\ & & & e^{\lambda_{2} t} & t e^{\lambda_{2} t} & \frac{1}{2} t^{2} e^{\lambda_{2} t} \\ & & & & e^{\lambda_{2} t} & t e^{\lambda_{2} t} \\ & & & & & e^{\lambda_{2} t}\end{array}\right]$

Matrix Exponential properties

- If $\dot{x}=A x, x(0)=x_{0}$, then $x(t)=e^{A t} x_{0}$
$e^{A t}$ "propagates" a state forward
by a duration of t, according to
the system dynamics A

Matrix Exponential properties

- If $\dot{x}=A x, x(0)=x_{0}$, then $x(t)=e^{A t} x_{0}$
$e^{A t}$ "propagates" a state forward
by a duration of t, according to
the system dynamics A

Matrix Exponential properties

- If $\dot{x}=A x, x(0)=x_{0}$, then $x(t)=e^{A t} x_{0}$
$e^{A t}$ "propagates" a state forward
by a duration of t, according to
the system dynamics A

Matrix Exponential properties

- If $\dot{x}=A x, x(0)=x_{0}$, then $x(t)=e^{A t} x_{0}$
by a duration of t, according to
the system dynamics A
- State transition matrix

Matrix Exponential properties

- If $\dot{x}=A x, x(0)=x_{0}$, then $x(t)=e^{A t} x_{0}$
- $e^{0}=I$ (follows from the above)
- State transition matrix

Matrix Exponential properties

- If $\dot{x}=A x, x(0)=x_{0}$, then $x(t)=e^{A t} x_{0}$
- $e^{0}=I$ (follows from the above)

$e^{A t}$ "propagates" a state forward by a duration of t, according to the system dynamics A
- State transition matrix

Matrix Exponential properties

- If $\dot{x}=A x, x(0)=x_{0}$, then $x(t)=e^{A t} x_{0}$
- $e^{0}=I$ (follows from the above)
- $e^{A(t+s)}=e^{A t} e^{A s}$
$e^{A t}$ "propagates" a state forward by a duration of t, according to the system dynamics A
- State transition matrix
- $e^{(A+B) t}=e^{A t} e^{B t}$ if and only if $A B=B A$

Matrix Exponential properties

- If $\dot{x}=A x, x(0)=x_{0}$, then $x(t)=e^{A t} x_{0}$
- $e^{0}=I$ (follows from the above)
- $e^{A(t+s)}=e^{A t} e^{A s}$
$e^{A t}$ "propagates" a state forward by a duration of t, according to the system dynamics A
- State transition matrix
- $e^{(A+B) t}=e^{A t} e^{B t}$ if and only if $A B=B A$
- $\left(e^{A t}\right)^{-1}=e^{-A t}$
- So $e^{A t} e^{-A}=I$

Matrix Exponential properties

- If $\dot{x}=A x, x(0)=x_{0}$, then $x(t)=e^{A t} x_{0}$
- $e^{0}=I$ (follows from the above)
- $e^{A(t+s)}=e^{A t} e^{A s}$
$e^{A t}$ "propagates" a state forward
by a duration of t, according to the system dynamics A
- State transition matrix
- $e^{(A+B) t}=e^{A t} e^{B t}$ if and only if $A B=B A$
- $\left(e^{A t}\right)^{-1}=e^{-A t}$
- So $e^{A t} e^{-A t}=I$
- $\frac{d}{d t} e^{A t}=A e^{A t}=e^{A t} A$
- From definition: $e^{A t}=I+\frac{A t}{1!}+\frac{A^{2} t^{2}}{2!}+\cdots$

Solution to LTI System: Proof

- If $\dot{x}=A x+B u, x(0)=x_{0}$, then $x(t)=e^{A t} x_{0}+\int_{0}^{t} e^{A(t-\tau)} B u(\tau) d \tau$

Solution to LTI System: Proof

- If $\dot{x}=A x+B u, x(0)=x_{0}$, then $x(t)=e^{A t} x_{0}+\int_{0}^{t} e^{A(t-\tau)} B u(\tau) d \tau$
- Initial conditions:
- Differentiate:

Solution to LTI System: Proof

- If $\dot{x}=A x+B u, x(0)=x_{0}$, then $x(t)=e^{A t} x_{0}+\int_{0}^{t} e^{A(t-\tau)} B u(\tau) d \tau$
- Initial conditions:
- $x(0)=e^{A(0)} x_{0}+\int_{0}^{0} e^{A(t-\tau)} B u(\tau) d \tau=x_{0}$
- Differentiate:

Solution to LTI System: Proof

- If $\dot{x}=A x+B u, x(0)=x_{0}$, then $x(t)=e^{A t} x_{0}+\int_{0}^{t} e^{A(t-\tau)} B u(\tau) d \tau$
- Initial conditions:
- $x(0)=e^{A(0)} x_{0}+\int_{0}^{0} e^{A(t-\tau)} B u(\tau) d \tau=x_{0}$
- Differentiate:
- $\dot{x}=\frac{d}{d t}\left(e^{A t} x_{0}\right)+\frac{d}{d t}\left(\int_{0}^{t} e^{A(t-\tau)} B u(\tau) d \tau\right)$

Solution to LTI System: Proof

- If $\dot{x}=A x+B u, x(0)=x_{0}$, then $x(t)=e^{A t} x_{0}+\int_{0}^{t} e^{A(t-\tau)} B u(\tau) d \tau$
- Initial conditions:
- $x(0)=e^{A(0)} x_{0}+\int_{0}^{0} e^{A(t-\tau)} B u(\tau) d \tau=x_{0}$
- Differentiate:

$$
\frac{d}{d t}\left(\int_{0}^{t} e^{A(t-\tau)} B u(\tau) d \tau\right)=\frac{d}{d t}\left(\int_{0}^{t} e^{A t} e^{-A \tau} B u(\tau) d \tau\right)
$$

- $\dot{x}=\frac{d}{d t}\left(e^{A t} x_{0}\right)+\frac{d}{d t}\left(\int_{0}^{t} e^{A(t-\tau)} B u(\tau) d \tau\right)$
- $\dot{x}=A e^{A t} x_{0}+$

Solution to LTI System: Proof

- If $\dot{x}=A x+B u, x(0)=x_{0}$, then $x(t)=e^{A t} x_{0}+\int_{0}^{t} e^{A(t-\tau)} B u(\tau) d \tau$
- Initial conditions:
- $x(0)=e^{A(0)} x_{0}+\int_{0}^{0} e^{A(t-\tau)} B u(\tau) d \tau=x_{0}$
- Differentiate:
- $\dot{x}=\frac{d}{d t}\left(e^{A t} x_{0}\right)+\frac{d}{d t}\left(\int_{0}^{t} e^{A(t-\tau)} B u(\tau) d \tau\right)$ $\frac{d}{d t}\left(\int_{0}^{t} e^{A(t-\tau)} B u(\tau) d \tau\right)=\frac{d}{d t}\left(\int_{0}^{t} e^{A t} e^{-A \tau} B u(\tau) d \tau\right)$ $=\frac{d}{d t}\left(e^{A t} \int_{0}^{t} e^{-A \tau} B u(\tau) d \tau\right)$
- $\dot{x}=A e^{A t} x_{0}+$

Solution to LTI System: Proof

- If $\dot{x}=A x+B u, x(0)=x_{0}$, then $x(t)=e^{A t} x_{0}+\int_{0}^{t} e^{A(t-\tau)} B u(\tau) d \tau$
- Initial conditions:
- $x(0)=e^{A(0)} x_{0}+\int_{0}^{0} e^{A(t-\tau)} B u(\tau) d \tau=x_{0}$
- Differentiate:
- $\dot{x}=\frac{d}{d t}\left(e^{A t} x_{0}\right)+\frac{d}{d t}\left(\int_{0}^{t} e^{A(t-\tau)} B u(\tau) d \tau\right)$
- $\dot{x}=A e^{A t} x_{0}+$

$$
\begin{array}{r}
\frac{d}{d t}\left(\int_{0}^{t} e^{A(t-\tau)} B u(\tau) d \tau\right)= \\
=\frac{d}{d t}\left(\int_{0}^{t} e^{A t} e^{-A} B u(\tau) d \tau\right) \\
=\frac{d}{d t}\left(e^{A t} \int_{0}^{t} e^{-A \tau} B u(\tau) d \tau\right) \\
=A e^{A t} \int_{0}^{t} e^{-A \tau} B u(\tau) d \tau+e^{A t} e^{-A t} B u(t)
\end{array}
$$

Solution to LTI System: Proof

- If $\dot{x}=A x+B u, x(0)=x_{0}$, then $x(t)=e^{A t} x_{0}+\int_{0}^{t} e^{A(t-\tau)} B u(\tau) d \tau$
- Initial conditions:

$$
\frac{d}{d t} \int_{a}^{t} g(\tau) d \tau=g(t)
$$

- $x(0)=e^{A(0)} x_{0}+\int_{0}^{0} e^{A(t-\tau)} B u(\tau) d \tau=x_{0}$
- Differentiate:
- $\dot{x}=\frac{d}{d t}\left(e^{A t} x_{0}\right)+\frac{d}{d t}\left(\int_{0}^{t} e^{A(t-\tau)} B u(\tau) d \tau\right)$
- $\dot{x}=A e^{A t} x_{0}+$

$$
\begin{aligned}
& \frac{d}{d t}\left(\int_{0}^{t} e^{A(t-\tau)} B u(\tau) d \tau\right)=\frac{d}{d t}\left(\int_{0}^{t} e^{A t} e^{-A \tau} B u(\tau) d \tau\right) \\
&=\frac{d}{d t}\left(e^{A t} \int_{0}^{t} e^{-A \tau} B u(\tau) d \tau\right) \\
&=A e^{A t} \int_{0}^{t} e^{-A \tau} B u(\tau) d \tau+e^{A t} e^{-A t} B u(t)
\end{aligned}
$$

Solution to LTI System: Proof

- If $\dot{x}=A x+B u, x(0)=x_{0}$, then $x(t)=e^{A t} x_{0}+\int_{0}^{t} e^{A(t-\tau)} B u(\tau) d \tau$
- Initial conditions:

$$
\frac{d}{d t} \int_{a}^{t} g(\tau) d \tau=g(t)
$$

- $x(0)=e^{A(0)} x_{0}+\int_{0}^{0} e^{A(t-\tau)} B u(\tau) d \tau=x_{0}$
- Differentiate:
- $\dot{x}=\frac{d}{d t}\left(e^{A t} x_{0}\right)+\frac{d}{d t}\left(\int_{0}^{t} e^{A(t-\tau)} B u(\tau) d \tau\right)$
- $\dot{x}=A e^{A t} x_{0}+$

$$
\begin{aligned}
& \frac{d}{d t}\left(\int_{0}^{t} e^{A(t-\tau)} B u(\tau) d \tau\right)=\frac{d}{d t}\left(\int_{0}^{t} e^{A t} e^{-A \tau} B u(\tau) d \tau\right) \\
&=\frac{d}{d t}\left(e^{A t} \int_{0}^{t} e^{-A \tau} B u(\tau) d \tau\right) \\
&=A e^{A t} \int_{0}^{t} e^{-A \tau} B u(\tau) d \tau+e^{A t} e^{-A t} B u(t) \\
&=A \int_{0}^{t} e^{A(t-\tau)} B u(\tau) d \tau+B u(t)
\end{aligned}
$$

Solution to LTI System: Proof

- If $\dot{x}=A x+B u, x(0)=x_{0}$, then $x(t)=e^{A t} x_{0}+\int_{0}^{t} e^{A(t-\tau)} B u(\tau) d \tau$
- Initial conditions:

$$
\frac{d}{d t} \int_{a}^{t} g(\tau) d \tau=g(t)
$$

- $x(0)=e^{A(0)} x_{0}+\int_{0}^{0} e^{A(t-\tau)} B u(\tau) d \tau=x_{0}$
- Differentiate:
- $\dot{x}=\frac{d}{d t}\left(e^{A t} x_{0}\right)+\frac{d}{d t}\left(\int_{0}^{t} e^{A(t-\tau)} B u(\tau) d \tau\right)$

$$
=\frac{d}{d t}\left(e^{A t} \int_{0}^{t} e^{-A \tau} B u(\tau) d \tau\right)
$$

- $\dot{x}=A e^{A t} x_{0}+A \int_{0}^{t} e^{A(t-\tau)} B u(\tau) d \tau+B u(t)$

$$
\frac{d}{d t}\left(\int_{0}^{t} e^{A(t-\tau)} B u(\tau) d \tau\right)=\frac{d}{d t}\left(\int_{0}^{t} e^{A t} e^{-A \tau} B u(\tau) d \tau\right)
$$

$$
=A e^{A t} \int_{0}^{t} e^{-A t} B u(\tau) d \tau+e^{A t} e^{-A} B u(t)
$$

$$
=A \int_{0}^{t} e^{A(t-\tau)} B u(\tau) d \tau+B u(t)
$$

Solution to LTI System: Proof

- If $\dot{x}=A x+B u, x(0)=x_{0}$, then $x(t)=e^{A t} x_{0}+\int_{0}^{t} e^{A(t-\tau)} B u(\tau) d \tau$
- Initial conditions:

$$
\frac{d}{d t} \int_{a}^{t} g(\tau) d \tau=g(t)
$$

- $x(0)=e^{A(0)} x_{0}+\int_{0}^{0} e^{A(t-\tau)} B u(\tau) d \tau=x_{0}$
- Differentiate:
- $\dot{x}=\frac{d}{d t}\left(e^{A t} x_{0}\right)+\frac{d}{d t}\left(\int_{0}^{t} e^{A(t-\tau)} B u(\tau) d \tau\right)$

$$
=\frac{d}{d t}\left(e^{A t} \int_{0}^{t} e^{-A} B u(\tau) d \tau\right)
$$

- $\dot{x}=A e^{A t} x_{0}+A \int_{0}^{t} e^{A(t-\tau)} B u(\tau) d \tau+B u(t)$
- $\dot{x}=A x(t)+B u(t)$

$$
\frac{d}{d t}\left(\int_{0}^{t} e^{A(t-\tau)} B u(\tau) d \tau\right)=\frac{d}{d t}\left(\int_{0}^{t} e^{A t} e^{-A} B u(\tau) d \tau\right)
$$

$$
=A e^{A t} \int_{0}^{t} e^{-A \tau} B u(\tau) d \tau+e^{A t} e^{-A t} B u(t)
$$

$$
=A \int_{0}^{t} e^{A(t-\tau)} B u(\tau) d \tau+B u(t)
$$

LTI System: Stability of $\dot{x}=A x$

- Equilibrium point of $\dot{x}=f(x)$ is where $f(x)=0$
- For $\dot{x}=A x$, in general $\mathbf{0}_{n}$ is an equilibrium point: $x_{e}=\mathbf{0}_{n}$
- Also, $x_{e} \in N(A)$

LTI System: Stability of $\dot{x}=A x$

- Equilibrium point of $\dot{x}=f(x)$ is where $f(x)=0$
- For $\dot{x}=A x$, in general $\mathbf{0}_{n}$ is an equilibrium point: $x_{e}=0_{n}$

- Also, $x_{e} \in N(A)$
- Stable: $x(t)$ is bounded for all $t \geq 0$, for all initial conditions x_{0}
- Asymptotically stable: $x(t) \rightarrow x_{e}$ as $t \rightarrow \infty$
- Exponentially stable: $\exists M, \alpha>0$ such that $\|x(t)\| \leq M e^{-\alpha t}\left\|x_{0}\right\|$

LTI System: Stability of $\dot{x}=A x$

- Equilibrium point of $\dot{x}=f(x)$ is where $f(x)=0$
- For $\dot{x}=A x$, in general $\mathbf{0}_{n}$ is an equilibrium point: $x_{e}=0_{n}$

- Also, $x_{e} \in N(A)$
- Stable: $x(t)$ is bounded for all $t \geq 0$, for all initial conditions x_{0}
- Asymptotically stable: $x(t) \rightarrow x_{e}$ as $t \rightarrow \infty$
- Exponentially stable: $\exists M, \alpha>0$ such that $\|x(t)\| \leq M e^{-\alpha t}\left\|x_{0}\right\|$
- The system $\dot{x}=A x$ is exponentially stable if and only if all eigenvalues of A are in the open left half plane, i.e. $\forall k, \operatorname{Re}\left(\lambda_{k}\right)<0$

LTI System: Stability

- The system $\dot{x}=A x$ is exponentially stable if and only if all eigenvalues of A are in the open left half plane, i.e. $\forall k, \operatorname{Re}\left(\lambda_{k}\right)<0$

LTI System: Stability

- The system $\dot{x}=A x$ is exponentially stable if and only if all eigenvalues of A are in the open left half plane, i.e. $\forall k, \operatorname{Re}\left(\lambda_{k}\right)<0$
- $z=T x$

LTI System: Stability

- The system $\dot{x}=A x$ is exponentially stable if and only if all eigenvalues of A are in the open left half plane, i.e. $\forall k, \operatorname{Re}\left(\lambda_{k}\right)<0$
- $z=T x \Rightarrow \dot{z}=T A T^{-1} z=\Lambda z, z_{0}=T x_{0}$

LTI System: Stability

- The system $\dot{x}=A x$ is exponentially stable if and only if all eigenvalues of A are in the open left half plane, i.e. $\forall k, \operatorname{Re}\left(\lambda_{k}\right)<0$
$\cdot z=T x \Rightarrow \quad \dot{z}=T A T^{-1} z=\Lambda z, z_{0}=T x_{0}$
$\cdot\left[\begin{array}{l}z_{1}(t) \\ z_{2}(t)\end{array}\right]=\left[\begin{array}{cc}e^{\lambda_{1} t} & 0 \\ 0 & e^{\lambda_{2} t}\end{array}\right]\left[\begin{array}{l}z_{10} \\ z_{20}\end{array}\right]$

LTI System: Stability

- The system $\dot{x}=A x$ is exponentially stable if and only if all eigenvalues of A are in the open left half plane, i.e. $\forall k, \operatorname{Re}\left(\lambda_{k}\right)<0$
$\cdot z=T x \Rightarrow \dot{z}=T A T^{-1} z=\Lambda z, z_{0}=T x_{0}$
$\cdot\left[\begin{array}{l}z_{1}(t) \\ z_{2}(t)\end{array}\right]=\left[\begin{array}{cc}e^{\lambda_{1} t} & 0 \\ 0 & e^{\lambda_{2} t}\end{array}\right]\left[\begin{array}{l}z_{10} \\ z_{20}\end{array}\right]$
- If $\operatorname{Re}\left(\lambda_{k}\right)<0, e^{\lambda_{k} t} \rightarrow 0$, so $z_{k}(t)=e^{\lambda_{k} t} z_{k 0} \rightarrow 0$

LTI System: Stability

- The system $\dot{x}=A x$ is exponentially stable if and only if all eigenvalues of A are in the open left half plane, i.e. $\forall k, \operatorname{Re}\left(\lambda_{k}\right)<0$
$\cdot z=T x \Rightarrow \dot{z}=T A T^{-1} z=\Lambda z, z_{0}=T x_{0}$
$\cdot\left[\begin{array}{l}z_{1}(t) \\ z_{2}(t)\end{array}\right]=\left[\begin{array}{cc}e^{\lambda_{1} t} & 0 \\ 0 & e^{\lambda_{2} t}\end{array}\right]\left[\begin{array}{l}z_{10} \\ z_{20}\end{array}\right]$
- If $\operatorname{Re}\left(\lambda_{k}\right)<0, e^{\lambda_{k} t} \rightarrow 0$, so $z_{k}(t)=e^{\lambda_{k} t} z_{k 0} \rightarrow 0$

- If $\max \operatorname{Re}\left(\lambda_{k}\right)=0, z(t)$ stays bounded only if $\bar{\lambda}_{k}$ has Jordan block of size 1

LTI System: Stability

- If $\max \operatorname{Re}\left(\lambda_{k}\right)=0, z(t)$ stays bounded only if $\bar{\lambda}_{k}$ has Jordan block of size 1

LTI System: Stability

- If $\max \operatorname{Re}\left(\lambda_{k}\right)=0, z(t)$ stays bounded only if $\bar{\lambda}_{k}$ has Jordan block of size 1

$$
e^{J t} Z_{0}=\left[\begin{array}{cccccc}
e^{\lambda_{1} t} & & & & & \\
& e^{\lambda_{1} t} & t e^{\lambda_{1} t} & & & \\
& & e^{\lambda_{1} t} & & & \\
& & & e^{\lambda_{2} t} & t e^{\lambda_{2} t} & \frac{1}{2} t^{2} e^{\lambda_{2} t} \\
& & & & e^{\lambda_{2} t} & t e^{\lambda_{2} t} \\
& & & & & e^{\lambda_{2} t}
\end{array}\right]
$$

- When $\lambda_{i}=0$...

LTI System: Stability

- If $\max \operatorname{Re}\left(\lambda_{k}\right)=0, z(t)$ stays bounded only if $\bar{\lambda}_{k}$ has Jordan block of size 1

$$
e^{J t} z_{0}=\left[\begin{array}{cccccc}
1 & & & & & \\
& 1 & t & & & \\
& & 1 & & & \\
& & & 1 & t & \frac{1}{2} t^{2} \\
& & & & 1 & t \\
& & & & & 1
\end{array}\right] Z_{0}
$$

- When $\lambda_{i}=0$...

LTI System: Stability

- If $\max \operatorname{Re}\left(\lambda_{k}\right)=0, z(t)$ stays bounded only if $\bar{\lambda}_{k}$ has Jordan block of size 1

$$
e^{J t} z_{0}=\left[\begin{array}{cccccc}
1 & & & & & \\
& 1 & t & & & \\
& & 1 & & & \\
& & & 1 & t & \frac{1}{2} t^{2} \\
& & & & 1 & t \\
& & & & & 1
\end{array}\right] z_{0}
$$

- When $\lambda_{i}=0$...
- Not stable!

Linearization

- Local behaviour of nonlinear system $\dot{x}=f(x, u)$ at operating point $(x, u)=(\bar{x}, \bar{u})$
- At the operating point, $\dot{\bar{x}}=f(\bar{x}, \bar{u})$
- Define new variables $\tilde{x}=x-\bar{x}, \tilde{u}=u-\bar{u}$

Linearization

- Local behaviour of nonlinear system $\dot{x}=f(x, u)$ at operating point $(x, u)=(\bar{x}, \bar{u})$
- At the operating point, $\dot{\bar{x}}=f(\bar{x}, \bar{u})$
- Define new variables $\tilde{x}=x-\bar{x}, \tilde{u}=u-\bar{u}$
- Taylor approximation:
- $f(x, u)=f(\bar{x}+\tilde{x}, \bar{u}+\tilde{u})$

Linearization

- Local behaviour of nonlinear system $\dot{x}=f(x, u)$ at operating point $(x, u)=(\bar{x}, \bar{u})$
- At the operating point, $\dot{\bar{x}}=f(\bar{x}, \bar{u})$
- Define new variables $\tilde{x}=x-\bar{x}, \tilde{u}=u-\bar{u}$
- Taylor approximation:
- $f(x, u)=f(\bar{x}+\tilde{x}, \bar{u}+\tilde{u}) \approx f(\bar{x}, \bar{u})+\left.\frac{\partial f}{\partial x}\right|_{(\bar{x}, \bar{u})} \tilde{x}+\left.\frac{\partial f}{\partial u}\right|_{(\bar{x}, \bar{u})} \tilde{u}$

Linearization

- Local behaviour of nonlinear system $\dot{x}=f(x, u)$ at operating point $(x, u)=(\bar{x}, \bar{u})$
- At the operating point, $\dot{\bar{x}}=f(\bar{x}, \bar{u})$
- Define new variables $\tilde{x}=x-\bar{x}, \tilde{u}=u-\bar{u}$
- Taylor approximation:
- $f(x, u)=f(\bar{x}+\tilde{x}, \bar{u}+\tilde{u}) \approx f(\bar{x}, \bar{u})+\left.\frac{\partial f}{\partial x}\right|_{(\bar{x}, \bar{u})} \tilde{x}+\left.\frac{\partial f}{\partial u}\right|_{(\bar{x}, \bar{u})} \tilde{u}$
- $\dot{x}=\dot{\bar{x}}+\dot{\tilde{x}}$

Linearization

- Local behaviour of nonlinear system $\dot{x}=f(x, u)$ at operating point $(x, u)=(\bar{x}, \bar{u})$
- At the operating point, $\dot{\bar{x}}=f(\bar{x}, \bar{u})$
- Define new variables $\tilde{x}=x-\bar{x}, \tilde{u}=u-\bar{u}$
- Taylor approximation:
- $f(x, u)=f(\bar{x}+\tilde{x}, \bar{u}+\tilde{u}) \approx f(\bar{x}, \bar{u})+\left.\frac{\partial f}{\partial x}\right|_{(\bar{x}, \bar{u})} \tilde{x}+\left.\frac{\partial f}{\partial u}\right|_{(\bar{x}, \bar{u})} \tilde{u}$
- $\dot{x}=\dot{\bar{x}}+\dot{\tilde{x}} \approx f(\bar{x}, \bar{u})+\left.\frac{\partial f}{\partial x}\right|_{(\bar{x}, \bar{u})} \tilde{x}+\left.\frac{\partial f}{\partial u}\right|_{(\bar{x}, \bar{u})} \tilde{u}$

Linearization

- Local behaviour of nonlinear system $\dot{x}=f(x, u)$ at operating point $(x, u)=(\bar{x}, \bar{u})$
- At the operating point, $\dot{\bar{x}}=f(\bar{x}, \bar{u})$
- Define new variables $\tilde{x}=x-\bar{x}, \tilde{u}=u-\bar{u}$
- Taylor approximation:
- $f(x, u)=f(\bar{x}+\tilde{x}, \bar{u}+\tilde{u}) \approx f(\bar{x}, \bar{u})+\left.\frac{\partial f}{\partial x}\right|_{(\bar{x}, \bar{u})} \tilde{x}+\left.\frac{\partial f}{\partial u}\right|_{(\bar{x}, \bar{u})} \tilde{u}$
- $\dot{x}=\dot{\bar{x}}+\dot{\tilde{x}} \approx f(\bar{x}, \bar{u})+\left.\frac{\partial f}{\partial x}\right|_{(\bar{x}, \bar{u})} \tilde{x}+\left.\frac{\partial f}{\partial u}\right|_{(\bar{x}, \bar{u})} \tilde{u}$
- $\dot{\tilde{x}}=\left.\frac{\partial f}{\partial x}\right|_{(\bar{x}, \bar{u})} \tilde{x}+\left.\frac{\partial f}{\partial u}\right|_{(\bar{x}, \bar{u})} \tilde{u}$

Linearization

- From previous slide: $\dot{\tilde{x}}=\left.\frac{\partial f}{\partial x}\right|_{(\bar{x}, \bar{u})} \tilde{x}+\left.\frac{\partial f}{\partial u}\right|_{(\bar{x}, \bar{u})} \tilde{u}$
- $x=\left[\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right], f(x, u)=\left[\begin{array}{c}f_{1}(x, u) \\ \vdots \\ f_{n}(x, u)\end{array}\right], u=\left[\begin{array}{c}u_{1} \\ \vdots \\ u_{k}\end{array}\right]$

Linearization

- From previous slide: $\dot{\tilde{x}}=\left.\frac{\partial f}{\partial x}\right|_{(\bar{x}, \bar{u})} \tilde{x}+\left.\frac{\partial f}{\partial u}\right|_{(\bar{x}, \bar{u})} \tilde{u}$
$\cdot x=\left[\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right], f(x, u)=\left[\begin{array}{c}f_{1}(x, u) \\ \vdots \\ f_{n}(x, u)\end{array}\right], u=\left[\begin{array}{c}u_{1} \\ \vdots \\ u_{k}\end{array}\right]$
- $\frac{\partial f}{\partial x}=\underbrace{\left[\begin{array}{cccc}\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\ \frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} & \cdots & \frac{\partial f_{2}}{\partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_{n}}{\partial x_{1}} & \frac{\partial f_{n}}{\partial x_{2}} & \cdots & \frac{\partial f_{n}}{\partial x_{n}}\end{array}\right]_{(\bar{x}, \bar{u})}}_{\tilde{A}} \in$

Linearization

- From previous slide: $\dot{\tilde{x}}=\left.\frac{\partial f}{\partial x}\right|_{(\bar{x}, \bar{u})} \tilde{x}+\left.\frac{\partial f}{\partial u}\right|_{(\bar{x}, \bar{u})} \tilde{u}$
$\cdot x=\left[\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right], f(x, u)=\left[\begin{array}{c}f_{1}(x, u) \\ \vdots \\ f_{n}(x, u)\end{array}\right], u=\left[\begin{array}{c}u_{1} \\ \vdots \\ u_{k}\end{array}\right]$

Linearization

- Inverted pendulum
- Newton's laws: $\ddot{\theta}=\frac{\tau}{m l^{2}}+\frac{g}{l} \sin \theta$

Linearization

- Inverted pendulum

- Newton's laws: $\ddot{\theta}=\frac{\tau}{m l^{2}}+\frac{g}{l} \sin \theta$
- Let $x_{1}=\theta, x_{2}=\dot{\theta}, u=\frac{\tau}{m l^{2}}$ ("normalized control")

Linearization

- Inverted pendulum

- Newton's laws: $\ddot{\theta}=\frac{\tau}{m l^{2}}+\frac{g}{l} \sin \theta$
- Let $x_{1}=\theta, x_{2}=\dot{\theta}, u=\frac{\tau}{m l^{2}}$ ("normalized control")

$$
\begin{aligned}
& \dot{x}_{1}=x_{2} \\
& \dot{x}_{2}=\frac{g}{l} \sin x_{1}+u
\end{aligned}
$$

Linearization

- Inverted pendulum

- Newton's laws: $\ddot{\theta}=\frac{\tau}{m l^{2}}+\frac{g}{l} \sin \theta$
- Let $x_{1}=\theta, x_{2}=\dot{\theta}, u=\frac{\tau}{m l^{2}}$ ("normalized control")

$$
\begin{aligned}
& \dot{x}_{1}=x_{2} \\
& \dot{x}_{2}=\frac{g}{l} \sin x_{1}+u
\end{aligned}
$$

- Linearize around $\theta=x_{1}=0, \dot{\theta}=x_{2}=0, u=0$

$\dot{x}_{1}=x_{2}$
 Linearization $\quad \dot{x}_{2}=\frac{g}{l} \sin x_{1}+u$

- Linearize around $\theta=x_{1}=0, \dot{\theta}=x_{2}=0, u=0$
- $\left.\dot{\tilde{x}} \approx \frac{\partial f}{\partial x}\right|_{(\bar{x}, \bar{u})} \tilde{x}+\left.\frac{\partial f}{\partial u}\right|_{(\bar{x}, \bar{u})} \tilde{u}$

$\dot{x}_{1}=x_{2}$
 Linearization $\quad \dot{x}_{2}=\frac{g}{l} \sin x_{1}+u$

- Linearize around $\theta=x_{1}=0, \dot{\theta}=x_{2}=0, u=0$

- $\left.\dot{\tilde{x}} \approx \frac{\partial f}{\partial x}\right|_{(\bar{x}, \bar{u})} \tilde{x}+\left.\frac{\partial f}{\partial u}\right|_{(\bar{x}, \bar{u})} \tilde{u}$
- $\left.\frac{\partial f}{\partial x}\right|_{(\bar{x}, \bar{u})}=\left[\begin{array}{ll}\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} \\ \frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}}\end{array}\right]_{(0,0)}$

$$
\dot{x}_{1}=x_{2}
$$
 $$
\text { Linearization } \quad \dot{x}_{2}=\frac{g}{l} \sin x_{1}+u
$$

- Linearize around $\theta=x_{1}=0, \dot{\theta}=x_{2}=0, u=0$

- $\left.\dot{\tilde{x}} \approx \frac{\partial f}{\partial x}\right|_{(\bar{x}, \bar{u})} \tilde{x}+\left.\frac{\partial f}{\partial u}\right|_{(\bar{x}, \bar{u})} \tilde{u}$
$\left.\cdot \frac{\partial f}{\partial x}\right|_{(\bar{x}, \bar{u})}=\left[\begin{array}{ll}\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} \\ \frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}}\end{array}\right]_{(\mathbf{0}, \mathbf{0})}=\left[\begin{array}{cc}0 & 1 \\ \frac{g}{l} \cos x_{1} & 0\end{array}\right]_{(\mathbf{0}, \mathbf{0})}$

$$
\dot{x}_{1}=x_{2}
$$
 $$
\text { Linearization } \quad \dot{x}_{2}=\frac{g}{l} \sin x_{1}+u
$$

- Linearize around $\theta=x_{1}=0, \dot{\theta}=x_{2}=0, u=0$

$\left.\cdot \dot{\tilde{x}} \approx \frac{\partial f}{\partial x}\right|_{(\bar{x}, \bar{u})} \tilde{x}+\left.\frac{\partial f}{\partial u}\right|_{(\bar{x}, \bar{u})} \tilde{u}$
$\left.\cdot \frac{\partial f}{\partial x}\right|_{(\bar{x}, \bar{u})}=\left[\begin{array}{ll}\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} \\ \frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}}\end{array}\right]_{(0,0)}=\left[\begin{array}{cc}0 & 1 \\ \frac{g}{l} \cos x_{1} & 0\end{array}\right]_{(0,0)}=\left[\begin{array}{ll}0 & 1 \\ \frac{g}{l} & 0\end{array}\right]$

$$
\text { Linearization } \quad \begin{aligned}
& \dot{x}_{1}=x_{2} \\
& \dot{x}_{2}=\frac{g}{l} \sin x_{1}+u
\end{aligned}
$$

- Linearize around $\theta=x_{1}=0, \dot{\theta}=x_{2}=0, u=0$

$\left.\cdot \dot{\tilde{x}} \approx \frac{\partial f}{\partial x}\right|_{(\bar{x}, \bar{u})} \tilde{x}+\left.\frac{\partial f}{\partial u}\right|_{(\bar{x}, \bar{u})} \tilde{u}$
$\left.\cdot \frac{\partial f}{\partial x}\right|_{(\bar{x}, \bar{u})}=\left[\begin{array}{ll}\frac{\partial f_{1}}{\partial_{1}} & \frac{\partial f_{1}}{\partial x_{2}} \\ \frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}}\end{array}\right]_{(0,0)}=\left[\begin{array}{cc}0 & 1 \\ \frac{g}{l} \cos x_{1} & 0\end{array}\right]_{(0,0)}=\left[\begin{array}{ll}0 & 1 \\ \frac{g}{l} & 0\end{array}\right]$
$\left.\cdot \frac{\partial f}{\partial u}\right|_{(\bar{x}, \bar{u})}=\left[\begin{array}{l}\frac{\partial f_{1}}{\partial u} \\ \frac{\partial f_{2}}{\partial u}\end{array}\right]_{(0,0)}$

$$
\text { Linearization } \quad \begin{aligned}
& \dot{x}_{1}=x_{2} \\
& \dot{x}_{2}=\frac{g}{l} \sin x_{1}+u
\end{aligned}
$$

- Linearize around $\theta=x_{1}=0, \dot{\theta}=x_{2}=0, u=0$

$\left.\cdot \dot{\tilde{x}} \approx \frac{\partial f}{\partial x}\right|_{(\bar{x}, \bar{u})} \tilde{x}+\left.\frac{\partial f}{\partial u}\right|_{(\bar{x}, \bar{u})} \tilde{u}$
$\left.\cdot \frac{\partial f}{\partial x}\right|_{(\bar{x}, \bar{u})}=\left[\begin{array}{ll}\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} \\ \frac{f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}}\end{array}\right]_{(0,0)}=\left[\begin{array}{cc}0 & 1 \\ \frac{g}{l} \cos x_{1} & 0\end{array}\right]_{(0,0)}=\left[\begin{array}{ll}0 & 1 \\ \frac{g}{l} & 0\end{array}\right]$
$\left.\cdot \frac{\partial f}{\partial u}\right|_{(\bar{x}, \bar{u})}=\left[\begin{array}{l}\frac{\partial f_{1}}{\partial u} \\ \frac{\partial f_{2}}{\partial u}\end{array}\right]_{(0,0)}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$

$$
\dot{x}_{1}=x_{2}
$$
 $$
\text { Linearization } \quad \dot{x}_{2}=\frac{g}{l} \sin x_{1}+u
$$

- Linearize around $\theta=x_{1}=0, \dot{\theta}=x_{2}=0, u=0$

$\left.\cdot \dot{\tilde{x}} \approx \frac{\partial f}{\partial x}\right|_{(\bar{x}, \bar{u})} \tilde{x}+\left.\frac{\partial f}{\partial u}\right|_{(\bar{x}, \bar{u})} \tilde{u}$
$\left.\cdot \frac{\partial f}{\partial x}\right|_{(\bar{x}, \bar{u})}=\left[\begin{array}{ll}\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} \\ \frac{\partial x_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}}\end{array}\right]_{(\mathbf{0}, \mathbf{0})}=\left[\begin{array}{cc}0 & 1 \\ \frac{g}{l} \cos x_{1} & 0\end{array}\right]_{(0,0)}=\left[\begin{array}{ll}0 & 1 \\ \frac{g}{l} & 0\end{array}\right]$
$\left.\cdot \frac{\partial f}{\partial u}\right|_{(\bar{x}, \bar{u})}=\left[\begin{array}{c}\frac{\partial f_{1}}{\partial u} \\ \frac{\partial f_{2}}{\partial u}\end{array}\right]_{(0,0)}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$
- So $\dot{x} \approx\left[\begin{array}{ll}0 & 1 \\ \frac{g}{l} & 0\end{array}\right] x+\left[\begin{array}{l}0 \\ 1\end{array}\right] u \quad \Rightarrow \quad \begin{aligned} & \dot{x}_{1} \approx x_{2} \\ & \dot{x}_{2} \approx \frac{g}{l} x_{1}+u\end{aligned}$

State Feedback Control

- Suppose $\dot{x}=A x+B u$, can we design u to make $x=\mathbf{0}_{n}$ stable?

State Feedback Control

- Suppose $\dot{x}=A x+B u$, can we design u to make $x=\mathbf{0}_{n}$ stable?
- Try linear state feedback: $u=-K x \Rightarrow \dot{x}=(A-B K) x$

State Feedback Control

- Suppose $\dot{x}=A x+B u$, can we design u to make $x=\mathbf{0}_{n}$ stable?
- Try linear state feedback: $u=-K x \Rightarrow \dot{x}=(A-B K) x$
- Define $\bar{A}=A-B K$, and we have $\dot{x}=\bar{A} x$

State Feedback Control

- Suppose $\dot{x}=A x+B u$, can we design u to make $x=\mathbf{0}_{n}$ stable?
- Try linear state feedback: $u=-K x \Rightarrow \dot{x}=(A-B K) x$
- Define $\bar{A}=A-B K$, and we have $\dot{x}=\bar{A} x$
- We can try to choose the elements of K, such that the eigenvalues of \bar{A} are in the left half-plane
- I

State Feedback Control

- Suppose $\dot{x}=A x+B u$, can we design u to make $x=\mathbf{0}_{n}$ stable?
- Try linear state feedback: $u=-K x \Rightarrow \dot{x}=(A-B K) x$
- Define $\bar{A}=A-B K$, and we have $\dot{x}=\bar{A} x$
- We can try to choose the elements of K, such that the eigenvalues of \bar{A} are in the left half-plane
- Issues
- Controller saturation
- Full state information required

State Feedback

- System: $\dot{x}=A x+B u$
- Open-loop control: $u=u(t)$

State Feedback

- System: $\dot{x}=A x+B u$
- Open-loop control: $u=u(t)$

- Closed-loop (linear state feedback) control: $u=-K x$
- $\dot{x}=A x-B K x$

State Feedback

- System: $\dot{x}=A x+B u$
- Open-loop control: $u=u(t)$

- Closed-loop (linear state feedback) control: $u=-K x$
- $\dot{x}=A x-B K x$
- $\dot{x}=(A-B K) x$
- $\dot{x}=\bar{A} x$, where $\bar{A}=A-B K$

State Feedback

- System: $\dot{x}=A x+B u$
- Open-loop control: $u=u(t)$

- Closed-loop (linear state feedback) control: $u=-K x$
- $\dot{x}=A x-B K x$
- $\dot{x}=(A-B K) x$
- $\dot{x}=\bar{A} x$, where $\bar{A}=A-B K$

