

Linear Systems I

CMPT 882

Jan. 11

Linear Systems

- Differential equations generally do not have closed-form solutions
 - Numerical methods can be used to obtain approximate solutions
 - Other analysis techniques offer insight into the solutions

Linear Systems

- Differential equations generally do not have closed-form solutions
 - Numerical methods can be used to obtain approximate solutions
 - Other analysis techniques offer insight into the solutions
- Linear time-invariant (LTI) systems: $\dot{x} = Ax + Bu$
 - Damped mass spring systems
 - Circuits involving resistors, capacitors, inductors
 - Approximations of nonlinear systems

Linear Systems

(If flying near hover, and slowly) Bouffard, 2012

Road Map

- Basic properties and closed form solution
- Stability
- Linearization
- Controllability and observability

Road Map

- Linear Systems (This and next lecture)
 - Basic properties and closed form solution
 - Stability
 - Linearization
 - Controllability and observability
- Nonlinear systems (Two lectures)
- Optimization and optimal control (New unit, ~8 lectures)

LTI Systems

• Linear time-invariant (LTI) systems: $\dot{x} = Ax + Bu$

Linear System

- Existence and Uniqueness of Solutions of $\dot{x} = f(x, u)$
 - $\exists L > 0, \forall u, x_1, x_2, ||f(x_1, u) f(x_2, u)|| \le L ||x_1 x_2||$
- Existence and Uniqueness of Solutions of $\dot{x} = Ax + Bu$
 - $\exists L > 0, \forall u, x_1, x_2, ||Ax_1 + Bu Ax_2 Bu|| \le L ||x_1 x_2||$

Linear System

- Existence and Uniqueness of Solutions of $\dot{x} = f(x, u)$
 - $\exists L > 0, \forall u, x_1, x_2, ||f(x_1, u) f(x_2, u)|| \le L ||x_1 x_2||$
- Existence and Uniqueness of Solutions of $\dot{x} = Ax + Bu$
 - $\exists L > 0, \forall u, x_1, x_2, ||Ax_1 + Bu Ax_2 Bu|| \le L ||x_1 x_2||$
 - $\Leftrightarrow \exists L > 0, \forall u, x_1, x_2, ||Ax_1 Ax_2|| \le L ||x_1 x_2||$

Linear System

- Existence and Uniqueness of Solutions of $\dot{x} = f(x, u)$
 - $\exists L > 0, \forall u, x_1, x_2, ||f(x_1, u) f(x_2, u)|| \le L ||x_1 x_2||$
- Existence and Uniqueness of Solutions of $\dot{x} = Ax + Bu$
 - $\exists L > 0, \forall u, x_1, x_2, ||Ax_1 + Bu Ax_2 Bu|| \le L||x_1 x_2||$
 - $\Leftrightarrow \exists L > 0, \forall u, x_1, x_2, ||Ax_1 Ax_2|| \le L ||x_1 x_2||$
 - But $||Ax_1 Ax_2|| = ||A(x_1 x_2)|| \le ||A||_i ||x_1 x_2||$
- Recall:

•
$$||A||_{p,i} = \sup_{x \neq 0} \frac{||Ax||_p}{||x||_p}$$

• $||A||_{\infty,i} = \max_{i}^{x \neq 0} \sum_{j=1}^{n} |a_{ij}|$ (maximum row sum)

•
$$\dot{x} = Ax + Bu$$
, $x(0) = x_0$
• $x(t) = e^{At}x_0 + \int_0^t e^{A(t-\tau)}Bu(\tau)d\tau$
 $e^{At} = I + \frac{At}{1!} + \frac{A^2t^2}{2!} + \cdots$

•
$$\dot{x} = Ax + Bu$$
, $x(0) = x_0$
• $x(t) = e^{At}x_0 + \int_0^t e^{A(t-\tau)}Bu(\tau)d\tau$
Matlab: expm $e^{At} = I + \frac{At}{1!} + \frac{A^2t^2}{2!} + \cdots$

•
$$\dot{x} = Ax + Bu$$
, $x(0) = x_0$
• $x(t) = e^{At}x_0 + \int_0^t e^{A(t-\tau)}Bu(\tau)d\tau$
Matlab: expm
 $e^{At} = I + \frac{At}{1!} + \frac{A^2t^2}{2!} + \cdots$

- Zero input solution: $x(t) = e^{At}x_0$
 - $z = Tx \Rightarrow \dot{z} = TAT^{-1}z$, $z_0 = Tx_0$

•
$$\dot{x} = Ax + Bu$$
, $x(0) = x_0$
• $x(t) = e^{At}x_0 + \int_0^t e^{A(t-\tau)}Bu(\tau)d\tau$
Matlab: expm
 $e^{At} = I + \frac{At}{1!} + \frac{A^2t^2}{2!} + \cdots$

•
$$z = Tx \Rightarrow \dot{z} = TAT^{-1}z$$
, $z_0 = Tx_0$

• Define $\tilde{A} = TAT^{-1} \Rightarrow \dot{z} = Jz$

•
$$\dot{x} = Ax + Bu$$
, $x(0) = x_0$
• $x(t) = e^{At}x_0 + \int_0^t e^{A(t-\tau)}Bu(\tau)d\tau$
Matlab: expm $e^{At} = I + \frac{At}{1!} + \frac{A^2t^2}{2!} + \cdots$

• Zero input solution: $x(t) = e^{At}x_0$

•
$$z = Tx \Rightarrow \dot{z} = TAT^{-1}z$$
, $z_0 = Tx_0$

- Define $\tilde{A} = TAT^{-1} \Rightarrow \dot{z} = Jz$
- Solution in terms of $z: z(t) = e^{Jt} z_0$

•
$$\dot{x} = Ax + Bu$$
, $x(0) = x_0$
• $x(t) = e^{At}x_0 + \int_0^t e^{A(t-\tau)}Bu(\tau)d\tau$
Matlab: expm $e^{At} = I + \frac{At}{1!} + \frac{A^2t^2}{2!} + \cdots$

• Zero input solution: $x(t) = e^{At}x_0$

•
$$z = Tx \Rightarrow \dot{z} = TAT^{-1}z$$
, $z_0 = Tx_0$

- Define $\tilde{A} = TAT^{-1} \Rightarrow \dot{z} = Jz$
- Solution in terms of $z: z(t) = e^{Jt}z_0$

• Diagonal
$$J: z(t) = \begin{bmatrix} e^{\lambda_1 t} & 0\\ 0 & e^{\lambda_2 t} \end{bmatrix} \begin{bmatrix} z_{10}\\ z_{20} \end{bmatrix}$$

$$f(J) = e^{Jt}$$

$$f(\cdot) = e^{\cdot t}$$

$$f'(\cdot) = te^{\cdot t}$$

$$f''(\cdot) = t^2 e^{\cdot t}$$

• If $\dot{x} = Ax$, $x(0) = x_0$, then $x(t) = e^{At}x_0$

 e^{At} "propagates" a state forward by a duration of t, according to the system dynamics A

• If $\dot{x} = Ax$, $x(0) = x_0$, then $x(t) = e^{At}x_0$

 e^{At} "propagates" a state forward by a duration of t, according to the system dynamics A

• If $\dot{x} = Ax$, $x(0) = x_0$, then $x(t) = e^{At}x_0$

 e^{At} "propagates" a state forward by a duration of t, according to the system dynamics A

• If $\dot{x} = Ax$, $x(0) = x_0$, then $x(t) = e^{At}x_0$

 e^{At} "propagates" a state forward by a duration of t, according to the system dynamics A

• State transition matrix

- If $\dot{x} = Ax$, $x(0) = x_0$, then $x(t) = e^{At}x_0$
- $e^0 = I$ (follows from the above)

 e^{At} "propagates" a state forward by a duration of t, according to the system dynamics A

• State transition matrix

- $e^0 = I$ (follows from the above)
- $e^{A(t+s)} = e^{At}e^{As}$ • $x(t+s) = e^{A(t+s)}x_0 = e^{At}e^{As}x_0$

• $e^{(A+B)t} = e^{At}e^{Bt}$ if and only if AB = BA

 e^{At} "propagates" a state forward by a duration of t, according to the system dynamics A

State transition matrix

• If
$$\dot{x} = Ax$$
, $x(0) = x_0$, then $x(t) = e^{At}x_0$

- $e^0 = I$ (follows from the above)
- $e^{A(t+s)} = e^{At}e^{As}$ • $x(t+s) = e^{A(t+s)}x_0 = e^{At}e^{As}x_0$
- $e^{(A+B)t} = e^{At}e^{Bt}$ if and only if AB = BA

•
$$(e^{At})^{-1} = e^{-At}$$

• So $e^{At}e^{-A} = I$

 e^{A5} t = 5 t = 0

e^{At} "propagates" a state forward
 by a duration of t, according to
 the system dynamics A

State transition matrix

- If $\dot{x} = Ax$, $x(0) = x_0$, then $x(t) = e^{At}x_0$
- $e^{0} = I$ (follows from the above) • $e^{A(t+s)} = e^{At}e^{As}$ • $x(t+s) = e^{A(t+s)}x_{0} = e^{At}e^{As}x_{0}$ • $e^{(A+B)t} = e^{At}e^{Bt}$ if and only if AB = BA
- $(e^{At})^{-1} = e^{-At}$ • So $e^{At}e^{-At} = I$

•
$$\frac{d}{dt}e^{At} = Ae^{At} = e^{At}A$$

• From definition:
$$e^{At} = I + \frac{At}{1!} + \frac{A^2t^2}{2!} + \cdots$$

 e^{At} "propagates" a state forward by a duration of t, according to the system dynamics A

State transition matrix

• If $\dot{x} = Ax + Bu$, $x(0) = x_0$, then $x(t) = e^{At}x_0 + \int_0^t e^{A(t-\tau)}Bu(\tau)d\tau$

- If $\dot{x} = Ax + Bu$, $x(0) = x_0$, then $x(t) = e^{At}x_0 + \int_0^t e^{A(t-\tau)}Bu(\tau)d\tau$
- Initial conditions:

• Differentiate:

- If $\dot{x} = Ax + Bu$, $x(0) = x_0$, then $x(t) = e^{At}x_0 + \int_0^t e^{A(t-\tau)}Bu(\tau)d\tau$
- Initial conditions:

•
$$x(0) = e^{A(0)}x_0 + \int_0^0 e^{A(t-\tau)}Bu(\tau)d\tau = x_0$$

• Differentiate:

- If $\dot{x} = Ax + Bu$, $x(0) = x_0$, then $x(t) = e^{At}x_0 + \int_0^t e^{A(t-\tau)}Bu(\tau)d\tau$
- Initial conditions:

•
$$x(0) = e^{A(0)}x_0 + \int_0^0 e^{A(t-\tau)}Bu(\tau)d\tau = x_0$$

• Differentiate:

•
$$\dot{x} = \frac{d}{dt} \left(e^{At} x_0 \right) + \frac{d}{dt} \left(\int_0^t e^{A(t-\tau)} Bu(\tau) d\tau \right)$$

• If $\dot{x} = Ax + Bu$, $x(0) = x_0$, then $x(t) = e^{At}x_0 + \int_0^t e^{A(t-\tau)}Bu(\tau)d\tau$

 $\frac{d}{dt}\left(\int_{0}^{t} e^{A(t-\tau)}Bu(\tau)d\tau\right) = \frac{d}{dt}\left(\int_{0}^{t} e^{At}e^{-A\tau}Bu(\tau)d\tau\right)$

• Initial conditions:

•
$$x(0) = e^{A(0)}x_0 + \int_0^0 e^{A(t-\tau)}Bu(\tau)d\tau = x_0$$

- Differentiate:
 - $\dot{x} = \frac{d}{dt} (e^{At} x_0) + \frac{d}{dt} \left(\int_0^t e^{A(t-\tau)} Bu(\tau) d\tau \right)$
 - $\dot{x} = Ae^{At}x_0 +$

- If $\dot{x} = Ax + Bu$, $x(0) = x_0$, then $x(t) = e^{At}x_0 + \int_0^t e^{A(t-\tau)}Bu(\tau)d\tau$
- Initial conditions:

•
$$x(0) = e^{A(0)}x_0 + \int_0^0 e^{A(t-\tau)}Bu(\tau)d\tau = x_0$$

- Differentiate: • $\dot{x} = \frac{d}{dt} \left(e^{At} x_0 \right) + \frac{d}{dt} \left(\int_0^t e^{A(t-\tau)} Bu(\tau) d\tau \right)$ $\frac{d}{dt} \left(\int_0^t e^{A(t-\tau)} Bu(\tau) d\tau \right)$ $\frac{d}{dt} \left(\int_0^t e^{At} x_0 d\tau \right)$ $\frac{d}{dt} \left(e^{At} \int_0^t e^{-A\tau} Bu(\tau) d\tau \right)$
 - $\dot{x} = Ae^{At}x_0 +$

- If $\dot{x} = Ax + Bu$, $x(0) = x_0$, then $x(t) = e^{At}x_0 + \int_0^t e^{A(t-\tau)}Bu(\tau)d\tau$
- Initial conditions:

•
$$x(0) = e^{A(0)}x_0 + \int_0^0 e^{A(t-\tau)}Bu(\tau)d\tau = x_0$$

• Differentiate: • $\dot{x} = \frac{d}{dt} (e^{At} x_0) + \frac{d}{dt} (\int_0^t e^{A(t-\tau)} Bu(\tau) d\tau)$ • $\dot{x} = Ae^{At} x_0 +$ $\frac{d}{dt} (\int_0^t e^{A(t-\tau)} Bu(\tau) d\tau)$ = $\frac{d}{dt} (e^{At} \int_0^t e^{-A\tau} Bu(\tau) d\tau)$ = $Ae^{At} \int_0^t e^{-A\tau} Bu(\tau) d\tau + e^{At} e^{-At} Bu(\tau)$

• If $\dot{x} = Ax + Bu$, $x(0) = x_0$, then $x(t) = e^{At}x_0 + \int_0^t e^{A(t-\tau)}Bu(\tau)d\tau$

• Initial conditions:
•
$$x(0) = e^{A(0)}x_0 + \int_0^0 e^{A(t-\tau)}Bu(\tau)d\tau = x_0$$

• Differentiate:
• $\dot{x} = \frac{d}{dt}(e^{At}x_0) + \frac{d}{dt}(\int_0^t e^{A(t-\tau)}Bu(\tau)d\tau)$
• $\dot{x} = Ae^{At}x_0 +$
 $\frac{d}{dt}\int_a^t e^{A(t-\tau)}Bu(\tau)d\tau = x_0$
 $= \frac{d}{dt}\int_a^t e^{At}e^{-A\tau}Bu(\tau)d\tau$
 $= Ae^{At}\int_0^t e^{-A\tau}Bu(\tau)d\tau + e^{At}e^{-At}Bu(\tau)d\tau$
Solution to LTI System: Proof

• If $\dot{x} = Ax + Bu$, $x(0) = x_0$, then $x(t) = e^{At}x_0 + \int_0^t e^{A(t-\tau)}Bu(\tau)d\tau$

• Initial conditions:
•
$$x(0) = e^{A(0)}x_0 + \int_0^0 e^{A(t-\tau)}Bu(\tau)d\tau = x_0$$

• Differentiate:
• $\dot{x} = \frac{d}{dt}(e^{At}x_0) + \frac{d}{dt}(\int_0^t e^{A(t-\tau)}Bu(\tau)d\tau)$
• $\dot{x} = Ae^{At}x_0 +$

$$\frac{d}{dt}\int_0^t e^{A(t-\tau)}Bu(\tau)d\tau = x_0$$

$$\frac{d}{dt}\int_0^t e^{A(t-\tau)}Bu(\tau)d\tau = x_0$$

$$\frac{d}{dt}\int_0^t e^{A(t-\tau)}Bu(\tau)d\tau = x_0$$

$$= \frac{d}{dt}\int_0^t e^{At}e^{-A\tau}Bu(\tau)d\tau$$

$$= Ae^{At}\int_0^t e^{-A\tau}Bu(\tau)d\tau + e^{At}e^{-A\tau}Bu(\tau)d\tau$$

$$= A\int_0^t e^{A(t-\tau)}Bu(\tau)d\tau + Bu(t)$$

Solution to LTI System: Proof

• If $\dot{x} = Ax + Bu$, $x(0) = x_0$, then $x(t) = e^{At}x_0 + \int_0^t e^{A(t-\tau)}Bu(\tau)d\tau$

• Initial conditions:
•
$$x(0) = e^{A(0)}x_0 + \int_0^0 e^{A(t-\tau)}Bu(\tau)d\tau = x_0$$

• Differentiate:
• $\dot{x} = \frac{d}{dt}(e^{At}x_0) + \frac{d}{dt}(\int_0^t e^{A(t-\tau)}Bu(\tau)d\tau)$
• $\dot{x} = Ae^{At}x_0 + A\int_0^t e^{A(t-\tau)}Bu(\tau)d\tau + Bu(t)$
= $Ae^{At}\int_0^t e^{-A\tau}Bu(\tau)d\tau + e^{At}e^{-A}Bu(\tau)d\tau$
= $Ae^{At}\int_0^t e^{-A\tau}Bu(\tau)d\tau + e^{At}e^{-A}Bu(\tau)d\tau$

Solution to LTI System: Proof

• If $\dot{x} = Ax + Bu$, $x(0) = x_0$, then $x(t) = e^{At}x_0 + \int_0^t e^{A(t-\tau)}Bu(\tau)d\tau$

• Initial conditions:
•
$$x(0) = e^{A(0)}x_0 + \int_0^0 e^{A(t-\tau)}Bu(\tau)d\tau = x_0$$

• Differentiate:
• $\dot{x} = \frac{d}{dt}(e^{At}x_0) + \frac{d}{dt}(\int_0^t e^{A(t-\tau)}Bu(\tau)d\tau)$
• $\dot{x} = Ae^{At}x_0 + A\int_0^t e^{A(t-\tau)}Bu(\tau)d\tau + Bu(t)$
• $\dot{x} = Ax(t) + Bu(t)$
 $= A\int_0^t e^{A(t-\tau)}Bu(\tau)d\tau + Bu(t)$
 $= A\int_0^t e^{A(t-\tau)}Bu(\tau)d\tau + Bu(t)$
 $= A\int_0^t e^{A(t-\tau)}Bu(\tau)d\tau + Bu(t)$

LTI System: Stability of $\dot{x} = Ax$

- Equilibrium point of $\dot{x} = f(x)$ is where f(x) = 0
 - For $\dot{x} = Ax$, in general $\mathbf{0}_n$ is an equilibrium point: $x_e = \mathbf{0}_n$
 - Also, $x_e \in N(A)$

LTI System: Stability of $\dot{x} = Ax$

- Equilibrium point of $\dot{x} = f(x)$ is where f(x) = 0
 - For $\dot{x} = Ax$, in general $\mathbf{0}_n$ is an equilibrium point: $x_e = 0_n$
 - Also, $x_e \in N(A)$
- Stable: x(t) is bounded for all $t \ge 0$, for all initial conditions x_0
- Asymptotically stable: $x(t) \rightarrow x_e$ as $t \rightarrow \infty$
- **Exponentially stable**: $\exists M, \alpha > 0$ such that $||x(t)|| \le Me^{-\alpha t} ||x_0||$

LTI System: Stability of $\dot{x} = Ax$

- Equilibrium point of $\dot{x} = f(x)$ is where f(x) = 0
 - For $\dot{x} = Ax$, in general $\mathbf{0}_n$ is an equilibrium point: $x_e = 0_n$
 - Also, $x_e \in N(A)$
- Stable: x(t) is bounded for all $t \ge 0$, for all initial conditions x_0
- Asymptotically stable: $x(t) \rightarrow x_e$ as $t \rightarrow \infty$
- **Exponentially stable**: $\exists M, \alpha > 0$ such that $||x(t)|| \le Me^{-\alpha t} ||x_0||$
- The system $\dot{x} = Ax$ is exponentially stable if and only if all eigenvalues of A are in the *open* left half plane, i.e. $\forall k$, $\operatorname{Re}(\lambda_k) < 0$

• The system $\dot{x} = Ax$ is exponentially stable if and only if all eigenvalues of A are in the open left half plane, i.e. $\forall k, \operatorname{Re}(\lambda_k) < 0$

- The system $\dot{x} = Ax$ is exponentially stable if and only if all eigenvalues of A are in the open left half plane, i.e. $\forall k, \operatorname{Re}(\lambda_k) < 0$
 - z = Tx

- The system $\dot{x} = Ax$ is exponentially stable if and only if all eigenvalues of A are in the open left half plane, i.e. $\forall k, \operatorname{Re}(\lambda_k) < 0$
 - $z = Tx \Rightarrow \dot{z} = TAT^{-1}z = \Lambda z$, $z_0 = Tx_0$

• The system $\dot{x} = Ax$ is exponentially stable if and only if all eigenvalues of A are in the open left half plane, i.e. $\forall k, \operatorname{Re}(\lambda_k) < 0$

•
$$z = Tx \Rightarrow \dot{z} = TAT^{-1}z = \Lambda z, \ z_0 = Tx_0$$

•
$$\begin{bmatrix} z_1(t) \\ z_2(t) \end{bmatrix} = \begin{bmatrix} e^{\lambda_1 t} & 0 \\ 0 & e^{\lambda_2 t} \end{bmatrix} \begin{bmatrix} z_{10} \\ z_{20} \end{bmatrix}$$

• The system $\dot{x} = Ax$ is exponentially stable if and only if all eigenvalues of A are in the open left half plane, i.e. $\forall k, \operatorname{Re}(\lambda_k) < 0$

•
$$z = Tx \Rightarrow \dot{z} = TAT^{-1}z = \Lambda z, \ z_0 = Tx_0$$

• $\begin{bmatrix} z_1(t) \\ z_2(t) \end{bmatrix} = \begin{bmatrix} e^{\lambda_1 t} & 0 \\ 0 & e^{\lambda_2 t} \end{bmatrix} \begin{bmatrix} z_{10} \\ z_{20} \end{bmatrix}$
• If $\operatorname{Re}(\lambda_k) < 0, e^{\lambda_k t} \to 0$, so $z_k(t) = e^{\lambda_k t} z_{k0} \to 0$

K

• The system $\dot{x} = Ax$ is exponentially stable if and only if all eigenvalues of A are in the open left half plane, i.e. $\forall k, \operatorname{Re}(\lambda_k) < 0$

•
$$z = Tx \Rightarrow \dot{z} = TAT^{-1}z = \Lambda z, \ z_0 = Tx_0$$

• $\begin{bmatrix} z_1(t) \\ z_2(t) \end{bmatrix} = \begin{bmatrix} e^{\lambda_1 t} & 0 \\ 0 & e^{\lambda_2 t} \end{bmatrix} \begin{bmatrix} z_{10} \\ z_{20} \end{bmatrix}$

• If $\operatorname{Re}(\lambda_k) < 0$, $e^{\lambda_k t} \to 0$, so $z_k(t) = e^{\lambda_k t} z_{k0} \to 0$

• If max $\operatorname{Re}(\lambda_k) = 0$, z(t) stays bounded only if $\overline{\lambda}_k$ has Jordan block of size 1

Eigenvalue with largest real part

• If max $\operatorname{Re}(\lambda_k) = 0$, z(t) stays bounded only if $\overline{\lambda}_k$ has Jordan block of size 1

- If max $\operatorname{Re}(\lambda_k) = 0$, z(t) stays bounded only if $\overline{\lambda}_k$ has Jordan block of size 1
- $e^{Jt}z_{0} = \begin{bmatrix} e^{\lambda_{1}t} & e^{\lambda_{1}t} & e^{\lambda_{1}t} & & \\ & e^{\lambda_{1}t} & e^{\lambda_{1}t} & & \\ & & e^{\lambda_{2}t} & te^{\lambda_{2}t} & \frac{1}{2}t^{2}e^{\lambda_{2}t} \\ & & & e^{\lambda_{2}t} & te^{\lambda_{2}t} \\ & & & & e^{\lambda_{2}t} & te^{\lambda_{2}t} \end{bmatrix} z_{0}$ • When $\lambda_i = 0$...

• If max $\operatorname{Re}(\lambda_k) = 0$, z(t) stays bounded only if $\overline{\lambda}_k$ has Jordan block of size 1

$$e^{Jt}z_{0} = \begin{bmatrix} 1 & & & & \\ & 1 & t & & \\ & & 1 & & \\ & & & 1 & t & \frac{1}{2}t^{2} \\ & & & & 1 & t \\ & & & & 1 & t \\ & & & & & 1 \end{bmatrix} z_{0}$$

• When $\lambda_i = 0$...

• If max $\operatorname{Re}(\lambda_k) = 0$, z(t) stays bounded only if $\overline{\lambda}_k$ has Jordan block of size 1

$$e^{Jt}z_{0} = \begin{bmatrix} 1 & & & & \\ & 1 & t & & \\ & & 1 & & \\ & & & 1 & t & \frac{1}{2}t^{2} \\ & & & & 1 & t \\ & & & & 1 & t \\ & & & & & 1 \end{bmatrix} z_{0}$$

- When $\lambda_i = 0$...
- Not stable!

- Local behaviour of nonlinear system $\dot{x} = f(x, u)$ at operating point $(x, u) = (\bar{x}, \bar{u})$
 - At the operating point, $\dot{\bar{x}} = f(\bar{x}, \bar{u})$
 - Define new variables $\tilde{x} = x \bar{x}$, $\tilde{u} = u \bar{u}$

- Local behaviour of nonlinear system $\dot{x} = f(x, u)$ at operating point $(x, u) = (\bar{x}, \bar{u})$
 - At the operating point, $\dot{\bar{x}} = f(\bar{x}, \bar{u})$
 - Define new variables $\tilde{x} = x \bar{x}$, $\tilde{u} = u \bar{u}$
- Taylor approximation:
 - $f(x,u) = f(\bar{x} + \tilde{x}, \bar{u} + \tilde{u})$

- Local behaviour of nonlinear system $\dot{x} = f(x, u)$ at operating point $(x, u) = (\bar{x}, \bar{u})$
 - At the operating point, $\dot{\bar{x}} = f(\bar{x}, \bar{u})$
 - Define new variables $\tilde{x} = x \bar{x}$, $\tilde{u} = u \bar{u}$
- Taylor approximation:

•
$$f(x,u) = f(\bar{x} + \tilde{x}, \bar{u} + \tilde{u}) \approx f(\bar{x}, \bar{u}) + \frac{\partial f}{\partial x}\Big|_{(\bar{x}, \bar{u})} \tilde{x} + \frac{\partial f}{\partial u}\Big|_{(\bar{x}, \bar{u})} \tilde{u}$$

- Local behaviour of nonlinear system $\dot{x} = f(x, u)$ at operating point $(x, u) = (\bar{x}, \bar{u})$
 - At the operating point, $\dot{\bar{x}} = f(\bar{x}, \bar{u})$
 - Define new variables $\tilde{x} = x \bar{x}$, $\tilde{u} = u \bar{u}$
- Taylor approximation:

•
$$f(x,u) = f(\bar{x} + \tilde{x}, \bar{u} + \tilde{u}) \approx f(\bar{x}, \bar{u}) + \frac{\partial f}{\partial x}\Big|_{(\bar{x}, \bar{u})} \tilde{x} + \frac{\partial f}{\partial u}\Big|_{(\bar{x}, \bar{u})} \tilde{u}$$

• $\dot{x} = \dot{\bar{x}} + \dot{\tilde{x}}$

- Local behaviour of nonlinear system $\dot{x} = f(x, u)$ at operating point $(x, u) = (\bar{x}, \bar{u})$
 - At the operating point, $\dot{\bar{x}} = f(\bar{x}, \bar{u})$
 - Define new variables $\tilde{x} = x \bar{x}$, $\tilde{u} = u \bar{u}$
- Taylor approximation:

•
$$f(x,u) = f(\bar{x} + \tilde{x}, \bar{u} + \tilde{u}) \approx f(\bar{x}, \bar{u}) + \frac{\partial f}{\partial x}\Big|_{(\bar{x}, \bar{u})} \tilde{x} + \frac{\partial f}{\partial u}\Big|_{(\bar{x}, \bar{u})} \tilde{u}$$

• $\dot{x} = \dot{\bar{x}} + \dot{\tilde{x}} \approx f(\bar{x}, \bar{u}) + \frac{\partial f}{\partial x}\Big|_{(\bar{x}, \bar{u})} \tilde{x} + \frac{\partial f}{\partial u}\Big|_{(\bar{x}, \bar{u})} \tilde{u}$

- Local behaviour of nonlinear system $\dot{x} = f(x, u)$ at operating point $(x, u) = (\bar{x}, \bar{u})$
 - At the operating point, $\dot{\bar{x}} = f(\bar{x}, \bar{u})$
 - Define new variables $\tilde{x} = x \bar{x}$, $\tilde{u} = u \bar{u}$
- Taylor approximation:

•
$$f(x,u) = f(\bar{x} + \tilde{x}, \bar{u} + \tilde{u}) \approx f(\bar{x}, \bar{u}) + \frac{\partial f}{\partial x}\Big|_{(\bar{x}, \bar{u})} \tilde{x} + \frac{\partial f}{\partial u}\Big|_{(\bar{x}, \bar{u})} \tilde{u}$$

• $\dot{x} = \dot{\bar{x}} + \dot{\tilde{x}} \approx f(\bar{x}, \bar{u}) + \frac{\partial f}{\partial x}\Big|_{(\bar{x}, \bar{u})} \tilde{x} + \frac{\partial f}{\partial u}\Big|_{(\bar{x}, \bar{u})} \tilde{u}$
• $\dot{\tilde{x}} = \frac{\partial f}{\partial x}\Big|_{(\bar{x}, \bar{u})} \tilde{x} + \frac{\partial f}{\partial u}\Big|_{(\bar{x}, \bar{u})} \tilde{u}$

• From previous slide:
$$\dot{\tilde{x}} = \frac{\partial f}{\partial x}\Big|_{(\bar{x},\bar{u})} \tilde{x} + \frac{\partial f}{\partial u}\Big|_{(\bar{x},\bar{u})} \tilde{u}$$

• $x = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}, f(x,u) = \begin{bmatrix} f_1(x,u) \\ \vdots \\ f_n(x,u) \end{bmatrix}, u = \begin{bmatrix} u_1 \\ \vdots \\ u_k \end{bmatrix}$

• From previous slide:
$$\dot{\tilde{x}} = \frac{\partial f}{\partial x}\Big|_{(\bar{x},\bar{u})} \tilde{x} + \frac{\partial f}{\partial u}\Big|_{(\bar{x},\bar{u})} \tilde{u}$$

• $x = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}, f(x,u) = \begin{bmatrix} f_1(x,u) \\ \vdots \\ f_n(x,u) \end{bmatrix}, u = \begin{bmatrix} u_1 \\ \vdots \\ u_k \end{bmatrix}$
• $\frac{\partial f}{\partial x} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1} & \frac{\partial f_n}{\partial x_2} & \cdots & \frac{\partial f_n}{\partial x_n} \end{bmatrix}_{(\bar{x},\bar{u})}$

• From previous slide:
$$\dot{\tilde{x}} = \frac{\partial f}{\partial x}\Big|_{(\bar{x},\bar{u})} \tilde{x} + \frac{\partial f}{\partial u}\Big|_{(\bar{x},\bar{u})} \tilde{u}$$

• $x = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}, f(x,u) = \begin{bmatrix} f_1(x,u) \\ \vdots \\ f_n(x,u) \end{bmatrix}, u = \begin{bmatrix} u_1 \\ \vdots \\ u_k \end{bmatrix}$
• $\frac{\partial f}{\partial x} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1} & \frac{\partial f_n}{\partial x_2} & \cdots & \frac{\partial f_n}{\partial x_n} \end{bmatrix}_{(\bar{x},\bar{u})} \in \mathbb{R}^{n \times n}, \frac{\partial f}{\partial u} = \begin{bmatrix} \frac{\partial f_1}{\partial u_1} & \frac{\partial f_1}{\partial u_2} & \cdots & \frac{\partial f_1}{\partial u_k} \\ \frac{\partial f_2}{\partial u_1} & \frac{\partial f_2}{\partial u_2} & \cdots & \frac{\partial f_2}{\partial u_k} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial u_1} & \frac{\partial f_n}{\partial u_2} & \cdots & \frac{\partial f_n}{\partial u_k} \end{bmatrix}_{(\bar{x},\bar{u})} \in \mathbb{R}^{n \times k}$

- Inverted pendulum
 - Newton's laws: $\ddot{\theta} = \frac{\tau}{ml^2} + \frac{g}{l}\sin\theta$

- Inverted pendulum
 - Newton's laws: $\ddot{\theta} = \frac{\tau}{ml^2} + \frac{g}{l}\sin\theta$
 - Let $x_1 = \theta$, $x_2 = \dot{\theta}$, $u = \frac{\tau}{ml^2}$ ("normalized control")

- Inverted pendulum
 - Newton's laws: $\ddot{\theta} = \frac{\tau}{ml^2} + \frac{g}{l}\sin\theta$
 - Let $x_1 = \theta$, $x_2 = \dot{\theta}$, $u = \frac{\tau}{ml^2}$ ("normalized control")

$$\dot{x}_1 = x_2$$
$$\dot{x}_2 = \frac{g}{l}\sin x_1 + u$$

- Inverted pendulum
 - Newton's laws: $\ddot{\theta} = \frac{\tau}{ml^2} + \frac{g}{l}\sin\theta$
 - Let $x_1 = \theta$, $x_2 = \dot{\theta}$, $u = \frac{\tau}{ml^2}$ ("normalized control")

$$\dot{x}_1 = x_2$$
$$\dot{x}_2 = \frac{g}{l}\sin x_1 + u$$

• Linearize around $\theta = x_1 = 0$, $\dot{\theta} = x_2 = 0$, u = 0

$$\dot{x}_1 = x_2$$
$$\dot{x}_2 = \frac{g}{l}\sin x_1 + u$$

• Linearize around $\theta = x_1 = 0, \dot{\theta} = x_2 = 0, u = 0$ • $\dot{\tilde{x}} \approx \frac{\partial f}{\partial x}\Big|_{(\bar{x},\bar{u})} \tilde{x} + \frac{\partial f}{\partial u}\Big|_{(\bar{x},\bar{u})} \tilde{u}$ • $\frac{\partial f}{\partial x}\Big|_{(\bar{x},\bar{u})} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \end{bmatrix}_{(\mathbf{0},0)}$

$$\dot{x}_1 = x_2$$
$$\dot{x}_2 = \frac{g}{l}\sin x_1 + u$$

• Linearize around
$$\theta = x_1 = 0, \dot{\theta} = x_2 = 0, u = 0$$

• $\dot{\tilde{x}} \approx \frac{\partial f}{\partial x}\Big|_{(\bar{x},\bar{u})} \tilde{x} + \frac{\partial f}{\partial u}\Big|_{(\bar{x},\bar{u})} \tilde{u}$
• $\frac{\partial f}{\partial x}\Big|_{(\bar{x},\bar{u})} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \end{bmatrix}_{(\mathbf{0},0)} = \begin{bmatrix} 0 & 1 \\ \frac{g}{l} \cos x_1 & 0 \end{bmatrix}_{(\mathbf{0},0)}$

$$\dot{x}_1 = x_2$$
$$\dot{x}_2 = \frac{g}{l}\sin x_1 + u$$

• Linearize around $\theta = x_1 = 0, \dot{\theta} = x_2 = 0, u = 0$ • $\dot{\tilde{x}} \approx \frac{\partial f}{\partial x}\Big|_{(\bar{x},\bar{u})} \tilde{x} + \frac{\partial f}{\partial u}\Big|_{(\bar{x},\bar{u})} \tilde{u}$ • $\frac{\partial f}{\partial x}\Big|_{(\bar{x},\bar{u})} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \end{bmatrix}_{(\mathbf{0},\mathbf{0})} = \begin{bmatrix} 0 & 1 \\ \frac{g}{l} \cos x_1 & 0 \end{bmatrix}_{(\mathbf{0},\mathbf{0})} = \begin{bmatrix} 0 & 1 \\ \frac{g}{l} & 0 \end{bmatrix}$

$$\dot{x}_1 = x_2$$
$$\dot{x}_2 = \frac{g}{l}\sin x_1 + u$$

• Linearize around $\theta = x_1 = 0, \dot{\theta} = x_2 = 0, u = 0$ • $\dot{\tilde{x}} \approx \frac{\partial f}{\partial x} | \tilde{x} + \frac{\partial f}{\partial x} | \tilde{u}$

$$\frac{\partial x^{l}(\bar{x},\bar{u})}{\partial x^{l}(\bar{x},\bar{u})} = \begin{bmatrix} \frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} \\ \frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} \end{bmatrix}_{(\mathbf{0},0)} = \begin{bmatrix} 0 & 1 \\ \frac{g}{l} \cos x_{1} & 0 \end{bmatrix}_{(\mathbf{0},0)} = \begin{bmatrix} 0 & 1 \\ \frac{g}{l} & 0 \end{bmatrix}$$

$$\cdot \frac{\partial f}{\partial u}\Big|_{(\bar{x},\bar{u})} = \begin{bmatrix} \frac{\partial f_{1}}{\partial u} \\ \frac{\partial f_{2}}{\partial u} \end{bmatrix}_{(\mathbf{0},0)}$$

$$\dot{x}_1 = x_2$$
$$\dot{x}_2 = \frac{g}{l}\sin x_1 + u$$

• Linearize around $\theta = x_1 = 0, \dot{\theta} = x_2 = 0, u = 0$ • $\dot{\tilde{x}} \approx \frac{\partial f}{\partial u} \left| \int_{0}^{\infty} \tilde{x} + \frac{\partial f}{\partial u} \right| \int_{0}^{\infty} \tilde{u}$

$$\begin{aligned} & \cdot \frac{\partial f}{\partial x} \Big|_{(\bar{x},\bar{u})} &= \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \end{bmatrix}_{(\mathbf{0},0)} &= \begin{bmatrix} 0 & 1 \\ \frac{g}{l} \cos x_1 & 0 \end{bmatrix}_{(\mathbf{0},0)} = \begin{bmatrix} 0 & 1 \\ \frac{g}{l} & 0 \end{bmatrix} \\ & \cdot \frac{\partial f}{\partial u} \Big|_{(\bar{x},\bar{u})} &= \begin{bmatrix} \frac{\partial f_1}{\partial u} \\ \frac{\partial f_2}{\partial u} \end{bmatrix}_{(\mathbf{0},0)} &= \begin{bmatrix} 0 \\ 1 \end{bmatrix} \end{aligned}$$

$\dot{x}_1 = x_2$ $\dot{x}_2 = \frac{g}{l}\sin x_1 + u$ Linearization • Linearize around $\theta = x_1 = 0$, $\dot{\theta} = x_2 = 0$, u = 0• $\dot{\tilde{x}} \approx \frac{\partial f}{\partial x}\Big|_{(\bar{x},\bar{u})} \tilde{x} + \frac{\partial f}{\partial u}\Big|_{(\bar{x},\bar{u})} \tilde{u}$ $\cdot \left. \frac{\partial f}{\partial x} \right|_{(\bar{x},\bar{u})} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \end{bmatrix}_{(\mathbf{a},\mathbf{a})} = \begin{bmatrix} 0 & 1 \\ \frac{g}{l} \cos x_1 & 0 \end{bmatrix}_{(\mathbf{0},0)} = \begin{bmatrix} 0 & 1 \\ \frac{g}{l} & 0 \end{bmatrix}$ • $\frac{\partial f}{\partial u}\Big|_{(\bar{x},\bar{u})} = \begin{bmatrix} \frac{\partial f_1}{\partial u}\\ \frac{\partial f_2}{\partial u} \end{bmatrix}_{(\mathbf{0},0)} = \begin{bmatrix} 0\\1 \end{bmatrix}$ • So $\dot{x} \approx \begin{bmatrix} 0 & 1 \\ \frac{g}{l} & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u \qquad \Rightarrow \qquad \begin{aligned} \dot{x}_1 \approx x_2 \\ \dot{x}_2 \approx \frac{g}{l} x_1 + u \end{aligned}$
• Suppose $\dot{x} = Ax + Bu$, can we design u to make $x = \mathbf{0}_n$ stable?

- Suppose $\dot{x} = Ax + Bu$, can we design u to make $x = \mathbf{0}_n$ stable?
- Try linear state feedback: $u = -Kx \Rightarrow \dot{x} = (A BK)x$

- Suppose $\dot{x} = Ax + Bu$, can we design u to make $x = \mathbf{0}_n$ stable?
- Try linear state feedback: $u = -Kx \Rightarrow \dot{x} = (A BK)x$
 - Define $\overline{A} = A BK$, and we have $\dot{x} = \overline{A}x$

- Suppose $\dot{x} = Ax + Bu$, can we design u to make $x = \mathbf{0}_n$ stable?
- Try linear state feedback: $u = -Kx \Rightarrow \dot{x} = (A BK)x$
 - Define $\overline{A} = A BK$, and we have $\dot{x} = \overline{A}x$
 - We can try to choose the elements of K, such that the eigenvalues of \overline{A} are in the left half-plane

•

- Suppose $\dot{x} = Ax + Bu$, can we design u to make $x = \mathbf{0}_n$ stable?
- Try linear state feedback: $u = -Kx \Rightarrow \dot{x} = (A BK)x$
 - Define $\overline{A} = A BK$, and we have $\dot{x} = \overline{A}x$
 - We can try to choose the elements of K, such that the eigenvalues of \overline{A} are in the left half-plane
- Issues
 - Controller saturation
 - Full state information required

