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Linear Systems

Hu et al., 2018

(If flying near hover, and slowly)
Bouffard, 2012
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Road Map

• Linear Systems (This and next lecture)
• Basic properties and closed form solution
• Stability
• Linearization
• Controllability and observability

• Nonlinear systems (Two lectures)

• Optimization and optimal control (New unit, ~8 lectures)
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• Linear time-invariant (LTI) systems: 

𝐴

𝐵 +𝑢 ∫
𝑥�̇�



Linear System

• Existence and Uniqueness of Solutions of 
•

• Existence and Uniqueness of Solutions of 
•
•
• But 

• Recall:
• ,

• , (maximum row sum)



Linear System

• Existence and Uniqueness of Solutions of 
•

• Existence and Uniqueness of Solutions of 
•
•
• But 

• Recall:
• ,

• , (maximum row sum)



Linear System

• Existence and Uniqueness of Solutions of 
•

• Existence and Uniqueness of Solutions of 
•
•
• But 

• Recall:
• ,

• , (maximum row sum)



LTI systems: Closed form solution

•
•

• Zero input solution: 
•
• Define 
• Solution in terms of : 

•



LTI systems: Closed form solution

•
•

• Zero input solution: 
•
• Define 
• Solution in terms of : 

•

Matlab: expm



LTI systems: Closed form solution

•
•

• Zero input solution: 
•
• Define 
• Solution in terms of : 

•

Matlab: expm



LTI systems: Closed form solution

•
•

• Zero input solution: 
•
• Define 
• Solution in terms of : 

•

Matlab: expm



LTI systems: Closed form solution

•
•

• Zero input solution: 
•
• Define 
• Solution in terms of : 

•

Matlab: expm



LTI systems: Closed form solution

•
•

• Zero input solution: 
•
• Define 
• Solution in terms of : 

• Diagonal 

Matlab: expm



LTI systems: Closed form solution

• General :

•



LTI systems: Closed form solution

• General :

•

𝑓 𝐽 = 𝑒
𝑓 ⋅ = 𝑒⋅

𝑓 ⋅ = 𝑡𝑒⋅

𝑓 ⋅ = 𝑡 𝑒⋅



LTI systems: Closed form solution

• General :

•

𝑓 𝐽 = 𝑒
𝑓 ⋅ = 𝑒⋅

𝑓 ⋅ = 𝑡𝑒⋅

𝑓 ⋅ = 𝑡 𝑒⋅



Matrix Exponential properties

• If then
• (follows from the above)
•

•

• if and only if 
•

• So 

•

• From definition: 
! !

𝑒 “propagates” a state forward 
by a duration of 𝑡, according to 
the system dynamics 𝐴



Matrix Exponential properties

• If then
• (follows from the above)
•

•

• if and only if 
•

• So 

•

• From definition: 
! !

𝑒 “propagates” a state forward 
by a duration of 𝑡, according to 
the system dynamics 𝐴

𝑡 = 0



Matrix Exponential properties

• If then
• (follows from the above)
•

•

• if and only if 
•

• So 

•

• From definition: 
! !

𝑒 “propagates” a state forward 
by a duration of 𝑡, according to 
the system dynamics 𝐴

𝑒

𝑡 = 0𝑡 = 5



Matrix Exponential properties

• If then
• (follows from the above)
•

•

• if and only if 
•

• So 

•

• From definition: 
! !

𝑒 “propagates” a state forward 
by a duration of 𝑡, according to 
the system dynamics 𝐴
• State transition matrix

𝑒

𝑡 = 0𝑡 = 5



Matrix Exponential properties

• If then
• (follows from the above)
•

•

• if and only if 
•

• So 

•

• From definition: 
! !

𝑒 “propagates” a state forward 
by a duration of 𝑡, according to 
the system dynamics 𝐴
• State transition matrix

𝑒

𝑡 = 0𝑡 = 5



Matrix Exponential properties

• If then
• (follows from the above)
•

•

• if and only if 
•

• So 

•

• From definition: 
! !

𝑥 𝑠
𝑒 “propagates” a state forward 
by a duration of 𝑡, according to 
the system dynamics 𝐴
• State transition matrix

𝑒

𝑡 = 0𝑡 = 5



Matrix Exponential properties

• If then
• (follows from the above)
•

•

• if and only if 
•

• So 

•

• From definition: 
! !

𝑥 𝑠
𝑒 “propagates” a state forward 
by a duration of 𝑡, according to 
the system dynamics 𝐴
• State transition matrix

𝑒

𝑡 = 0𝑡 = 5



Matrix Exponential properties

• If then
• (follows from the above)
•

•

• if and only if 
•

• So 

•

• From definition: 
! !

𝑥 𝑠
𝑒 “propagates” a state forward 
by a duration of 𝑡, according to 
the system dynamics 𝐴
• State transition matrix

𝑒

𝑡 = 0𝑡 = 5



Matrix Exponential properties

• If then
• (follows from the above)
•

•

• if and only if 
•

• So 

•

• From definition: 
! !

𝑥 𝑠
𝑒 “propagates” a state forward 
by a duration of 𝑡, according to 
the system dynamics 𝐴
• State transition matrix

𝑒

𝑡 = 0𝑡 = 5



Solution to LTI System: Proof

• If then 

• Initial conditions:
•

• Differentiate:
•

•

•



Solution to LTI System: Proof

• If then 

• Initial conditions:
•

• Differentiate:
•

•

•



Solution to LTI System: Proof

• If then 

• Initial conditions:
•

• Differentiate:
•

•

•



Solution to LTI System: Proof

• If then 

• Initial conditions:
•

• Differentiate:
•

•

•



Solution to LTI System: Proof

• If then 

• Initial conditions:
•

• Differentiate:
•

•

•

𝑑

𝑑𝑡
𝑒 𝐵𝑢 𝜏 𝑑𝜏 =

𝑑

𝑑𝑡
𝑒 𝑒 𝐵𝑢 𝜏 𝑑𝜏



Solution to LTI System: Proof

• If then 

• Initial conditions:
•

• Differentiate:
•

•

•

𝑑

𝑑𝑡
𝑒 𝐵𝑢 𝜏 𝑑𝜏 =

𝑑

𝑑𝑡
𝑒 𝑒 𝐵𝑢 𝜏 𝑑𝜏

=
𝑑

𝑑𝑡
𝑒 𝑒 𝐵𝑢 𝜏 𝑑𝜏



Solution to LTI System: Proof

• If then 

• Initial conditions:
•

• Differentiate:
•

•

•

𝑑

𝑑𝑡
𝑒 𝐵𝑢 𝜏 𝑑𝜏 =

𝑑

𝑑𝑡
𝑒 𝑒 𝐵𝑢 𝜏 𝑑𝜏

=
𝑑

𝑑𝑡
𝑒 𝑒 𝐵𝑢 𝜏 𝑑𝜏

= 𝐴𝑒 𝑒 𝐵𝑢 𝜏 𝑑𝜏 + 𝑒 𝑒 𝐵𝑢 𝑡



Solution to LTI System: Proof

• If then 

• Initial conditions:
•

• Differentiate:
•

•

•

𝑑

𝑑𝑡
𝑔 𝜏 𝑑𝜏 = 𝑔 𝑡

𝑑

𝑑𝑡
𝑒 𝐵𝑢 𝜏 𝑑𝜏 =

𝑑

𝑑𝑡
𝑒 𝑒 𝐵𝑢 𝜏 𝑑𝜏

=
𝑑

𝑑𝑡
𝑒 𝑒 𝐵𝑢 𝜏 𝑑𝜏

= 𝐴𝑒 𝑒 𝐵𝑢 𝜏 𝑑𝜏 + 𝑒 𝑒 𝐵𝑢 𝑡



Solution to LTI System: Proof

• If then 

• Initial conditions:
•

• Differentiate:
•

•

•

𝑑

𝑑𝑡
𝑔 𝜏 𝑑𝜏 = 𝑔 𝑡

𝑑

𝑑𝑡
𝑒 𝐵𝑢 𝜏 𝑑𝜏 =

𝑑

𝑑𝑡
𝑒 𝑒 𝐵𝑢 𝜏 𝑑𝜏

=
𝑑

𝑑𝑡
𝑒 𝑒 𝐵𝑢 𝜏 𝑑𝜏

= 𝐴𝑒 𝑒 𝐵𝑢 𝜏 𝑑𝜏 + 𝑒 𝑒 𝐵𝑢 𝑡

= 𝐴 𝑒 𝐵𝑢 𝜏 𝑑𝜏 + 𝐵𝑢 𝑡



Solution to LTI System: Proof

• If then 

• Initial conditions:
•

• Differentiate:
•

•

•

𝑑

𝑑𝑡
𝑔 𝜏 𝑑𝜏 = 𝑔 𝑡

𝑑

𝑑𝑡
𝑒 𝐵𝑢 𝜏 𝑑𝜏 =

𝑑

𝑑𝑡
𝑒 𝑒 𝐵𝑢 𝜏 𝑑𝜏

=
𝑑

𝑑𝑡
𝑒 𝑒 𝐵𝑢 𝜏 𝑑𝜏

= 𝐴𝑒 𝑒 𝐵𝑢 𝜏 𝑑𝜏 + 𝑒 𝑒 𝐵𝑢 𝑡

= 𝐴 𝑒 𝐵𝑢 𝜏 𝑑𝜏 + 𝐵𝑢 𝑡



Solution to LTI System: Proof

• If then 

• Initial conditions:
•

• Differentiate:
•

•

•

𝑑

𝑑𝑡
𝑔 𝜏 𝑑𝜏 = 𝑔 𝑡

𝑑

𝑑𝑡
𝑒 𝐵𝑢 𝜏 𝑑𝜏 =

𝑑

𝑑𝑡
𝑒 𝑒 𝐵𝑢 𝜏 𝑑𝜏

=
𝑑

𝑑𝑡
𝑒 𝑒 𝐵𝑢 𝜏 𝑑𝜏

= 𝐴𝑒 𝑒 𝐵𝑢 𝜏 𝑑𝜏 + 𝑒 𝑒 𝐵𝑢 𝑡

= 𝐴 𝑒 𝐵𝑢 𝜏 𝑑𝜏 + 𝐵𝑢 𝑡



LTI System: Stability of 

• Equilibrium point of is where  
• For in general is an equilibrium point: 
• Also, 

• Stable: is bounded for all , for all initial conditions 
• Asymptotically stable: as 
• Exponentially stable: such that 

• The system is exponentially stable if and only if all eigenvalues 
of are in the left half plane



LTI System: Stability of 

• Equilibrium point of is where  
• For in general is an equilibrium point: 
• Also, 

• Stable: is bounded for all , for all initial conditions 
• Asymptotically stable: as 
• Exponentially stable: such that 

• The system is exponentially stable if and only if all eigenvalues 
of are in the left half plane



LTI System: Stability of 

• Equilibrium point of is where  
• For in general is an equilibrium point: 
• Also, 

• Stable: is bounded for all , for all initial conditions 
• Asymptotically stable: as 
• Exponentially stable: such that 

• The system is exponentially stable if and only if all eigenvalues 
of are in the open left half plane, i.e. 



LTI System: Stability

• The system is exponentially stable if and only if all eigenvalues 
of are in the open left half plane, i.e. 

•

•

• If , , so 

• If , stays bounded only if has Jordan block of 
size 1



LTI System: Stability

• The system is exponentially stable if and only if all eigenvalues 
of are in the open left half plane, i.e. 

•

•

• If , , so 

• If , stays bounded only if has Jordan block of 
size 1



LTI System: Stability

• The system is exponentially stable if and only if all eigenvalues 
of are in the open left half plane, i.e. 

•

•

• If , , so 

• If , stays bounded only if has Jordan block of 
size 1



LTI System: Stability

• The system is exponentially stable if and only if all eigenvalues 
of are in the open left half plane, i.e. 

•

•

• If , , so 

• If , stays bounded only if has Jordan block of 
size 1



LTI System: Stability

• The system is exponentially stable if and only if all eigenvalues 
of are in the open left half plane, i.e. 

•

•

• If , , so 

• If , stays bounded only if has Jordan block of 
size 1



LTI System: Stability

• The system is exponentially stable if and only if all eigenvalues 
of are in the open left half plane, i.e. 

•

•

• If , , so 

• If , stays bounded only if has Jordan block of 
size 1

Eigenvalue with largest real part
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LTI System: Stability

• If , stays bounded only if has Jordan block of 
size 1

• When …
• Not stable!
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