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Localization: Problem Setup

* Assume a map is given: m =
{ml, mo, ...,mN}

* Location based: each m; represents a specific
location and whether it’s occupied

* Feature based: each m; contains the location of
the ith land mark

* Robot maintains and updates its belief
about where it is with respect to the map

e Position belief is updated based on sensor data
* Position belief is a probability distribution
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Simultaneous Localization and Mapping (SLAM)

e Land marks m are unknown, and must be estimated at the same time as

internal state estimation 79
_7®
* Define combined state vector =, /
. . [x] \\\ III //////
Yy = m //’/(ri;(,bi)
* Calculate p(y¢|z1.¢, Uq.¢-1) 4
* Previously, p(x¢|z1.¢, Ug.e—1, M) \ A
(xtlyt) Ht T T >0

* Strategy: define dynamics for y;, and apply EKF from last class



Simple Car with Range Sensors f

* Internal state dynamics (Forward Euler)
®* X1t =X1¢-1 T AL - VCOSX3 44
* Xot = Xpp—1 T At-VSINX3, 4
* X3¢ = X3¢—1 T AL U4
(xt;yt; Qt)r ~~~~~~~~ >0

* Environment dynamics

* State:m; = (ml-,x, mi,y),i =1, ..., N (note that in general we may not know
how many land marks are present)

e m = L,yxonym (identity dynamics, since land marks don’t move)

e Car measures (with noise) range and bearing of each land mark



Simple Car Dynamics

 Put dynamics in the form y; = g(y;_1,us—1) + €, €,~N(O, R;):
* y.and g(y¢_1,us—1) have 3 + 2N components
* First three components of g(y;_1,us—1): Forward Euler from ODE model of car
* Remaining components of g(y;_1,U;_1) : identity
* R, has zero entries except for top left 3 X 3 block

041 dg1 ]
| 34 6371.,t—1 aYB+%N,t—1
* Jacobian G; = P (Ve Up_q) = ’
-1 0g3+2N . _0gs342N
L0Y1,t-1 dY3+42N,t—14

* Mostly zeros... only yy ¢_1,¥2,t—1Y3,:—1 appearsin g(y;_q, Us_1)



EKF SLAM: Prediction Step

* Extended Kalman filter algorithm:
* Ve = 9Wt-1,Ut—1) + €, €.~N(O,Ry)

* z¢ = h(y) + 6. 6:~N(0,Q;)

* Linearization: G; = Vg(us—1, Uus—1), H = Vh(ji;)

Input: pe—q1, Ze—1, Up—1, Z¢

Output: ue, X

Perform predi

ction:

A = gUe—1,Ut—1)
Xy = Gtzt—thT + Ry

Perform measurement update:

K: = Z.H (HZH + Q)7 t
Ue = U + Kt(Zt — h(ﬂt))

Return u;, ¢

Ly = (1 — Kth)it

EKF SLAM prediction step details:

e G, € R(3+2N)X(3+2N),' plug in f;_4

* u now refers to mean of y, which includes
estimates of land mark positions

3, € R(B+2N)x(3+2N).
* |nitialize upper left 3 X 3 block with zeros

if initial internal state is known exactly

* |nitialize lower right 2N X 2N block with
o X [,y if there is no knowledge
about land marks

* now refers to covariance of y
. R, € RB+2M*(B+2N).

e Zeros except for upper left 3 X 3 block



Simple Car with Range Sensors

* Measurements

+ ze ={z¢, 2, .. } = {0, 1), OF, ), .3

* Measurement model
* Assume ith measurement at time t corresponds to jth land mark

. 2 2

. Tg] _ \/(mj,x — xl,t) + (mj:y o xZ,t) + 6t' StNN(O) Qt)
i

¢t _atanZ(’mj,y — X2t mj,x T xl,t) — X3¢t

N\

Function in most programming languages and returns any possible angle




Data Assoclation

* Define correspondence variable ¢; € {1, ..., N + 1}
* ¢ = j < N means ith measurement at time t corresponds to jth land mark
. c{ﬁ = N + 1 means measurement does not correspond to any land mark

* This class: assume c; are known

* More advanced (and practical): estimate ¢} using maximum likelihood



Simple Car Measurement Model

* Measurement from a single land mark:

. 7l = Ttl] _ \/(mj,x — 3’1,t)2 + (mj,y - 3’2,t)2

i
P atanZ(mj,y — Vo6 Mjx — Y1,t) — V3t

+ 6, = hi()’t): 0:~N(0,Q;)

* Jacobian: Mostly zeros. Let r} = \/(mj,x - yl,t)2 + (mjy — yz,t)2 (remember to plug in
estimates)
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Algebra... First Row

0 2 2

Y1t \/(mj;x — th) + (mj,y — 3’2,t)

= i = X Z(mj,x — Y1,t) X (—1)
2 (mjx=1.6) (M) y=7,0)

_(mj,x_ZVLt)

\/(mj,x—th)z + (mj,y—YZ,t)z




Simple Car Measurement Model

* Measurement from a single land mark:
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Simple Car Measurement Model

* Measurement from a single land mark:

. 7l = Ttl] _ \/(mj,x — 3’1,t)2 + (mj,y - 3’2,t)2

i
P atanZ(mj,y — Vo6 Mjx — Y1,t) — V3t

+ 68, = h'(yy), 6:~N(0, Q)

* Jacobian: Mostly zeros. Let r} = \/(mj,x - yl,t)2 + (mjy — yz,t)2 (remember to plug in
estimates)
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Algebra... Second Row

atanZ(mj,y — Vo6, Mj x — Y1,t) = arctan(

mjy—=Yat

mjx—Yit

)




Simple Car Measurement Model

* Measurement from a single land mark:

. 7l = Ttl] _ \/(mj,x — 3’1,t)2 + (mj,y - 3’2,t)2

i
P atanZ(mj,y — Vo6 Mjx — Y1,t) — V3t

+ 6, = hi()’t): 0:~N(0,Q;)

* Jacobian: Mostly zeros. Let r} = \/(mj,x - yl,t)2 + (mjy — yz,t)2 (remember to plug in
estimates)

[ 9nt dnt
L AT 0Y3+2N,t Column 2 + 2j
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10Y1t 0Y342N,t.
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Simple Car Measurement Model

* Measurement from a single land mark:

. 7l = Ttl] _ \/(mj,x — 3’1,t)2 + (mj,y - 3’2,t)2

i
P atanZ(mj,y — Vo6 Mjx — Y1,t) — V3t

+ 68, = h'(yy), 6:~N(0, Q)

* Jacobian: Mostly zeros. Let 1} = \/(mj,x - Y1,t)2 + (myy —

estimates)
[ On on}
a_hi — 63’1_,t ay3+z_1v.t = sz(3+2N) Column 2 + 2j
Yt dh} ohk l
10Y1,¢t 0Y3+2N,t]
__(mjrx_yl;t) —(mj,y—J/z,t) 0 0 .. 0 mj,x‘)’l,t mj,y_YZ,t
| z T A
Mmjy=Y2t _(mj,x_th) 1 0 - 0 _(mj,y_J’z,t) Mmjx—Yit
(r¢) (r¢) (r¢) (r¢)

yz,t)2 (remember to plug in




Alternate Form For Measurement Model Jacobian

__(mj,x._yl,t) —(mj,y_—YZ,t) 0 0 - 0 mj,x—.th mj'y_.yz,t 0 - 0_
. Ohi _ e e e e
0yt - Mjy~Yat J’Zt _(m]x 3711:) 1 0 - 0 _(m]y 3/21:) My x— ylt
(Tt) (Tt) (Tt) (Tt)
Oht i
e Rewrite: — = h
[ %/m]x —V1 t) —(m]y Y2 t) 0 mj,x_.YLt mj,y‘_)’z,t_
e hl= "t i e g
t m;y=Ya_t _(m]x yl t) 1 _(m]y 3’2 t) mijx—Yit
.2 -\ 2
(r¢) (D)’ (D)’ (r¢)
1 0 0 O O 0 0 O 07
0O 1 0 O O 0 0 O 0
*FK=]0 0 1 O O 0 0 O 0
0O 0 0 O O 1 0 O 0
0 0 0 O O 0 1 O 0-




Simple Car Measurement Model

* Measurement model needs to be in the form p(z|y;, c;)

* Assume independent measurements, p(z;|y;) = H,;p(zﬂyt, cé)
* At every time t, process each measurement separately/sequentially
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Simple Car Measurement Model

* Measurement model needs to be in the form p(z|y;, c;)

* Assume independent measurements, p(z;|y;) = H,;p(zﬂyt, cé)
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Simple Car Measurement Model

* Measurement model needs to be in the form p(z|y;, c;)

* Assume independent measurements, p(z;|y;) = l_[,;p(ZHyt, Cé)

* At every time t, process each measurement separately/sequentially
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* Measurement model needs to be in the form p(z|y;, c;)
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Simple Car Measurement Model

* Measurement model needs to be in the form p(z|y;, c;)
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Extended Kalman Filter

* Extended Kalman filter algorithm: EKF SLAM prediction step details:
Ve = 90 te) F € e~N (O, Ry) » For each measurement,
* 2y = h(y) + 64 6:~N(0,Q;) HY € R2XG+2N)

* Linearization: G; = Vg(us—1, Uus—1), H = Vh(ji;)
* Process each measurement separately

Input: HUe—1, z:15—1' Ut—1,2¢ * For each Zg,i =1,..,N, )
Output: u;, = T B T -
put: e, Zp 1 kE=5.(H) (HE(HD) + Q)
Perform prediction: - = i(i _ pifn
- _ 2. .ut [ + K; (Zt —h (Mt))
M = g(/flt—li_llft—l) 3. I« (I-KiH)E
= ’ ttit )<t
2t = Ge2e—1Gr + Ry . Above computation is done based on land mark
Perform measurement up_date: j = c¢{ (assuming known correspondence)
Ke = H{ (HZ H + Q)™ ) _
U = [ + Kt(zt h(,ut)) * Attheend, set u; = iy, 2 = Z;

X = — K:H)Zy
Return u;, ¢



EKF SLAM

Preliminary steps
* Initialize uq, g

* Define dynamics g for augmented
state y

* Define R; for augmented state y

* Land mark position estimates can be
initialized to anything, since variance
is infinite

* Calculate Jacobians G, H

Input: He—1) Zt—l: Ut—1,2¢
Output: s, Xt
Perform prediction:

U = g(ue_ 1»ut 1)
Xy = G2y 1Gt + R;
Perform measurement update:
* For each z,f = (r,}',cp{l),i =1,..,N,
1. j = c{l
2. If land mark j has not been seen, then
Uoy2j, t] [#1 t + T COS(¢t + U3 t)

fi,e + 1 sin(Pf + fiz ) )
K¢ = %.(H¢) (Hézt(Ht) + Qt)
4. [ = i + K} (Zé - hi(ﬁt))
5. %, =(1-KH)E,
Return py = [y, 2y = X4

U342jt



State trajectory

—+— State estimates
#  Land mark position estimates
2 True land mark pasitions
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EKF SLAM: Discussion

« Computational complexity: O(N#4), where N is the number of land marks
* Best for feature-based maps, due to small N

* Unknown correspondences
* Use maximum likelihood to estimate which land mark is being observed
* Add new land mark if none of the existing land marks are likely
e Can produce duplicates of the same land mark

* Canincorporate more advanced techniques such as outlier rejection, or make land
marks more distinct

* Accurate SLAM prefers dense maps (large N), but computation becomes
expensive

* Nonparametric filters (eg. Particle filters) are popular with occupancy grids



Finished!
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* Overview of algorithms used for robotic decision making AR A
* Theory-focused AR
* Fundamentals for doing many areas of robotics research R

* Dynamical systems
* Nonlinear optimization and optimal control
* Reachability analysis

* Reinforcement Learning
* Localization and mapping




