Bayes' Filter

CMPT 882

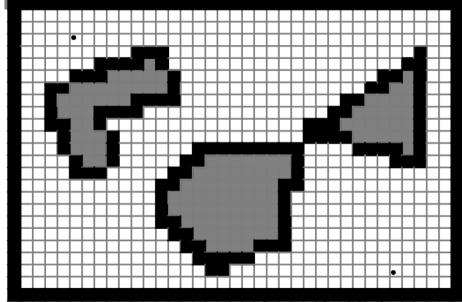
Mar. 25

Outline

- Localization Problem Setup
- Bayes' Filter

Localization: Problem Setup

- Assume a map is given: $m = \{m_1, m_2, \dots, m_N\}$
 - Location based: each m_i represents a specific location and whether it's occupied (eg. Occupancy grid)



Siegwart and Nourbakhshs, 2004

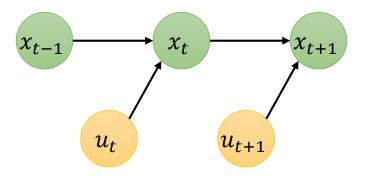
 Feature based: each m_i contains the location and properties of a feature (eg. Topological map)

Localization: Problem Setup

- Assume a map is given: $m = \{m_1, m_2, \dots, m_N\}$
 - Location based: each m_i represents a specific location and whether it's occupied (eg. Occupancy grid)
 - Feature based: each m_i contains the location and properties of a feature (eg. Topological map)
- Robot maintains and updates its belief about where it is with respect to the map
 - Position belief is updated based on sensor data
 - Position belief is a probability distribution

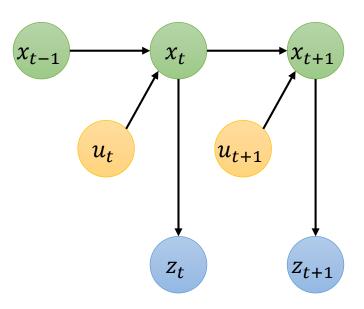
Robot-Environment Interaction: Definitions

- State x_t : includes the environment (eg. objects, features)
 - Assume the state x_t is complete / the Markov property
- Control data u_t
 - Usually decreases robot's knowledge
- Probabilistic model of state evolution
 - $p(x_t|x_{t-1},u_t)$



Robot-Environment Interaction: Definitions

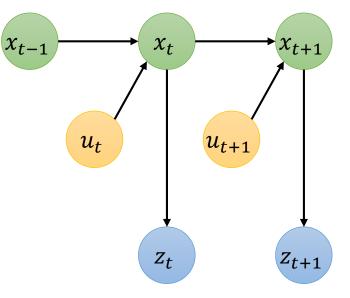
- Measurement data z_t
 - Increases robot's knowledge
- Measurement equation:
 - $p(z_t|x_t)$



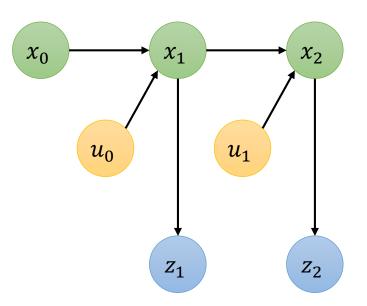
Prediction and Belief Distributions

- Prediction distribution:
 - Robot's prediction of the state before making an observation $\overline{\mathrm{bel}}(x_t)\coloneqq p(x_t|z_{1:t-1},u_{1:t})$
- Belief distribution:
 - Robot's internal knowledge about the state

$$bel(x_t) \coloneqq p(x_t | z_{1:t}, u_{1:t})$$



- Robot and environment have state x_0
 - Initialize $bel(x_0)$ (eg. to be uniform or dirac distribution)
- From x_0 , choose a control $u_0 \rightarrow$ robot moves to x_1
 - 1. <u>Predict the next state by computing</u> $bel(x_1)$ using dynamics
 - 2. Make an observation z_1 , and use it to compute $bel(x_1)$
- Repeat for *x*₂, *x*₃, ...



- Robot and environment have state x_0
 - Initialize $bel(x_0)$ (eg. to be uniform or dirac distribution)
- From x_0 , choose a control $u_0 \rightarrow$ robot moves to x_1
 - 1. Predict the next state by computing $bel(x_1)$ using dynamics
 - 2. Make an observation z_1 , and use it to compute $bel(x_1)$
- Repeat for *x*₂, *x*₃, ...

• Bayes' filter algorithm:

Input: $bel(x_{t-1}), u_t, z_t$ Output: $bel(x_t)$

For every x_t ,

Perform prediction: $\overline{\text{bel}}(x_t) = \int p(x_t|u_t, x_{t-1}) \text{bel}(x_{t-1}) dx_{t-1}$

Perform measurement update:

```
bel(x_t) = \eta p(z_t | x_t) \overline{bel}(x_t)
```

Return $bel(x_t)$

 $\overline{\text{bel}}(x_t) = p(x_t | z_{1:t-1}, u_{1:t})$ = $\int p(x_t | x_{t-1}, z_{1:t-1}, u_{1:t}) p(x_{t-1} | z_{1:t-1}, u_{1:t}) dx_{t-1}$

> Theorem of total probability $p(y) = \int p(x, y) dx = \int p(y|x)p(x) dx$

• Bayes' filter algorithm:

 $\overline{bel}(x_t) = p(x_t | z_{1:t-1}, u_{1:t})$ = $\int p(x_t | x_{t-1}, z_{1:t-1}, u_{1:t}) p(x_{t-1} | z_{1:t-1}, u_{1:t}) dx_{t-1}$ = $\int p(x_t | x_{t-1}, u_t) p(x_{t-1} | z_{1:t-1}, u_{1:t}) dx_{t-1}$

Markov assumption

• Bayes' filter algorithm:

 $\overline{bel}(x_t) = p(x_t | z_{1:t-1}, u_{1:t})$ = $\int p(x_t | x_{t-1}, z_{1:t-1}, u_{1:t}) p(x_{t-1} | z_{1:t-1}, u_{1:t}) dx_{t-1}$ = $\int p(x_t | x_{t-1}, u_t) p(x_{t-1} | z_{1:t-1}, u_{1:t}) dx_{t-1}$ = $\int p(x_t | x_{t-1}, u_t) p(x_{t-1} | z_{1:t-1}, u_{1:t-1}) dx_{t-1}$

 u_t does not affect probability of x_{t-1}

• Bayes' filter algorithm:

 $\begin{aligned} \overline{bel}(x_t) &= p(x_t | z_{1:t-1}, u_{1:t}) \\ &= \int p(x_t | x_{t-1}, z_{1:t-1}, u_{1:t}) p(x_{t-1} | z_{1:t-1}, u_{1:t}) dx_{t-1} \\ &= \int p(x_t | x_{t-1}, u_t) p(x_{t-1} | z_{1:t-1}, u_{1:t}) dx_{t-1} \\ &= \int p(x_t | x_{t-1}, u_t) p(x_{t-1} | z_{1:t-1}, u_{1:t-1}) dx_{t-1} \\ &= \int p(x_t | x_{t-1}, u_t) bel(x_{t-1}) dx_{t-1} \end{aligned}$

• Bayes' filter algorithm:

$$\begin{aligned} \overline{bel}(x_t) &= p(x_t | z_{1:t-1}, u_{1:t}) \\ &= \int p(x_t | x_{t-1}, z_{1:t-1}, u_{1:t}) p(x_{t-1} | z_{1:t-1}, u_{1:t}) dx_{t-1} \\ &= \int p(x_t | x_{t-1}, u_t) p(x_{t-1} | z_{1:t-1}, u_{1:t}) dx_{t-1} \\ &= \int p(x_t | x_{t-1}, u_t) p(x_{t-1} | z_{1:t-1}, u_{1:t-1}) dx_{t-1} \\ &= \int p(x_t | x_{t-1}, u_t) bel(x_{t-1}) dx_{t-1} \end{aligned}$$

$$bel(x_t) = p(x_t | z_{1:t}, u_{1:t})$$
$$= \frac{p(z_t | x_t, z_{1:t-1}, u_{1:t}) p(x_t | z_{1:t-1}, u_{1:t})}{p(z_t | z_{1:t-1}, u_{1:t})}$$

Bayes' rule

$$p(x|y) = \frac{p(y|x)p(x)}{p(y)}$$

• Bayes' filter algorithm:

$$\begin{aligned} \overline{bel}(x_t) &= p(x_t | z_{1:t-1}, u_{1:t}) \\ &= \int p(x_t | x_{t-1}, z_{1:t-1}, u_{1:t}) p(x_{t-1} | z_{1:t-1}, u_{1:t}) dx_{t-1} \\ &= \int p(x_t | x_{t-1}, u_t) p(x_{t-1} | z_{1:t-1}, u_{1:t}) dx_{t-1} \\ &= \int p(x_t | x_{t-1}, u_t) p(x_{t-1} | z_{1:t-1}, u_{1:t-1}) dx_{t-1} \\ &= \int p(x_t | x_{t-1}, u_t) bel(x_{t-1}) dx_{t-1} \end{aligned}$$

$$bel(x_t) = p(x_t | z_{1:t}, u_{1:t})$$

=
$$\frac{p(z_t | x_t, z_{1:t-1}, u_{1:t}) p(x_t | z_{1:t-1}, u_{1:t})}{p(z_t | z_{1:t-1}, u_{1:t})}$$

=
$$\eta p(z_t | x_t) p(x_t | z_{1:t-1}, u_{1:t})$$

Markov property

• Bayes' filter algorithm:

$$\overline{bel}(x_t) = p(x_t | z_{1:t-1}, u_{1:t})$$

= $\int p(x_t | x_{t-1}, z_{1:t-1}, u_{1:t}) p(x_{t-1} | z_{1:t-1}, u_{1:t}) dx_{t-1}$
= $\int p(x_t | x_{t-1}, u_t) p(x_{t-1} | z_{1:t-1}, u_{1:t}) dx_{t-1}$
= $\int p(x_t | x_{t-1}, u_t) p(x_{t-1} | z_{1:t-1}, u_{1:t-1}) dx_{t-1}$
= $\int p(x_t | x_{t-1}, u_t) bel(x_{t-1}) dx_{t-1}$

$$bel(x_t) = p(x_t | z_{1:t}, u_{1:t})$$

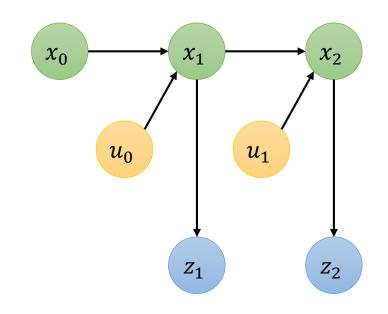
= $\frac{p(z_t | x_t, z_{1:t-1}, u_{1:t}) p(x_t | z_{1:t-1}, u_{1:t})}{p(z_t | z_{1:t-1}, u_{1:t})}$
= $\eta p(z_t | x_t) p(x_t | z_{1:t-1}, u_{1:t})$
= $\eta p(z_t | x_t) \overline{bel}(x_t)$

• Bayes' filter algorithm:

Bayes Filter (Discrete)

- Robot and environment have state x_0
 - Initialize $bel(x_0)$ (eg. to be uniform or Dirac distribution)
- From x_0 , choose a control $u_0 \rightarrow$ robot moves to x_1
 - 1. Predict the next state by computing $bel(x_1)$
 - 2. Make an observation z_1 , and use it to compute $bel(x_1)$
- Repeat for *x*₂, *x*₃, ...

- Discrete state space, x_t takes on discrete values index by k
 - $bel(x_t)$ represented as pmf $\{p_{k,t}\}$



Bayes Filter (Discrete)

- Robot and environment have state x_0
 - Initialize $bel(x_0)$ (eg. to be uniform or Dirac distribution)
- From x_0 , choose a control $u_0 \rightarrow$ robot moves to x_1
 - 1. Predict the next state by computing $bel(x_1)$
 - 2. Make an observation z_1 , and use it to compute $bel(x_1)$
- Repeat for *x*₂, *x*₃, ...

- Discrete state space, x_t takes on discrete values index by k
 - $bel(x_t)$ represented as $pmf\{p_{k,t}\}$

Input: $bel(x_{t-1}), u_t, z_t$ Output: $bel(x_t)$

For every *k*,

Perform prediction: $\bar{p}_{k,t} = \sum p(x_t | u_t, x_{t-1}) p_{k,t-1}$

Perform measurement update:

```
\begin{aligned} \text{bel}(x_t) &= \eta p(z_t | x_t) \bar{p}_{k,t} \\ \text{Return} \left\{ p_{k,t} \right\} \end{aligned}
```

Bayes Filter

- Continuous state space: Closed-form $bel(x_t)$ is unlikely. Need discretization and interpolation
- Must iterate through every x_t or every k
 - Number of states is exponential in state space dimension
- Solution: exploit structure or make assumptions
 - Parametric filters: assume a form for distributions
 - Non-parametric filters: represent distributions using samples