Project Presentations

Logistics
* Apr. 1, 3,5 - 10 minutes per person
* Sign up at Google sheets link
* First-come-first-serve; feel free to negotiate among yourselves

Purpose
* Share what you have learned with the class
* Stimulate research ideas and collaborations
 Participation marks for the project

Content

* Project does not need to be finished at this point
* Summarize what you have done, and what remains to be done
* Position your presentation in the context of this course

Audience
* Your peers

* Engineers, mathematicians, and computer scientists who know the basics about the
algorithms presented in this course

Policy-Based and Actor-Critic RL

CMPT 882
Mar. 21

Outline For The Week

e Basicideasin RL
e Value functions and value iteration
* Policy evaluation and policy improvement

* Model-free RL
* Monte-Carlo and temporal differencing policy evaluation
* e-greedy policy improvement

* Function Approximation

* Policy Gradient

Categories

* Model-based

* Explicitly involves an MDP model

e Model-free
e Does not involve an MDP model

* Value based
* Learns value function, and derives policy from value function

* Policy based

* Learns policy without value function

* Actor critic
* Incorporates both value function and policy

Policy Gradients

* If we executed a policy mg from state sy, we obtain a trajectory

o T:=(Sg,ap,51,a1,-..)
* Note: this is a random variable

* The return is given by R(7) = Y50 ¥ 7 (se, ap)
* Also a random variable

* Expected return given parameters 8: J(8) := E;_.0)[R(7)]

e Parameters for the optimal policy:
+ 0" = argmax By _p(r;0)[R(D)]

Policy Gradients

* Strategy: differentiate /(8) w.r.t. 8 and perform stochastic gradient
ascent

e Do this in a way that is model-free and computationally tractable

A

Policy Gradients

* Strategy: differentiate /(8) w.r.t. 8 and perform stochastic gradient
ascent

e Do this in a way that is model-free and computationally tractable

Policy Gradients

* Strategy: differentiate /(8) w.r.t. 8 and perform stochastic gradient
ascent

e Do this in a way that is model-free and computationally tractable

A

Policy Gradients

* Strategy: differentiate /(8) w.r.t. 8 and perform stochastic gradient
ascent

e Do this in a way that is model-free and computationally tractable

_~

Z

 ——

Policy Gradients

* Strategy: differentiate /(8) w.r.t. 8 and perform stochastic gradient

ascent
e Do this in a way that is model-free and computationally tractable

* To achieve this
* Write out J(60)
* Take gradient
* Do a math trick
* Obtain gradient expression that can be estimated easily

A

74

Write Out J(8) and Take Gradient
* J(0) = Eiepz;0)[R(T)]
+J(©) = [.R()p(z; O)dx

+Vo](0) = [R(D)Vep(z; 0)dt
* Hard...

Log Gradient Trick
+Vo](0) = [.R(D)Vep(z; 0)dt

* Trick:

\Y 0
 Vop(1; 0) = p(r; 6) "7 = p(; 6)V, log p(x; 6)
Vo) (0) = [, R(D)p(z; 6)V, log p(; 0) de

* VoJ(0) = Erpr.0)|[R(T)Vg logp(7; 6)]

* Gradient is an expectation — can estimate this using techniques we learned
before!

Model-Free Estimate of Gradient
* Vo] (0) = Erep(r:9)|[R(T)Vg log p(7; 0)]

* p(7;0) = |l120P(Se+1lSe, ar)mg(ag|se)
* logp(t;0) = Yisollogp(Ses1lSe ar) +logmg(aese)]
* Vo logp(7;0) = Xts0 Vo logmg (ag|se)

* Amazingly, model-free
* Markov property is not used

* Vg logmg(a;|s;) is known: since the form of my is known
* Eg. Backprop if Ty is a neural network

Monte-Carlo Gradient Estimate

e Results so far:

* VoJ(0) = Erpz.)|[R(T)Vg logp(7; 6)]
* Vglogp(7;0) = X450 Vg logmg(as|s,)

* Some more algebra to write out gradient of V,/(6)

* VH](H) = IET~p(T;9)
* VH](H) = IET~p(T;9)

R(7) X¢»0 Vo logmg (at|se)]

Dt20R(T)Vg logmg(as|se)]

* Vo) (0) ~ 5 Zia[Teno R(T)V logmg (arlse,i)]

REINFORCE Algorithm

* (Monte-Carlo Policy Gradient)
* Use policy my(a|s) to obtain a trajectory T = {sy, ay, ... }

* Estimate the gradient of the reward
« VgJ(0) = ?’:1[21520 R(7;)Vg logmg (at,i|5t,i)]

e Update policy parameters via (stochastic) gradient ascent
c 0 —0+avVyjo)

Observation 1

 Gradient estimate:
* VoJ(0) = Erp(r0)[Xe20 R(T)Vg log g (at|se)]
* VgJ(0) = Iiv=1[2tzo R(7;)Vy 108”0(“t,i|5t,i)]

e Gradient estimate also works for POMDPs without modification
R(74) 2 Vg logmg (at,l |St,1)
/Z Vg logmg (at,l |St,1) =0

t>0
| 4

Suppose

* R(1q) =2

* R(1,)=-1
* R(r3) =1

Observation 1

 Gradient estimate:
* VoJ(0) = E; pcr;0)[220 R(T)Vg log gy (ar|se)]
* VgJ(0) = Iiv=1[2tzo R(7;)Vy logﬂe(at,i|5t,i)]

e Gradient estimate also works for POMDPs without modification

* Parameter updates: 8 <« 6 + a V4] (6)
* Trajectories have high reward will be made more likely
* Trajectories with low reward will be made less likely
* A high-reward trajectory has good actions... on average

Observation 2

e Gradient estimate:
* Vo] (0) = Eropr:0) | Xe20 R(T)Vg log g (a¢|s,)]

e Causality?
* R(7) is the reward of the entire trajectory
* R(7) is multiplied in every term of the sum
* T includes times before t

* So, according to the above, the weight of Vg logmg(a;|s;) depends on times
priorto t?

e Simple fix:
* VgJ(0) = Ezep(z:0) [tho[(ztfzt Vt,_tr(st» at))ve log g (atlst)]]

Observation 3

e Gradient estimate:
* VpJ(0) = Ezp(r;0) [Xt20R(T)Vg logmg(as|s,)]

R(tq) Z Vg logmg(as1]stq
Z Vg logmg (at,2|5t,2) =0 ()
t=0 Z Vg logmg (at,l |St,1)
£>0
e ——
Suppose R(z;) z Vg logmg(arzlstz)
i R(Tl) =2 t=0
Vologmo(a; -|s * R(1;) =-1
; o logmg(asslsts) . R(Ti) —q R(T3)2V@ logmg(ass|ses)

t=0

Observation 3

e Gradient estimate:
* VpJ(0) = Ezp(r;0) [Xt20R(T)Vg logmg(as|s,)]

R(ty) Z Vg logmg(ag,1lse1
Z Vg logmg (at,2|5t,2) =0 ()
t>0 Z Vg logmg (at,l |St,1)
t=0
5
Suppose R(z;) z Vg logmg(arzlstz)
* R(14) =10 t=0
Vg logmg(ass|s * R(t,)=7
; o logmg(asslsts) . R(Ti) _ 9 R(T3)2V@ logmg(ass|ses)

t=0

Observation 3

e Gradient estimate:
* VoJ(0) = Erp(r;0)[X20 R(T)Vg logmg (ar|se)]

R(r1)) Vg logmg(ac, lse)

t>0
Z Vg logmg (at,l |St,1)
/ t=0 /
|)

Suppose

* R(14) =10
* R(t,)=7
* R(13) =9

* Performance is measured by reward R(7)
* But what is considered “good”?
* Need a baseline of comparison!

* VyJ(0) = Ezp(r;0) [Yts0(R(T) — b)Vg logmg(as|s,)]
* Fact: expectation is unchanged as long as b does not depend on 6

Revised REINFORCE

* (Monte-Carlo Policy Gradient)
* Use policy my(a|s) to obtain a trajectory T = {sy, ay, ... }

* Estimate the gradient of the reward
* VoJ(0) = Erp(z;0) [tho[(ztfzt Vt,_tT(St; ag) — b)Vg log g (at|5t)]]

e Update policy parameters via (stochastic) gradient ascent
c 0 —0+aVyH)

Picking a Baseline

* Many choices

* Basic, intuitive choice

*b=A.(s,a):= —V_(s)
* Good action: one that gives a that is large relative to V
e Bad action: one that gives a that is small relative to V

* A_(s,a) -- “advantage function”

e But we don’t know V...
e Learn it!

Actor-Critic Methods

* Actor (policy) decides which actions to take

* Critic (value function V') decides how good the action is

Actor-Critic Methods

* Basic algorithm, combining everything we’ve learned:

1. Start with some initial policy 7y and value function V (s; w)
* 0 and w are parameters

2. Collectdata S, R, S’ by executing policy
3. Update Vy: miniugnize”i? +yV (S w™) =V (S; W)”z
 Many methods (eg. stochastic gradient descent)
Estimate policy gradient: VgJ(0) = E;opr.0) [tho (R' +yV(S') - Vn(S)) Vg log g (at|St)]
5. Improve policy via gradient ascent: 8 « 6 + aVyJ(6)
6. Repeat 2-5 many times

State-of-the-Art Policy Gradient Methods

* Trust region policy optimization (TRPO)
* https://arxiv.org/abs/1502.05477

* Proximal policy optimization (PPO)
e https://arxiv.org/abs/1707.06347

https://arxiv.org/abs/1502.05477
https://arxiv.org/abs/1707.06347

Current Robotics Research

* Additional challenge: lack of data

* Transfer learning
* Learn in simulation, transfer knowledge to real-life
* Build better simulators

e Curriculum learning
* Learn easier tasks first, and increase difficulty gradually
* Lesson plans from reachability analysis

* Reward shaping: how to design reward
* Inverse reinforcement learning (figure out expert’s reward)
e Time-to-reach functions for simplified system, using optimal control (Xubo
Lyu)

Current Robotics Research

* Transfer learning

e Taylor, Stone. “Transfer Learnin% for Reinforcement Learning Domains: A Survey,”
https://dl.acm.org/citation.cfm?doid=1577069.1755839

* Harrison et al. “ADAPT: Zero-Shot Adaptive Policy Transfer for Stochastic Dynamical
Systems,” https://arxiv.org/abs/1707.04674

e Curriculum learning

* Florensa et al. “Reverse Curriculum Generation for Reinforcement Learning,”
http://proceedings.mir.press/v78/florensal7a.html

* lvanovic et al. “BaRC: Backward Reachability Curriculum for Robotic Reinforcement
Learning,” https://arxiv.org/abs/1806.06161
* Reward shaping: how to design reward

* Abbeel, Ng. “Apprenticeship learning via inverse reinforcement learning,”
https://dl.acm.org/citation.cfm?id=1015430

e Time-to-reach function for simplified system, using optimal control (Xubo Lyu)

https://arxiv.org/abs/1707.04674
https://arxiv.org/abs/1707.04674
http://proceedings.mlr.press/v78/florensa17a.html
https://arxiv.org/abs/1806.06161
https://dl.acm.org/citation.cfm?id=1015430

