Project Presentations

Logistics

- Apr. 1, 3, 5 10 minutes per person
- Sign up at Google sheets link
 - First-come-first-serve; feel free to negotiate among yourselves

Purpose

- Share what you have learned with the class
- Stimulate research ideas and collaborations
- Participation marks for the project

Content

- Project does not need to be finished at this point
 - Summarize what you have done, and what remains to be done
- Position your presentation in the context of this course

Audience

- Your peers
- Engineers, mathematicians, and computer scientists who know the basics about the algorithms presented in this course

Policy-Based and Actor-Critic RL

CMPT 882

Mar. 21

Outline For The Week

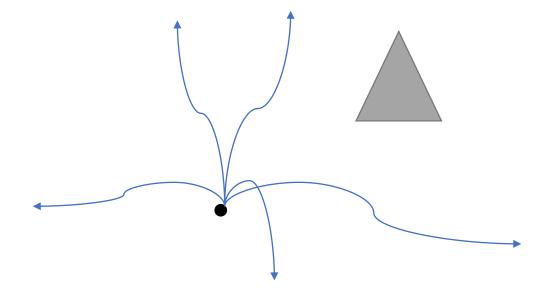
- Basic ideas in RL
 - Value functions and value iteration
 - Policy evaluation and policy improvement
- Model-free RL
 - Monte-Carlo and temporal differencing policy evaluation
 - ϵ -greedy policy improvement
- Function Approximation

Categories

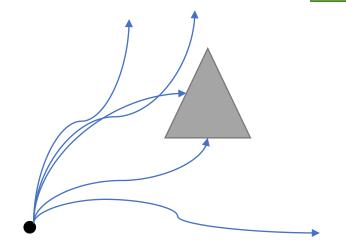
- Model-based
 - Explicitly involves an MDP model
- Model-free
 - Does not involve an MDP model
- Value based
 - Learns value function, and derives policy from value function
- Policy based
 - Learns policy without value function
- Actor critic
 - Incorporates both value function and policy

- If we executed a policy π_{θ} from state s_0 , we obtain a trajectory
 - $\tau \coloneqq (s_0, a_0, s_1, a_1, \dots)$
 - Note: this is a random variable
- The return is given by $R(\tau) \coloneqq \sum_{t\geq 0} \gamma^t r(s_t, a_t)$
 - Also a random variable
- Expected return given parameters $\theta: J(\theta) \coloneqq \mathbb{E}_{\tau \sim p(\tau;\theta)}[R(\tau)]$
- Parameters for the optimal policy:
 - $\theta^* = \arg \max_{\theta} \mathbb{E}_{\tau \sim p(\tau;\theta)}[R(\tau)]$

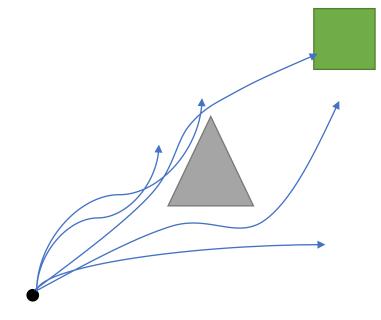
- Strategy: differentiate $J(\theta)$ w.r.t. θ and perform stochastic gradient ascent
 - Do this in a way that is model-free and computationally tractable



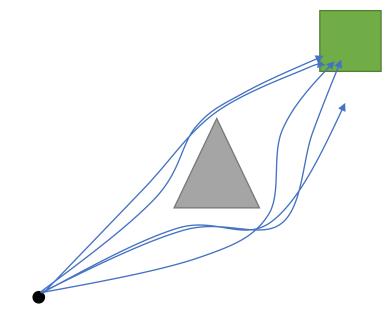
- Strategy: differentiate $J(\theta)$ w.r.t. θ and perform stochastic gradient ascent
 - Do this in a way that is model-free and computationally tractable



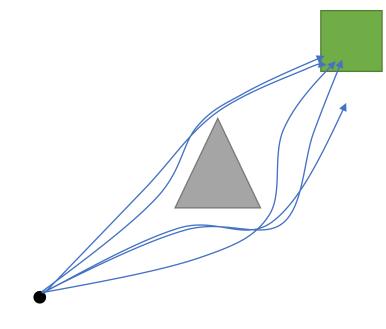
- Strategy: differentiate $J(\theta)$ w.r.t. θ and perform stochastic gradient ascent
 - Do this in a way that is model-free and computationally tractable



- Strategy: differentiate $J(\theta)$ w.r.t. θ and perform stochastic gradient ascent
 - Do this in a way that is model-free and computationally tractable



- Strategy: differentiate $J(\theta)$ w.r.t. θ and perform stochastic gradient ascent
 - Do this in a way that is model-free and computationally tractable
- To achieve this
 - Write out $J(\theta)$
 - Take gradient
 - Do a math trick
 - Obtain gradient expression that can be estimated easily



Write Out $J(\theta)$ and Take Gradient

•
$$J(\theta) \coloneqq \mathbb{E}_{\tau \sim p(\tau;\theta)}[R(\tau)]$$

•
$$J(\theta) = \int_{\tau} R(\tau)p(\tau;\theta)d\tau$$

- $\nabla_{\theta} J(\theta) = \int_{\tau} R(\tau) \nabla_{\theta} p(\tau; \theta) d\tau$
 - Hard...

Log Gradient Trick

• $\nabla_{\theta} J(\theta) = \int_{\tau} R(\tau) \nabla_{\theta} p(\tau; \theta) d\tau$

• Trick:

- $\nabla_{\theta} p(\tau; \theta) = p(\tau; \theta) \frac{\nabla_{\theta} p(\tau; \theta)}{p(\tau; \theta)} = p(\tau; \theta) \nabla_{\theta} \log p(\tau; \theta)$
- $\nabla_{\theta} J(\theta) = \int_{\tau} R(\tau) p(\tau; \theta) \nabla_{\theta} \log p(\tau; \theta) d\tau$
- $\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim p(\tau;\theta)} [R(\tau) \nabla_{\theta} \log p(\tau;\theta)]$
- Gradient is an expectation can estimate this using techniques we learned before!

Model-Free Estimate of Gradient

- $\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim p(\tau;\theta)} [R(\tau) \nabla_{\theta} \log p(\tau;\theta)]$
- $p(\tau;\theta) = \prod_{t\geq 0} p(s_{t+1}|s_t,a_t) \pi_{\theta}(a_t|s_t)$
- $\log p(\tau; \theta) = \sum_{t\geq 0} [\log p(s_{t+1}|s_t, a_t) + \log \pi_{\theta}(a_t|s_t)]$
- $\nabla_{\theta} \log p(\tau; \theta) = \sum_{t \ge 0} \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)$
 - Amazingly, model-free
 - Markov property is not used
 - $\nabla_{\theta} \log \pi_{\theta}(a_t|s_t)$ is known: since the form of π_{θ} is known
 - Eg. Backprop if π_{θ} is a neural network

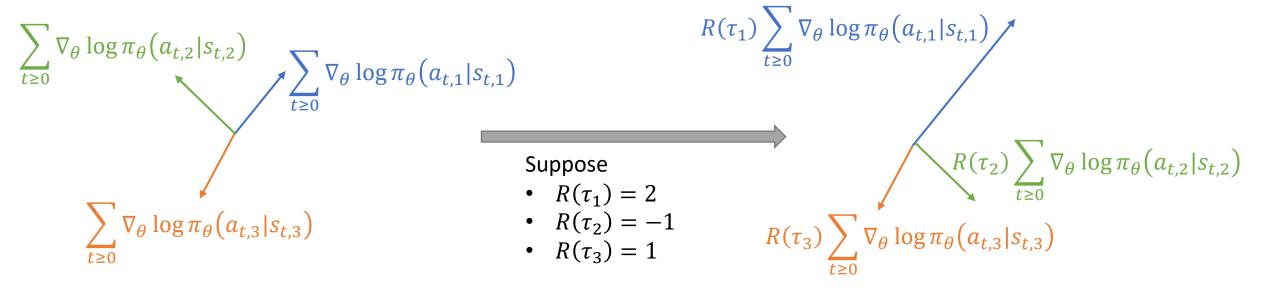
Monte-Carlo Gradient Estimate

- Results so far:
 - $\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim p(\tau;\theta)} [R(\tau) \nabla_{\theta} \log p(\tau;\theta)]$
 - $\nabla_{\theta} \log p(\tau; \theta) = \sum_{t \ge 0} \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)$
- Some more algebra to write out gradient of $\nabla_{\theta}J(\theta)$
 - $\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim p(\tau;\theta)} [R(\tau) \sum_{t \ge 0} \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)]$
 - $\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim p(\tau;\theta)} [\sum_{t \geq 0} R(\tau) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)]$
 - $\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \left[\sum_{t \geq 0} R(\tau_i) \nabla_{\theta} \log \pi_{\theta} \left(a_{t,i} | s_{t,i} \right) \right]$

REINFORCE Algorithm

- (Monte-Carlo Policy Gradient)
- Use policy $\pi_{\theta}(a|s)$ to obtain a trajectory $\tau = \{s_0, a_0, \dots\}$
- Estimate the gradient of the reward
 - $\nabla_{\theta} J(\theta) \approx \sum_{i=1}^{N} \left[\sum_{t \geq 0} R(\tau_i) \nabla_{\theta} \log \pi_{\theta} \left(a_{t,i} | s_{t,i} \right) \right]$
- Update policy parameters via (stochastic) gradient ascent
 - $\theta \leftarrow \theta + \alpha \nabla_{\theta} I(\theta)$

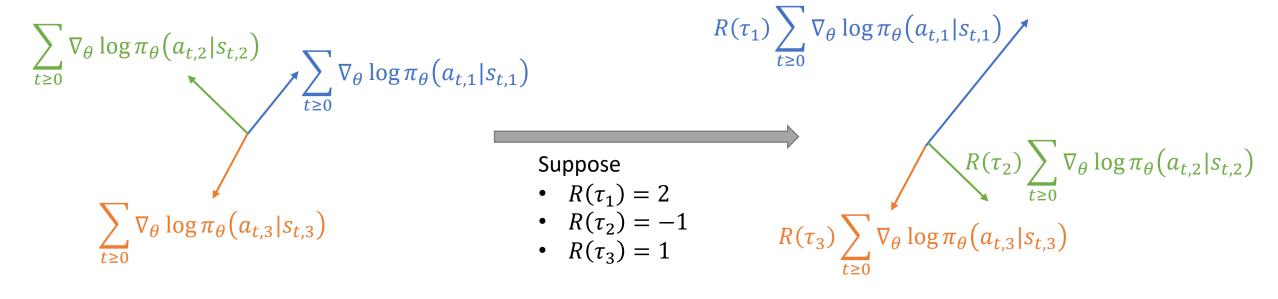
- Gradient estimate:
 - $\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim p(\tau;\theta)} [\sum_{t \geq 0} R(\tau) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)]$
 - $\nabla_{\theta} J(\theta) \approx \sum_{i=1}^{N} \left[\sum_{t \geq 0} R(\tau_i) \nabla_{\theta} \log \pi_{\theta} \left(a_{t,i} | s_{t,i} \right) \right]$
- Gradient estimate also works for POMDPs without modification



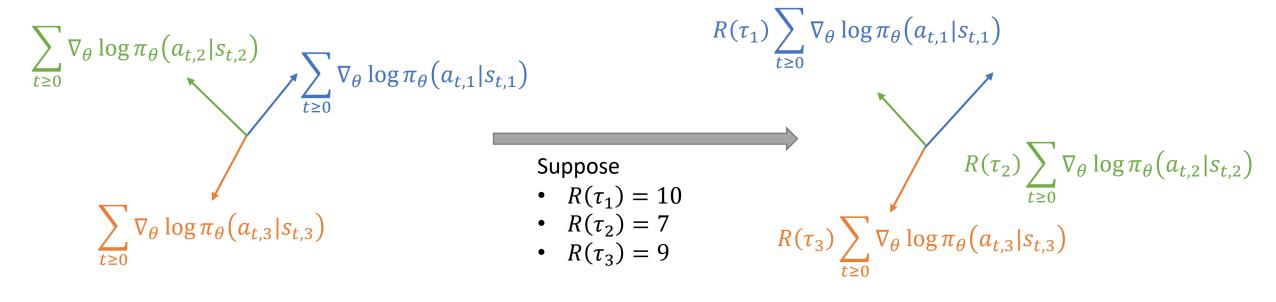
- Gradient estimate:
 - $\nabla_{\theta} J(\theta) \approx \mathbb{E}_{\tau \sim p(\tau;\theta)} [\sum_{t \geq 0} R(\tau) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)]$
 - $\nabla_{\theta} J(\theta) \approx \sum_{i=1}^{N} \left[\sum_{t \geq 0} R(\tau_i) \nabla_{\theta} \log \pi_{\theta} \left(a_{t,i} | s_{t,i} \right) \right]$
- Gradient estimate also works for POMDPs without modification
- Parameter updates: $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$
 - Trajectories have high reward will be made more likely
 - Trajectories with low reward will be made less likely
 - A high-reward trajectory has good actions... on average

- Gradient estimate:
 - $\nabla_{\theta} J(\theta) \approx \mathbb{E}_{\tau \sim p(\tau;\theta)} [\sum_{t \geq 0} R(\tau) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)]$
- Causality?
 - $R(\tau)$ is the reward of the entire trajectory
 - $R(\tau)$ is multiplied in every term of the sum
 - τ includes times before t
 - So, according to the above, the weight of $\nabla_{\theta} \log \pi_{\theta}(a_t|s_t)$ depends on times prior to t?
- Simple fix:
 - $\nabla_{\theta} J(\theta) \approx \mathbb{E}_{\tau \sim p(\tau;\theta)} \left[\sum_{t \geq 0} \left[\left(\sum_{t' \geq t} \gamma^{t'-t} r(s_t, a_t) \right) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \right] \right]$

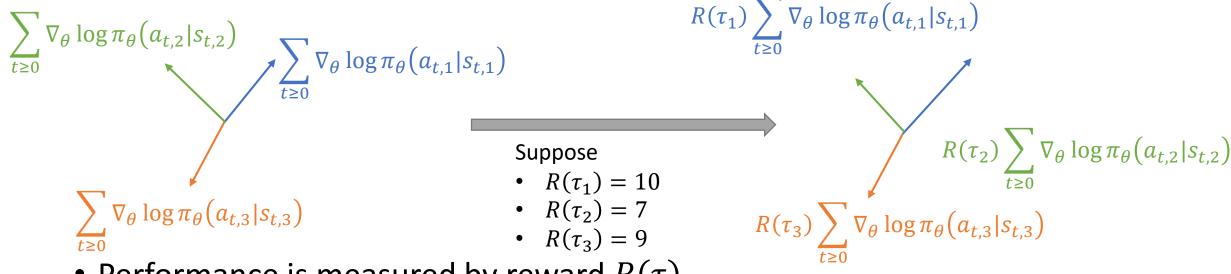
- Gradient estimate:
 - $\nabla_{\theta} J(\theta) \approx \mathbb{E}_{\tau \sim p(\tau;\theta)} [\sum_{t \geq 0} R(\tau) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)]$



- Gradient estimate:
 - $\nabla_{\theta} J(\theta) \approx \mathbb{E}_{\tau \sim p(\tau;\theta)} [\sum_{t \geq 0} R(\tau) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)]$



- Gradient estimate:
 - $\nabla_{\theta} J(\theta) \approx \mathbb{E}_{\tau \sim p(\tau;\theta)} [\sum_{t \geq 0} R(\tau) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)]$



- Performance is measured by reward $R(\tau)$
 - But what is considered "good"?
 - Need a baseline of comparison!
 - $\nabla_{\theta} J(\theta) \approx \mathbb{E}_{\tau \sim p(\tau;\theta)} [\sum_{t \geq 0} (R(\tau) b) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)]$
 - Fact: expectation is unchanged as long as b does not depend on θ

Revised REINFORCE

- (Monte-Carlo Policy Gradient)
- Use policy $\pi_{\theta}(a|s)$ to obtain a trajectory $\tau = \{s_0, a_0, \dots\}$
- Estimate the gradient of the reward
 - $\nabla_{\theta} J(\theta) \approx \mathbb{E}_{\tau \sim p(\tau;\theta)} \left[\sum_{t \geq 0} \left[\left(\sum_{t' \geq t} \gamma^{t'-t} r(s_t, a_t) b \right) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \right] \right]$
- Update policy parameters via (stochastic) gradient ascent
 - $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$

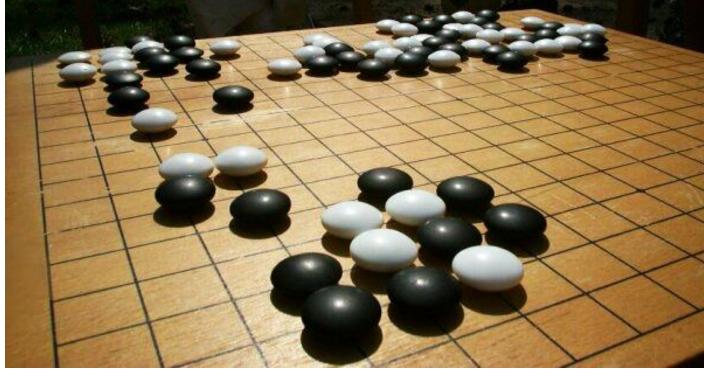
Picking a Baseline

Many choices

- Basic, intuitive choice
 - $b = \mathcal{A}_{\pi}(s, a) \coloneqq r(s, a) + \gamma V_{\pi}(s') V_{\pi}(s)$
 - Good action: one that gives a return that is large relative to V
 - Bad action: one that gives a return that is small relative to V
 - $\mathcal{A}_{\pi}(s,a)$ -- "advantage function"
- But we don't know V...
 - Learn it!

Actor-Critic Methods

- Actor (policy π) decides which actions to take
- Critic (value function V) decides how good the action is



Actor-Critic Methods

- Basic algorithm, combining everything we've learned:
 - 1. Start with some initial policy π_{θ} and value function $\hat{V}(s; w)$
 - θ and w are parameters
 - 2. Collect data S, R, S' by executing policy
 - 3. Update V_{ϕ} : minimize $\|\tilde{R} + \gamma \hat{V}(\tilde{S}'; w^{-}) V(\tilde{S}; w)\|_{2}^{2}$
 - Many methods (eg. stochastic gradient descent)
 - 4. Estimate policy gradient: $\nabla_{\theta} J(\theta) \approx \mathbb{E}_{\tau \sim p(\tau;\theta)} \left[\sum_{t \geq 0} \left(\tilde{R} + \gamma V_{\pi}(\tilde{S}') V_{\pi}(\tilde{S}) \right) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \right]$
 - 5. Improve policy via gradient ascent: $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$
 - 6. Repeat 2-5 many times

State-of-the-Art Policy Gradient Methods

- Trust region policy optimization (TRPO)
 - https://arxiv.org/abs/1502.05477
- Proximal policy optimization (PPO)
 - https://arxiv.org/abs/1707.06347

Current Robotics Research

- Additional challenge: lack of data
- Transfer learning
 - Learn in simulation, transfer knowledge to real-life
 - Build better simulators
- Curriculum learning
 - Learn easier tasks first, and increase difficulty gradually
 - Lesson plans from reachability analysis
- Reward shaping: how to design reward
 - Inverse reinforcement learning (figure out expert's reward)
 - Time-to-reach functions for simplified system, using optimal control (Xubo Lyu)

Current Robotics Research

Transfer learning

- Taylor, Stone. "Transfer Learning for Reinforcement *Learning* Domains: A Survey," https://dl.acm.org/citation.cfm?doid=1577069.1755839
- Harrison et al. "ADAPT: Zero-Shot Adaptive Policy Transfer for Stochastic Dynamical Systems," https://arxiv.org/abs/1707.04674

Curriculum learning

- Florensa et al. "Reverse Curriculum Generation for Reinforcement Learning," <u>http://proceedings.mlr.press/v78/florensa17a.html</u>
- Ivanovic et al. "BaRC: Backward Reachability Curriculum for Robotic Reinforcement Learning," https://arxiv.org/abs/1806.06161

Reward shaping: how to design reward

- Abbeel, Ng. "Apprenticeship learning via inverse reinforcement learning," <u>https://dl.acm.org/citation.cfm?id=1015430</u>
- Time-to-reach function for simplified system, using optimal control (Xubo Lyu)