Model-Free Value-Based Learning

CMPT 882
Mar. 20

Monte-Carlo Policy Evaluation

* To obtain empirical mean, we record N (s, a), # of times s is visited for
every state

e Startat N(s,a) = O forall sand a
* Note that this means N (and S, R below) must be stored for every s and a

* First-visit MC Policy Evaluation:

* At the first time t that s is visited in an episode,
* Increment N(s,a) « N(s,a) + 1
 Record return S(s,a) « S(s,a) + Yytr(s,, a;)

* Repeat for many episodes
S(s,a)

N(s,a)

~ Q(s,a)

* Estimate action-value function: R(s,a) =

Incremental Updates

* |Instead of estimating I/ (s) after many episodes, we can update it
incrementally after every episode after receiving return R

* N(s,a) « N(s,a) +1
* Q(s,a) « Q(s,0) + 5= (R(s,0) = Q(s,)

* More generally, we can weight the second term differently
* O(s,a) « Q(s,a) + a(R(s, a) — Q(s, a))

Monte-Carlo Policy Evaluation

e Start with initial policy T and value function V or Q

 Use policy to update Q: a = n(s)
* MC policy evaluation provides estimate of Q;

* Many episodes are needed to obtain accurate estimate
* Model-free with MCl T

e Use ¥-o+(Q to update policy T
+—Greedy-potiey?

* Greedy policy lacks exploration, so I/ is not estimated at many states

* e-greedy policy

e-Greedy Policy
* Also known as e-greedy exploration

* Choose random action with probability €

e Typically uniformly random
* If a takes on discrete values, then all actions will be chosen eventually

* Choose action from greedy policy with probability 1 — €
* a = argmax{Q(s,a’)}

* Model-freel

Monte-Carlo Control

e Start with initial policy T and value function V or Q

* Use policy to update Q: a = n(s)
* Repeat for many episodes:
* N(s,a) « N(s,a) +1
1

© Q(5,0) « Q(s5,0) + 5w

e Use () to update policy
* e-greedy policy
* With probability €, choose random control
* With probability 1 — €, choose a = argmax{Q(s,a’)}
a

(R (s,a) — Q(s, a))

* Pick e = %, where k is the # of algorithm iterations

* Explore less as value function becomes more accurate

DP vs. MC Policy Evaluation

* Suppose the policy T is given
* Dynamic Programming * Monte-Carlo
V(s) « max Q(s,a)

0(s,0) = r(5,@) +7) [p(s'ls,)V ("]

S1 S2 S3

DP vs. MC Policy Evaluation

* Suppose the policy T is given

* Dynamic Programming * Monte-Carlo
V(s) «maxQ(s,a) * Repeat for many episodes:
a N(s,a) « N(s,a) +1
Q(s,a) «7r(s,a) + yE[p(s’ls,)V (s")] Q(s,a) < Q(s,a) + a(R — Q(s, a))
S s’ S

Sl Sz S3 Sl Sz 53

Temporal-Difference (TD) Policy Evaluation

* Temporal-difference: a class of policy evaluation techniques TD(A)

* Most basic version: TD(0)

* From any state s, apply policy a = m(s) for one time step, obtain reward
r(s,a)
* Get to next state s’, and estimate return from then on using Q function
* Note: next action is also from the same policy, a’ = w(s')
+ Q(s,0) < Q(s,@) + a(r(s,) +vQ(s',a") — Q(s, @)
* Repeat for many episodes to obtain Q (s, a) estimates at many states s and
actions a

Temporal-Difference (TD) Policy Evaluation

* Most basic version: TD(0)
Q(S, a) < Q(S, Cl) + C((T'(S, Cl) +]/Q(S,, a,) _ Q(S, Cl))
* Advantages:

* Online algorithm: Q can be updated during an
episode

* Does not require complete episodes

* Disadvantages:
e System may not be Markov

* |nitial Q can be very bad and Q may never improve
enough

SARSA Algorithm

e Start with initial policy T and value function V or Q

* Use e-greedy policy to update Q: a,a’~m(s), m is e-greedy
* Repeat for many episodes:
* Q(s,a) « Q(s,a) + a(r(s,a) +yQ(s',a") — Q(s,a))
* New policy T is derived from new T
* e-greedy policy
* With probability €, choose random control
 With probability 1 — €, choose a = arg rrzle,lx{Q(S, a')}

o Ife,a = %, then Q(s,a) = Q,+(s,a)

On-Policy and Off-Policy Learning

From SARSA:
* Use e-greedy policy to update Q: a,a’~m(s), w is e-greedy
* Repeat for many episodes: Q(s,a) < Q(s,a) + a(r(s, a) +yQ(s’,a") — Q(s, a))

* “Behaviour policy”: policy used to collect rewards -- a~mz(s)
* “Target policy”: policy used to estimate -- a’'~m(s)

* “On-policy learning”: mg = 1y
* SARSA is an on-policy learning algorithm

» “Off-policy learning”: mg # mr
Q(s,a) « Q(s,a) + a(r(s, a) +yQ(s',a’) — Q(s, a)), where a~mg(s),a’ ~m(s)

Off-Policy Learning

* Off-policy learning”: Behaviour and target policies are different
Q(s,a) < Q(s,a) + a(r(s, a) +y0Q(s’,a’) — Q(s, a)), where a~mg(s), a’ ~mr(s)

* Advantages:
* Learn from observing another agent (eg. human) execute a different policy
* Learn from experience generated from old policies
* Improve two policies at once, while following one policy

* Example: Q-Learning algorithm
* g is e-greedy with respect to ¢
* 7 is greedy with respect to

Q-Learning Algorithm

e Start with initial policy T and value function V or Q
* Update Q:
* Repeat for many episodes with e-greedy policy a~mgz(s):
* O(s,a) <« Q(s,a) + a(r(s, a) + ymax, Q(s',a’) — Q(s, a))
* Both the e-greedy myz and the greedy m+ are derived from

e Ife,a = %, then Q(s,a) - Q+(s,a)

Function Approximation

* So far, Q(s, a) is stored in a multi-dimensional array
* Cannot solve large problems

* Parametrize value functions with parameters (or weights) w

* (s, w) = Q(s,a)
* Update parameters w using MC- or TD-based learning
* Hopefully, Q is generalizable to different states s and actions a

Fitting to a Known Q.

* Fit Q(S, a, W) to Qn'(SJ (l)
minimize||Q, (S, A) — Q(S, 4; W)Hz
w
* Training data: {(s;, a;), Q.(s;, a;)}

* The collection of states and actions in training data is denoted S and A

e Gradient with respect to w:

2
(S, A, =2 (xS, 4) = A, 4;w)) 7%

aQ(SA w)

e Gradient descent:

s w e w—a(Qa(S,4) - (S, 4w)) 5
* In practice, use stochastic gradient descent to update random components of w

90 (S,A;w)

Monte-Carlo Incremental Weight Updates

* First-visit MC policy evaluation
* At the first time t that s is visited in an episode,
* Increment N(s,a) « N(s,a) + 1
 Record return S(s,a) « S(s,a) + Yytr(s, a;)

* Repeat for many episodes
S(s,a) N
N(s,a) ~ Q(S) a)

* Above procedure produces “training data” {S, 4, R}
e Storing a set of S, A4, R, etc. is called “experience replay”
* This is as opposed to updating w as data is being collected

* Update weights:
° W « W—a(R — Q(S,A;W))

 Estimate action-value function: R(s,a) =

2Q(S,4;w)
ow

e Guaranteed to converge to local minimum

Temporal-Difference Incremental Weight Updates

* Most basic version: TD(0)

* From any state s, apply policy a = m(s) for one time step, obtain reward r(s, a)
* Get to next state s’, and estimate return from then on using Q function

* Q(s,a) « Q(s,a) + a(r(s,a) +yQ(s',a") — Q(s,a))
* Repeat for many episodes to obtain Q (s, a) estimates at many states s and actions a

* Above procedure produces a collection of current and next states and
actions, S,A,R,S’ A’

e Update weights using TD target:
cw e w—a(R+yQ(S, A w) = QS 4 w))

* Not always guaranteed to converge to local minimum

2Q(S,4;w)
ow

Q-Learning With Function Approximation

Goal: Given a set of weights w™, find the next set of weights w in
Q(s,a;w)

1. From any state s, apply e-greedy policy with respect to Q (s, a; w™)
* This produces a collection S, 4, R, S’

2. Sample from the above collection to obtain a smaller data set
S,AR,S’

3. Update weights using stochastic gradient descent ,
minimize Hﬁ + ¥ max Q(S’,a’;w™) —Q(S,4; w) ”
w a 2

» Use deep Q-network (DQN) for Q(S, 4; w) > deep Q-learning

Deep Q-Learning Example: Atari Games

* Minh et al. “Playing Atari with Deep Reinforcement Learning,” 2013

* States: pixels from last few frames

e Actions: controls in the game
* Reward: game score
* Deep Q network: convolutional and fully connected layers

Starting out - 10 minutes of training

The algorithm tries to hit the hall back, but
itis yet too clumsy to manage.

Deep Q-Learning: Robotics Example

* Gu et al. “Deep Reinforcement Learning for
Robotic Manipulation with Asynchronous Off-
Policy Updates,” 2017.

 States: joint angles, end-effector positions, and
their time derivatives, target position

* Actions: joint velocities of arm, torque of fingers

* Task: open door, pick up object and place it
elsewhere

* Deep Q network: two fully connected hidden
layers, 100 units each

* Main challenge: use multiple robots to learn at the
same time and share knowledge

0.3 w1 worker
-) workers

test reward

100 200 300 400 500 600 700 800
updates (1000s)

it

-

! @ ' ‘l- - ' | N\

{ - ' | g
le Werker - 4 hourst . 1.5x

| B gﬁm ;—‘n—;)

