Model-Free Value-Based Learning

CMPT 882

Mar. 20

Monte-Carlo Policy Evaluation

- To obtain empirical mean, we record N(s, a), # of times s is visited for every state
 - Start at N(s, a) = 0 for all s and a
 - Note that this means N (and S, R below) must be stored for every s and a
- First-visit MC Policy Evaluation:
 - At the first time t that s is visited in an episode,
 - Increment $N(s, a) \leftarrow N(s, a) + 1$
 - Record return $S(s, a) \leftarrow S(s, a) + \sum \gamma^t r(s_t, a_t)$
 - Repeat for many episodes
 - Estimate action-value function: $R(s, a) = \frac{S(s,a)}{N(s,a)} \approx Q(s,a)$

Incremental Updates

- Instead of estimating V(s) after many episodes, we can update it incrementally after every episode after receiving return R
 - $N(s,a) \leftarrow N(s,a) + 1$

•
$$Q(s,a) \leftarrow Q(s,a) + \frac{1}{N(s,a)} (R(s,a) - Q(s,a))$$

• More generally, we can weight the second term differently

•
$$Q(s,a) \leftarrow Q(s,a) + \alpha (R(s,a) - Q(s,a))$$

Monte-Carlo Policy Evaluation

- Start with initial policy π and value function V or Q
- Use policy π to update $Q: a = \pi(s)$
 - MC policy evaluation provides estimate of Q_{π}
 - Many episodes are needed to obtain accurate estimate
 - Model-free with MC!
- Use $rac{V-or}{Q}$ to update policy π
 - Greedy policy?
 - Greedy policy lacks exploration, so V is not estimated at many states
 - ϵ -greedy policy

e-Greedy Policy

- Also known as ϵ -greedy exploration
- Choose random action with probability ϵ
 - Typically uniformly random
 - If *a* takes on discrete values, then all actions will be chosen eventually
- Choose action from greedy policy with probability $1-\epsilon$
 - $a = \arg \max_{a'} \{Q(s, a')\}$
 - Model-free!

Monte-Carlo Control

- Start with initial policy π and value function V or Q
- Use policy π to update $Q: a = \pi(s)$
 - Repeat for many episodes:
 - $N(s,a) \leftarrow N(s,a) + 1$

•
$$Q(s,a) \leftarrow Q(s,a) + \frac{1}{N(s,a)} (R(s,a) - Q(s,a))$$

- Use Q to update policy π
 - ϵ -greedy policy
 - With probability ϵ , choose random control
 - With probability 1ϵ , choose $a = \arg \max_{a'} \{Q(s, a')\}$
 - Pick $\epsilon = \frac{1}{k}$, where k is the # of algorithm iterations
 - Explore less as value function becomes more accurate

DP vs. MC Policy Evaluation

- Suppose the policy π is given
 - Dynamic Programming

$$V(s) \leftarrow \max_{a} Q(s, a)$$

$$Q(s, a) \leftarrow r(s, a) + \gamma \sum_{s'} [p(s'|s, a)V(s')]$$

• Monte-Carlo

DP vs. MC Policy Evaluation

- Suppose the policy π is given
 - Dynamic Programming

 $V(s) \leftarrow \max_{a} Q(s, a)$ $Q(s, a) \leftarrow r(s, a) + \gamma \sum_{s'} [p(s'|s, a)V(s')]$

- Monte-Carlo
 - Repeat for many episodes: $N(s,a) \leftarrow N(s,a) + 1$ $Q(s,a) \leftarrow Q(s,a) + \alpha (R - Q(s,a))$

Temporal-Difference (TD) Policy Evaluation

- Temporal-difference: a class of policy evaluation techniques $TD(\lambda)$
- Most basic version: TD(0)
 - From any state s, apply policy $a = \pi(s)$ for one time step, obtain reward r(s, a)
 - Get to next state s', and estimate return from then on using Q function
 - Note: next action is also from the same policy, $a' = \pi(s')$
 - $Q(s,a) \leftarrow Q(s,a) + \alpha (r(s,a) + \gamma Q(s',a') Q(s,a))$
 - Repeat for many episodes to obtain Q(s, a) estimates at many states s and actions a

Temporal-Difference (TD) Policy Evaluation

- Most basic version: TD(0) $Q(s,a) \leftarrow Q(s,a) + \alpha (r(s,a) + \gamma Q(s',a') - Q(s,a))$
- Advantages:
 - Online algorithm: Q can be updated during an episode
 - Does not require complete episodes
- Disadvantages:
 - System may not be Markov
 - Initial Q can be very bad and Q may never improve enough

SARSA Algorithm

- Start with initial policy π and value function V or Q
- Use ϵ -greedy policy to update $Q: a, a' \sim \pi(s), \pi$ is ϵ -greedy
 - Repeat for many episodes:
 - $Q(s,a) \leftarrow Q(s,a) + \alpha (r(s,a) + \gamma Q(s',a') Q(s,a))$
- New policy π is derived from new Q
 - ϵ -greedy policy
 - With probability ϵ , choose random control
 - With probability 1ϵ , choose $a = \arg \max_{a'} \{Q(s, a')\}$

• If
$$\epsilon, \alpha = \frac{1}{k}$$
, then $Q(s, a) \to Q_{\pi^*}(s, a)$

policy improvement algorithm

On-Policy and Off-Policy Learning

- From SARSA:
 - Use ϵ -greedy policy to update $Q: a, a' \sim \pi(s), \pi$ is ϵ -greedy
 - Repeat for many episodes: $Q(s, a) \leftarrow Q(s, a) + \alpha (r(s, a) + \gamma Q(s', a') Q(s, a))$
- "Behaviour policy": policy used to collect rewards -- $a \sim \pi_B(s)$
- "Target policy": policy used to estimate -- $a' \sim \pi_T(s)$
- "On-policy learning": $\pi_B = \pi_T$
 - SARSA is an on-policy learning algorithm
- "Off-policy learning": $\pi_B \neq \pi_T$ $Q(s,a) \leftarrow Q(s,a) + \alpha (r(s,a) + \gamma Q(s',a') - Q(s,a))$, where $a \sim \pi_B(s), a' \sim \pi_T(s)$

Off-Policy Learning

• Off-policy learning": Behaviour and target policies are different $Q(s,a) \leftarrow Q(s,a) + \alpha (r(s,a) + \gamma Q(s',a') - Q(s,a))$, where $a \sim \pi_B(s), a' \sim \pi_T(s)$

• Advantages:

- Learn from observing another agent (eg. human) execute a different policy
- Learn from experience generated from old policies
- Improve two policies at once, while following one policy
- Example: Q-Learning algorithm
 - π_B is ϵ -greedy with respect to Q
 - π_T is greedy with respect to Q

Q-Learning Algorithm

- Start with initial policy π and value function V or Q
- Update Q:
 - Repeat for many episodes with ϵ -greedy policy $a \sim \pi_B(s)$:

•
$$Q(s,a) \leftarrow Q(s,a) + \alpha \Big(r(s,a) + \gamma \max_{a'} Q(s',a') - Q(s,a) \Big)$$

• Both the $\epsilon\text{-greedy}\,\pi_B$ and the greedy π_T are derived from Q

• If
$$\epsilon, \alpha = \frac{1}{k}$$
, then $Q(s, \alpha) \to Q_{\pi^*}(s, \alpha)$

Function Approximation

- So far, Q(s, a) is stored in a multi-dimensional array
 - Cannot solve large problems
- Parametrize value functions with parameters (or weights) w
 - $\hat{Q}(s,a;w) \approx Q(s,a)$
 - Update parameters w using MC- or TD-based learning
 - Hopefully, Q is generalizable to different states s and actions a

Fitting to a Known Q_π

• Fit $\hat{Q}(s,a;w)$ to $Q_{\pi}(s,a)$

$$\underset{w}{\text{minimize}} \| Q_{\pi}(S,A) - \hat{Q}(S,A;w) \|_{2}^{2}$$

- Training data: $\{(s_i, a_i), Q_{\pi}(s_i, a_i)\}$
- The collection of states and actions in training data is denoted S and A
- Gradient with respect to w:

•
$$\frac{\partial}{\partial w} \left\| \hat{Q}(S,A;w) - Q_{\pi}(S,A) \right\|_{2}^{2} = 2 \left(Q_{\pi}(S,A) - \hat{Q}(S,A;w) \right) \frac{\partial \hat{Q}(S,A;w)}{\partial w}$$

• Gradient descent:

•
$$w \leftarrow w - \alpha \left(Q_{\pi}(S,A) - \hat{Q}(S,A;w) \right) \frac{\partial \hat{Q}(S,A;w)}{\partial w}$$

• In practice, use stochastic gradient descent to update random components of w

Monte-Carlo Incremental Weight Updates

- First-visit MC policy evaluation
 - At the first time t that s is visited in an episode,
 - Increment $N(s, a) \leftarrow N(s, a) + 1$
 - Record return $S(s, a) \leftarrow S(s, a) + \sum \gamma^t r(s_t, a_t)$
 - Repeat for many episodes
 - Estimate action-value function: $R(s, a) = \frac{S(s, a)}{N(s, a)} \approx Q(s, a)$
- Above procedure produces "training data" {*S*, *A*, *R*}
 - Storing a set of S, A, R, etc. is called "experience replay"
 - This is as opposed to updating w as data is being collected
- Update weights:

•
$$w \leftarrow w - \alpha \left(R - \hat{Q}(S, A; w) \right) \frac{\partial \hat{Q}(S, A; w)}{\partial w}$$

Guaranteed to converge to local minimum

Temporal-Difference Incremental Weight Updates

- Most basic version: TD(0)
 - From any state s, apply policy $a = \pi(s)$ for one time step, obtain reward r(s, a)
 - Get to next state s', and estimate return from then on using Q function
 - $Q(s,a) \leftarrow Q(s,a) + \alpha (r(s,a) + \gamma Q(s',a') Q(s,a))$
 - Repeat for many episodes to obtain Q(s, a) estimates at many states s and actions a
- Above procedure produces a collection of current and next states and actions, *S*, *A*, *R*, *S'*, *A'*
- Update weights using TD target:

$$w \leftarrow w - \alpha \left(R + \gamma \hat{Q}(S', A'; w) - \hat{Q}(S, A; w) \right) \frac{\partial \hat{Q}(S, A; w)}{\partial w}$$

• Not always guaranteed to converge to local minimum

Q-Learning With Function Approximation

Goal: Given a set of weights w^- , find the next set of weights w in $\hat{Q}(s, a; w)$

- 1. From any state s, apply ϵ -greedy policy with respect to $\hat{Q}(s, a; w^{-})$
 - This produces a collection S, A, R, S'
- 2. Sample from the above collection to obtain a smaller data set $\tilde{S}, \tilde{A}, \tilde{R}, \tilde{S}'$
- 3. Update weights using stochastic gradient descent minimize $\left\| \tilde{R} + \gamma \max_{a'} Q(\tilde{S}', a'; w^{-}) - \hat{Q}(\tilde{S}, \tilde{A}; w) \right\|_{2}^{2}$
- Use deep Q-network (DQN) for $\hat{Q}(\tilde{S}, \tilde{A}; w) \rightarrow$ deep Q-learning

Deep Q-Learning Example: Atari Games

• Minh et al. "Playing Atari with Deep Reinforcement Learning," 2013

- States: pixels from last few frames
- Actions: controls in the game
- Reward: game score
- Deep Q network: convolutional and fully connected layers

Starting out - 10 minutes of training

The algorithm tries to hit the ball back, but it is yet too clumsy to manage.

Deep Q-Learning: Robotics Example

- Gu et al. "Deep Reinforcement Learning for Robotic Manipulation with Asynchronous Off-Policy Updates," 2017.
- States: joint angles, end-effector positions, and their time derivatives, target position
- Actions: joint velocities of arm, torque of fingers
- Task: open door, pick up object and place it elsewhere
- Deep Q network: two fully connected hidden layers, 100 units each
- Main challenge: use multiple robots to learn at the same time and share knowledge

Single Worker - 4 hours

6.0

1.5x