
Model-Free Value-Based Learning
CMPT 882

Mar. 20



Monte-Carlo Policy Evaluation

• To obtain empirical mean, we record 𝑁 𝑠, 𝑎 , # of times 𝑠 is visited for 
every state
• Start at 𝑁 𝑠, 𝑎 = 0 for all 𝑠 and 𝑎
• Note that this means 𝑁 (and 𝑆, 𝑅 below) must be stored for every 𝑠 and 𝑎

• First-visit MC Policy Evaluation:
• At the first time 𝑡 that 𝑠 is visited in an episode, 

• Increment 𝑁 𝑠, 𝑎 ← 𝑁 𝑠, 𝑎 + 1
• Record return 𝑆 𝑠, 𝑎 ← 𝑆 𝑠, 𝑎 + ∑𝛾𝑡𝑟 𝑠𝑡 , 𝑎𝑡
• Repeat for many episodes

• Estimate action-value function: 𝑅 𝑠, 𝑎 =
𝑆 𝑠,𝑎

𝑁 𝑠,𝑎
≈ 𝑄 𝑠, 𝑎



Incremental Updates

• Instead of estimating 𝑉 𝑠 after many episodes, we can update it 
incrementally after every episode after receiving return 𝑅
• 𝑁 𝑠, 𝑎 ← 𝑁 𝑠, 𝑎 + 1

• 𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 +
1

𝑁 𝑠,𝑎
𝑅 𝑠, 𝑎 − 𝑄 𝑠, 𝑎

• More generally, we can weight the second term differently
• 𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼 𝑅 𝑠, 𝑎 − 𝑄 𝑠, 𝑎



Monte-Carlo Policy Evaluation

• Start with initial policy 𝜋 and value function 𝑉 or 𝑄

• Use policy 𝜋 to update 𝑄: 𝑎 = 𝜋 𝑠
• MC policy evaluation provides estimate of 𝑄𝜋
• Many episodes are needed to obtain accurate estimate

• Model-free with MC!

• Use 𝑉 or 𝑄 to update policy 𝜋
• Greedy policy?

• Greedy policy lacks exploration, so 𝑉 is not estimated at many states

• 𝜖-greedy policy

𝜋 𝑄

policy improvement algorithm

policy evaluation algorithm



𝜖-Greedy Policy

• Also known as 𝜖-greedy exploration

• Choose random action with probability 𝜖
• Typically uniformly random

• If 𝑎 takes on discrete values, then all actions will be chosen eventually

• Choose action from greedy policy with probability 1 − 𝜖
• 𝑎 = argmax

𝑎′
𝑄 𝑠, 𝑎′

• Model-free!



Monte-Carlo Control

• Start with initial policy 𝜋 and value function 𝑉 or 𝑄

• Use policy 𝜋 to update 𝑄: 𝑎 = 𝜋 𝑠
• Repeat for many episodes:

• 𝑁 𝑠, 𝑎 ← 𝑁 𝑠, 𝑎 + 1

• 𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 +
1

𝑁 𝑠,𝑎
𝑅 𝑠, 𝑎 − 𝑄 𝑠, 𝑎

• Use 𝑄 to update policy 𝜋
• 𝜖-greedy policy

• With probability 𝜖, choose random control
• With probability 1 − 𝜖, choose 𝑎 = argmax

𝑎′
𝑄 𝑠, 𝑎′

• Pick 𝜖 =
1

𝑘
, where 𝑘 is the # of algorithm iterations

• Explore less as value function becomes more accurate

𝜋 𝑄

policy improvement algorithm

policy evaluation algorithm



DP vs. MC Policy Evaluation

• Suppose the policy 𝜋 is given
• Dynamic Programming

𝑉 𝑠 ← max
𝑎

𝑄 𝑠, 𝑎

𝑄 𝑠, 𝑎 ← 𝑟 𝑠, 𝑎 + 𝛾෍

𝑠′

𝑝 𝑠′|𝑠, 𝑎 𝑉 𝑠′

• Monte-Carlo

𝑠

𝑠1
′ 𝑠2

′ 𝑠3
′



DP vs. MC Policy Evaluation

• Suppose the policy 𝜋 is given
• Dynamic Programming

𝑉 𝑠 ← max
𝑎

𝑄 𝑠, 𝑎

𝑄 𝑠, 𝑎 ← 𝑟 𝑠, 𝑎 + 𝛾෍

𝑠′

𝑝 𝑠′|𝑠, 𝑎 𝑉 𝑠′

• Monte-Carlo
• Repeat for many episodes:

𝑁 𝑠, 𝑎 ← 𝑁 𝑠, 𝑎 + 1
𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼 𝑅 − 𝑄 𝑠, 𝑎

𝑠

𝑠1
′ 𝑠2

′ 𝑠3
′

𝑠

𝑠1
′ 𝑠2

′ 𝑠3
′



Temporal-Difference (TD) Policy Evaluation

• Temporal-difference: a class of policy evaluation techniques TD(𝜆)

• Most basic version: TD(0) 
• From any state 𝑠, apply policy 𝑎 = 𝜋 𝑠 for one time step, obtain reward 
𝑟 𝑠, 𝑎

• Get to next state 𝑠′, and estimate return from then on using 𝑄 function
• Note: next action is also from the same policy, 𝑎′ = 𝜋 𝑠′

• 𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼 𝑟 𝑠, 𝑎 + 𝛾𝑄 𝑠′, 𝑎′ − 𝑄 𝑠, 𝑎

• Repeat for many episodes to obtain 𝑄 𝑠, 𝑎 estimates at many states 𝑠 and 
actions 𝑎



Temporal-Difference (TD) Policy Evaluation

• Most basic version: TD(0) 
𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼 𝑟 𝑠, 𝑎 + 𝛾𝑄 𝑠′, 𝑎′ − 𝑄 𝑠, 𝑎

• Advantages:
• Online algorithm: 𝑄 can be updated during an 

episode

• Does not require complete episodes

• Disadvantages:
• System may not be Markov

• Initial 𝑄 can be very bad and 𝑄 may never improve 
enough

𝑠

𝑠1
′ 𝑠2

′ 𝑠3
′



SARSA Algorithm

• Start with initial policy 𝜋 and value function 𝑉 or 𝑄

• Use 𝜖-greedy policy to update 𝑄: 𝑎, 𝑎′~𝜋 𝑠 , 𝜋 is 𝜖-greedy
• Repeat for many episodes:

• 𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼 𝑟 𝑠, 𝑎 + 𝛾𝑄 𝑠′, 𝑎′ − 𝑄 𝑠, 𝑎

• New policy 𝜋 is derived from new 𝑄
• 𝜖-greedy policy

• With probability 𝜖, choose random control

• With probability 1 − 𝜖, choose 𝑎 = argmax
𝑎′

𝑄 𝑠, 𝑎′

• If 𝜖, 𝛼 =
1

𝑘
, then 𝑄 𝑠, 𝑎 → 𝑄𝜋∗ 𝑠, 𝑎

𝜋 𝑄

policy improvement algorithm

policy evaluation algorithm

𝑠

𝑠′

𝑎
𝑟

𝑎′



On-Policy and Off-Policy Learning

• From SARSA: 
• Use 𝜖-greedy policy to update 𝑄: 𝑎, 𝑎′~𝜋 𝑠 , 𝜋 is 𝜖-greedy

• Repeat for many episodes: 𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼 𝑟 𝑠, 𝑎 + 𝛾𝑄 𝑠′, 𝑎′ − 𝑄 𝑠, 𝑎

• “Behaviour policy”: policy used to collect rewards -- 𝑎~𝜋𝐵 𝑠

• “Target policy”: policy used to estimate -- 𝑎′~𝜋𝑇 𝑠

• “On-policy learning”: 𝜋𝐵 = 𝜋𝑇
• SARSA is an on-policy learning algorithm

• “Off-policy learning”: 𝜋𝐵 ≠ 𝜋𝑇
𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼 𝑟 𝑠, 𝑎 + 𝛾𝑄 𝑠′, 𝑎′ − 𝑄 𝑠, 𝑎 , where 𝑎~𝜋𝐵 𝑠 , 𝑎′~𝜋𝑇 𝑠



Off-Policy Learning

• Off-policy learning”: Behaviour and target policies are different
𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼 𝑟 𝑠, 𝑎 + 𝛾𝑄 𝑠′, 𝑎′ − 𝑄 𝑠, 𝑎 , where 𝑎~𝜋𝐵 𝑠 , 𝑎′~𝜋𝑇 𝑠

• Advantages:
• Learn from observing another agent (eg. human) execute a different policy
• Learn from experience generated from old policies
• Improve two policies at once, while following one policy

• Example: Q-Learning algorithm
• 𝜋𝐵 is 𝜖-greedy with respect to 𝑄
• 𝜋𝑇 is greedy with respect to 𝑄



Q-Learning Algorithm

• Start with initial policy 𝜋 and value function 𝑉 or 𝑄

• Update 𝑄:
• Repeat for many episodes with 𝜖-greedy policy 𝑎~𝜋𝐵 𝑠 :

• 𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼 𝑟 𝑠, 𝑎 + 𝛾max𝑎′ 𝑄 𝑠′, 𝑎′ − 𝑄 𝑠, 𝑎

• Both the 𝜖-greedy 𝜋𝐵 and the greedy 𝜋𝑇 are derived from 𝑄

• If 𝜖, 𝛼 =
1

𝑘
, then 𝑄 𝑠, 𝑎 → 𝑄𝜋∗ 𝑠, 𝑎

𝜋 𝑄

policy improvement algorithm

policy evaluation algorithm



Function Approximation

• So far, 𝑄 𝑠, 𝑎 is stored in a multi-dimensional array
• Cannot solve large problems

• Parametrize value functions with parameters (or weights) 𝑤
• ෠𝑄 𝑠, 𝑎; 𝑤 ≈ 𝑄 𝑠, 𝑎

• Update parameters 𝑤 using MC- or TD-based learning

• Hopefully, 𝑄 is generalizable to different states 𝑠 and actions 𝑎



Fitting to a Known 𝑄𝜋

• Fit ෠𝑄 𝑠, 𝑎;𝑤 to 𝑄𝜋 𝑠, 𝑎

• Training data: 𝑠𝑖 , 𝑎𝑖 , 𝑄𝜋 𝑠𝑖 , 𝑎𝑖
• The collection of states and actions in training data is denoted 𝑆 and 𝐴

• Gradient with respect to 𝑤:

•
𝜕

𝜕𝑤
෠𝑄 𝑆, 𝐴;𝑤 − 𝑄𝜋 𝑆, 𝐴

2

2
= 2 𝑄𝜋 𝑆, 𝐴 − ෠𝑄 𝑆, 𝐴;𝑤

𝜕 ෠𝑄 𝑆,𝐴;𝑤

𝜕𝑤

• Gradient descent:

• 𝑤 ← 𝑤 − 𝛼 𝑄𝜋 𝑆, 𝐴 − ෠𝑄 𝑆, 𝐴;𝑤
𝜕 ෠𝑄 𝑆,𝐴;𝑤

𝜕𝑤
• In practice, use stochastic gradient descent to update random components of 𝑤

minimize
𝑤

𝑄𝜋 𝑆, 𝐴 − ෠𝑄 𝑆, 𝐴;𝑤
2

2



Monte-Carlo Incremental Weight Updates

• First-visit MC policy evaluation
• At the first time 𝑡 that 𝑠 is visited in an episode, 

• Increment 𝑁 𝑠, 𝑎 ← 𝑁 𝑠, 𝑎 + 1
• Record return 𝑆 𝑠, 𝑎 ← 𝑆 𝑠, 𝑎 + ∑𝛾𝑡𝑟 𝑠𝑡 , 𝑎𝑡
• Repeat for many episodes

• Estimate action-value function: 𝑅 𝑠, 𝑎 =
𝑆 𝑠,𝑎

𝑁 𝑠,𝑎
≈ 𝑄 𝑠, 𝑎

• Above procedure produces “training data” 𝑆, 𝐴, 𝑅
• Storing a set of 𝑆, 𝐴, 𝑅, etc. is called “experience replay”
• This is as opposed to updating 𝑤 as data is being collected

• Update weights:

• 𝑤 ← 𝑤 − 𝛼 𝑅 − ෠𝑄 𝑆, 𝐴;𝑤
𝜕 ෠𝑄 𝑆,𝐴;𝑤

𝜕𝑤

• Guaranteed to converge to local minimum



Temporal-Difference Incremental Weight Updates

• Most basic version: TD(0) 
• From any state 𝑠, apply policy 𝑎 = 𝜋 𝑠 for one time step, obtain reward 𝑟 𝑠, 𝑎
• Get to next state 𝑠′, and estimate return from then on using 𝑄 function

• 𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼 𝑟 𝑠, 𝑎 + 𝛾𝑄 𝑠′, 𝑎′ − 𝑄 𝑠, 𝑎

• Repeat for many episodes to obtain 𝑄 𝑠, 𝑎 estimates at many states 𝑠 and actions 𝑎

• Above procedure produces a collection of current and next states and 
actions, 𝑆, 𝐴, 𝑅, 𝑆′, 𝐴′

• Update weights using TD target:

• 𝑤 ← 𝑤 − 𝛼 𝑅 + 𝛾 ෠𝑄 𝑆′, 𝐴′; 𝑤 − ෠𝑄 𝑆, 𝐴; 𝑤
𝜕 ෠𝑄 𝑆,𝐴;𝑤

𝜕𝑤

• Not always guaranteed to converge to local minimum



Q-Learning With Function Approximation

Goal: Given a set of weights 𝑤−, find the next set of weights 𝑤 in 
෠𝑄 𝑠, 𝑎; 𝑤

1. From any state 𝑠, apply 𝜖-greedy policy with respect to ෠𝑄 𝑠, 𝑎; 𝑤−

• This produces a collection 𝑆, 𝐴, 𝑅, 𝑆′

2. Sample from the above collection to obtain a smaller data set 
ሚ𝑆, ሚ𝐴, ෨𝑅, ሚ𝑆′

3. Update weights using stochastic gradient descent 

minimize
𝑤

෨𝑅 + 𝛾max
𝑎′

𝑄 ሚ𝑆′, 𝑎′; 𝑤− − ෠𝑄 ሚ𝑆, ሚ𝐴;𝑤
2

2

• Use deep 𝑄-network (DQN) for ෠𝑄 ሚ𝑆, ሚ𝐴;𝑤 → deep Q-learning



Deep Q-Learning Example: Atari Games
• Minh et al. “Playing Atari with Deep Reinforcement Learning,” 2013

• States: pixels from last few frames

• Actions: controls in the game

• Reward: game score

• Deep Q network: convolutional and fully connected layers





Deep Q-Learning: Robotics Example

• Gu et al. “Deep Reinforcement Learning for 
Robotic Manipulation with Asynchronous Off-
Policy Updates,” 2017.

• States: joint angles, end-effector positions, and 
their time derivatives, target position

• Actions: joint velocities of arm, torque of fingers

• Task: open door, pick up object and place it 
elsewhere

• Deep Q network: two fully connected hidden 
layers, 100 units each

• Main challenge: use multiple robots to learn at the 
same time and share knowledge




