Introduction to
Reinforcement Learning

CMPT 882
Mar. 18

Outline for the week

e Basicideasin RL
e Value functions and value iteration
* Policy evaluation and policy improvement

* Model-free RL
* Monte-Carlo and temporal differencing policy evaluation
* e-greedy policy improvement

* Function Approximation
* Adaptation of supervised learning to reinforcement learning

* Policy Gradient

Reinforcement Learning

* Humans can learn without imitation
* Given goal/task
* Try an initial strategy
* See how well the task is performed
* Adjust strategy next time

* Reinforcement learning agent
Given goal/task in the form of reward function r(s, a)
Start with initial policy mg (als); execute policy
Obtain sum of rewards,)., (s, a;)

Improve policy by updating 8, based on rewards

Reinforcement Learning Objective

* Given: an MDP with state space &, action space A, transition probabilities
T, and reward function r(s, a)

* Objective: Maximize expected discounted sum of rewards (“return”)

maximize E) y'r(s, a;)
g
t=0
* v € (0,1]: discount factor — larger roughly means “far-sighted”
* Prioritizes immediate rewards

* ¥ < 1 avoids infinite rewards; y = 1 is possible if all sequences are finite

* Constraints: now incorporated into the reward function
* Only constraint (usually implicit): subject to transition matrix J° (system dynamics)

RL vs. Other ML Paradigms

* No supervisor
* But we will often draw inspiration from supervised learning

e Sequential data in time

* Reward feedback is obtained after a long time
* Many actions combined together will receive reward
e Actions are dependent on each other

* In robotics: lack of data

Reinforcement Learning Categories

* Model-based

* Explicitly involves an MDP model

* Model-free
* Does not explicitly involve an MDP model

* Value based
* Learns value function, and derives policy from value function

* Policy based

* Learns policy without value function

* Actor critic
* Incorporates both value function and policy

Value Functions

* “State-value function”: V_(s) -- expected return starting from state s
and following policy

* V(s) = Eat~n[2§o=0]/t’l"(St, at) |so = s]
* Expectation is on the random sequence {sq, ao, S1, a1, ... }

* “Action-value function”, or “Q function”: Q. (s, a) -- expected return
starting from state s, taking action a, and then following policy

* Qr(s,a) = Eat~n[21?0=0)/tT(St, at) |so = s,a9 = al

Principal of Optimality Applied to RL _—7

b
Jb,d
* Optimal discounted sum of rewards: Jab, b2
+ Vi (5) = max E[T20 ¥ (sp ap) |sp = 5] A, o
T 'ﬂ]abz b
* Dynamic programming: & »] ;
absz

* Vie(s) = n}latX Elr(se ar) + vV (Se+1)|Se = s]

* Qp(s,a) = E[r(ss, ar) + ¥V (S¢41) ISt = s,a¢ = al

e Actually, recurrence is true even without maximization
* Vz(s) = E[r(se, ar) + vV (ser1)|se = S|
* Qr(s,a) = E[r(sg, ar) + yVe(ses1)|se = s, ar = al

Basic Properties of Value Functions
* Vi (s) = max V(s)

* Qu(5,@) = Max Qn (s, @)

* Vi (s) = max Q- (s,)

* For now, value functions are stored in multi-dimensional arrays

* DP leads to deterministic policies — we will come back to stochastic policies

Optimizing the RL Objective via DP ¥,
'y
* State-value function '/ﬂ]al:z b,
e V+(s) = max E[r(ss ar) + YV (Sep1)|Se = S] ol)jb

* Vi (s) = maxr(s,a) + yE[V(str1)lse = s}
* Vir(s) = mC?X{T(S, a) +y Xulp(s'ls, a)Vp(s)]}
« “Bellman backup”: V(s) « mc?x{r(s, a) +y X lps'ls, a)V(S’)]}

* This is done for all s
* |terate until convergence

 Optimal policy: a = arg me}x{r(s, a') +ylp(s’]s, a’)V(S’)]}
a

e Deterministic

Jb.a

Optimizing the RL Objective via DP ;,,

e Action-value function

at+1

* Qp(s,a) =71(s,a) + yE [rcglax Qr(St41,Ar41) ISt = 5,0 = a
t+1

* Qn(s,a) =7(s,a) +y Xylp(s'ls, a)Vr-(s")]
e “Bellman backup”:

e V(s) « max Q(s,a)

* A(s,a) «r(s,a) +y Xylp(s'ls,a)V(s')]

* Thisis done forall sand all a

* |terate until convergence

* Qni(s,a) =E [T(St» a;) +y max Qr(St41, A1) [Se = 5,0 = a

* Optimal policy: a = arg max Q(s,a’)
a

e Deterministic

|

L—

Approximate Dynamic Programming

e Use a function approximator (eg. neural network) V(s; w), where w
are weights, to approximate I/

* V(s) is no longer stored at every state
* Weights w are updated using Bellman backups

 Basic algorithm: (We will learn about other variants too)
* Sample some states, {s;}
* For each s;, generate V(s;) = max{r(s, a) +)/Zsr[p(S'ISt, a)V (s'; W)]}
a

* Using {s;, V(s;)}, update weights w via regression (supervised learning)

Generalized Policy Evaluation and Policy Improvement

e Start with initial policy T and value function V or Q

* Use policy ™ to update V: a = w(s)
. { + V(s) «1(s,a) +y Zglp(s'ls,)V (s)]

* Q(s,a) «r(s,a) +y Xylp(s'|s,a)V(s')]
* In general, any T Q

e Use V or Q to update policy m:
op { * Given V(s), m(s) = arg m;lx{r(s, a) +y Yo lp(s'|s,)V (s)H]}
* Given Q(s,a),m(s) = arg max Q(s,a)

* In general, any

Convergence

* At convergence, the following are simultaneously satisfied:

* V(s) =r(s,a) +v Lylp(s'|se, a)V(s')]
* n(s) = argmaxir(s,a’) +y Xs[p(slse, a)V(s)]}

* This is the principle of optimality T

* Therefore, the value function and policy are optimal

Terminology

* “Value iteration”: The process of iteratively updating value function

* With DP, we only need to keep track of value function IV or Q, and the policy @
is implicit — determined from value function

* “Policy iteration”: The process of iteratively updating policy
* This is done implicitly with Bellman backups

» “Greedy policy”: the policy obtained from choosing the best action
based on the current value function

* |f the value function is optimal, the greedy policy is optimal

Towards Model-Free Learning

* Policy evaluation
* Monte-Carlo (MC) Sampling
e Temporal-difference (TD)

* Policy improvement
* e-greedy policies

Monte-Carlo Policy Evaluation

e Start with initial policy T and value function V or Q

* Use policy ™ to update V: a = w(s)
 Apply 1 to obtain trajectory {s,, ag, S1, a1, ... }
« Compute return: R :== Yytr(s,, a;)
* Repeat for many episodes to obtain empirical mean
* “Episode”: a single “try” that produces a single trajectory

* Use V or Q to update policy

Monte-Carlo Policy Evaluation

* To obtain empirical mean, we record N(s), # of times s is visited for
every state
e Startat N(s) = O forall s
* Note that this means storing N (and S below) at every state

* First-visit MC Policy Evaluation:

» At the first time t that s is visited in an episode,
* Increment N(s) « N(s) + 1
e Record return S(s) « S(s) + Yytr(s,, a;)
* Repeat for many episodes

S(s)

N(s)

* Estimate value: V(s) =

Monte-Carlo Policy Evaluation

* To obtain empirical mean, we record N(s), # of times s is visited for
every state
e Startat N(s) = O forall s
* Note that this means storing N (and S below) at every state

* Every-visit MC Policy Evaluation:

* Every time t that s is visited in an episode,
* Increment N(s) « N(s) + 1
e Record return S(s) « S(s) + Yytr(s,, a;)
* Repeat for many episodes

S(s)

N(s)

e Estimate value: V(s) =

Incremental Updates

* Instead of estimating V. (s) after many episodes, we can update it
incrementally after every episode after receiving return R

* N(s) « N(s)+1
$ V() < V() + 5 (R = V()

* More generally, we can weight the second term differently
e V(s) «V(s) + a(R — V(S))

Monte-Carlo Policy Evaluation

e Start with initial policy T and value function V or Q

* Use policy ™ to update V: a = w(s)
* MC policy evaluation provides estimate of 1/,

* Many episodes are needed to obtain accurate estimate
* Model-free with MCl

* Use V or Q to update policy
* Greedy policy?

Monte-Carlo Policy Evaluation

e Start with initial policy T and value function V or Q

* Use policy ™ to update V: a = w(s)
* MC policy evaluation provides estimate of 1/,

* Many episodes are needed to obtain accurate estimate
* Model-free with MCl T

* Use V or Q to update policy
+—Greedy-potiey?

* Greedy policy lacks exploration, so V; is not estimated at many states

* e-greedy policy

e-Greedy Policy
* Also known as e-greedy exploration

* Choose random action with probability €
e Typically uniformly random
* |f a takes on discrete values, then all actions will be chosen eventually

* Choose action from greedy policy with probability 1 — €
+ @ = argmax{r(s,a’) +v [p(slse,)V (5)]1}

* Still requires model, p(s|s;, a)...
* Solution: Q function

Monte-Carlo Policy Evaluation

* To obtain empirical mean, we record N (s, a), # of times s is visited for
every state

e Startat N(s,a) = O forall sand a
* Note that this means N (and S below) must be stored for every s and a

* First-visit MC Policy Evaluation:

* At the first time t that s is visited in an episode,
* Increment N(s,a) « N(s,a) + 1
 Record return S(s,a) « S(s,a) + Yytr(s,, a;)

* Repeat for many episodes
S(s,a)

N(s,a)

 Estimate action-value function: Q(s,a) =

Incremental Updates

* |Instead of estimating I/ (s) after many episodes, we can update it
incrementally after every episode after receiving return R

* N(s,a) « N(s,a) +1
* Q(s,a) « Q(s,a) +

1
N(s,a)

(R — Q(s, a))

* More generally, we can weight the second term differently
* O(s,a) « Q(s,a) + a(R — Q(s, a))

Monte-Carlo Policy Evaluation

e Start with initial policy T and value function V or Q

 Use policy to update Q: a = n(s)
* MC policy evaluation provides estimate of Q;

* Many episodes are needed to obtain accurate estimate
* Model-free with MCl T

e Use ¥-o+(Q to update policy T
+—Greedy-potiey?

* Greedy policy lacks exploration, so I/ is not estimated at many states

* e-greedy policy

e-Greedy Policy
* Also known as e-greedy exploration

* Choose random action with probability €

e Typically uniformly random
* If a takes on discrete values, then all actions will be chosen eventually

* Choose action from greedy policy with probability 1 — €
* a = argmax{Q(s,a’)}

* Model-freel

