
Project

• Project report:
• 4-page summary of your project

• Due Apr. 20, on CourSys

• Project presentation:
• Apr. 1, 3, 5 – 10 minutes per person

• Project does not need to be finished at this point

• Summarize what you have done, and what remains to be done



Imitation Learning
CMPT 882

Mar. 15



Outline

• Markov Decision Process

• Imitation Learning



Markov Decision Process

• An MDP with a particular policy results in a 
Markov chain: 𝑝 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 , 𝑎𝑡~𝜋𝜃 𝑎𝑡|𝑠𝑡

read 
paper

YouTube

codemath
write 
paper

robot 
expt.

sleep

0.1

0.9

0.9 0.1

0.9

0.1 0.2

0.8 0.5

0.5

State space includes
• Reading paper
• Doing math
• Coding
• Doing robotic experiments
• Watching YouTube
• Writing paper
• Sleeping

Transition probabilities

𝒯 =

0.1 0.9
0.1 0.9

0.2 0.8
0.5 0.5
0.9 0.1

1
1



Extensions of Problem Setup

• Partially observability
• Partially Observable Markov Decision Process (POMDP)
• State not fully known; instead, act based on observations

• Policy: 𝜋𝜃 𝑎|𝑜

• In this class, state 𝑠 will be synonymous with observation 𝑜.

𝑎𝑡

𝑠𝑡 𝑠𝑡+1
𝑝 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡

𝑠𝑡+2

𝑎𝑡+1

𝑝 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡

𝑜𝑡 𝑜𝑡+1



Reinforcement Learning Objective

• Given: an MDP with state space 𝒮, action space 𝒜, transition 
probabilities 𝒯, and reward function 𝑟 𝑠, 𝑎

• Objective: Maximize discounted sum of rewards (“return”)

maximize
𝜋𝜃

𝔼

𝑡

𝛾𝑘𝑟 𝑠𝑡 , 𝑎𝑡

• 𝛾 ∈ 0,1 : discount factor – larger roughly means “far-sighted”
• Prioritizes immediate rewards
• 𝛾 < 1 avoids infinite rewards; 𝛾 = 1 is possible if all sequences are finite

• Constraints: often implicit
• Subject to transition matrix 𝒯 (system dynamics)



Markov Decision Process

• An MDP with a particular policy results in a 
Markov chain: 𝑝 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 , 𝑎𝑡~𝜋𝜃 𝑎𝑡|𝑠𝑡

1

−5

22 104

10

0.1

0.9

0.9 0.1

0.9

0.1 0.2

0.8 0.5

0.5

Reward function: 𝑟 𝑠
• In general, also depends 

on action

State space includes
• Reading paper
• Doing math
• Coding
• Doing robotic experiments
• Watching YouTube
• Writing paper
• Sleeping

Transition probabilities

𝒯 =

0.1 0.9
0.1 0.9

0.2 0.8
0.5 0.5
0.9 0.1

1
1



Markov Decision Process

• An MDP with a particular policy results in a 
Markov chain: 𝑝 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 , 𝑎𝑡~𝜋𝜃 𝑎𝑡|𝑠𝑡

1

−5

22 104

10

0.5

0.5

0.1 0.9

0.5

0.5 0.5

0.5 0.5

0.5

Reward function: 𝑟 𝑠
• In general, also depends 

on action 
• Better policy →

different Markov chain 
→ different reward

State space includes
• Reading paper
• Doing math
• Coding
• Doing robotic experiments
• Watching YouTube
• Writing paper
• Sleeping

Transition probabilities

𝒯 =

0.5 0.5
0.5 0.5

0.5 0.5
0.5 0.5
0.1 0.9

1
1



Reinforcement Learning and Optimal Control

• Reinforcement Learning

maximize
𝜋𝜃

𝔼

𝑡

𝛾𝑘𝑟 𝑠𝑡 , 𝑎𝑡

• Dynamics constraint is implicit
• And not necessary needed

• Typically, no other explicit 
constraints

• Problem set up captured entirely 
in the reward

• Probabilistic

• Optimal control

• Explicit constraints

• Can be continuous time

• Not necessarily probabilistic

minimize 𝑙 𝑥 𝑡𝑓 , 𝑡𝑓 +න
0

𝑡𝑓

𝑐 𝑥 𝑡 , 𝑢 𝑡 , 𝑡 𝑑𝑡

subject to ሶ𝑥 𝑡 = 𝑓 𝑥 𝑡 , 𝑢 𝑡

𝑢 ⋅

𝑥 𝑡 ∈ ℝ𝑛, 𝑢 𝑡 ∈ ℝ𝑚, 𝑥 0 = 𝑥0

𝑔 𝑥 𝑡 , 𝑢 𝑡 ≥ 0



Imitation Learning

• Collect data through expert demonstration – sequence of states and 
actions, 𝑠0, 𝑎0, 𝑠1, 𝑎1, … , 𝑠𝑁−1, 𝑎𝑁−1, 𝑠𝑁
• Note: Expert may not be solving maximize

𝜋
𝔼 σ𝑡 𝛾

𝑘𝑟 𝑠𝑡 , 𝑎𝑡

• Learn 𝜋𝜃 𝑎𝑡|𝑠𝑡 from data via regression
• Minimize 𝔼 σ 𝑎𝑡 − 𝜋𝜃 𝑎𝑡|𝑠𝑡



Imitation Learning

• Collect data through expert demonstration – sequence of states and 
actions, 𝑠0, 𝑎0, 𝑠1, 𝑎1, … , 𝑠𝑁−1, 𝑎𝑁−1, 𝑠𝑁
• Expert may not be solving maximize

𝜋
𝔼 σ𝑡 𝛾

𝑘𝑟 𝑠𝑡 , 𝑎𝑡

• Learn 𝜋𝜃 𝑎𝑡|𝑠𝑡 from data via regression
• Minimize 𝔼 σ 𝑎𝑡 − 𝜋𝜃 𝑎𝑡|𝑠𝑡



Imitation Learning

• Collect data through expert demonstration – sequence of states and 
actions, 𝑠0, 𝑎0, 𝑠1, 𝑎1, … , 𝑠𝑁−1, 𝑎𝑁−1, 𝑠𝑁
• Expert may not be solving maximize

𝜋
𝔼 σ𝑡 𝛾

𝑘𝑟 𝑠𝑡 , 𝑎𝑡

• Learn 𝜋𝜃 𝑎𝑡|𝑠𝑡 from data via regression
• Minimize 𝔼 σ 𝑎𝑡 − 𝜋𝜃 𝑎𝑡|𝑠𝑡

• Usually doesn’t work due to “drift”: small mistakes add up, and takes 
the system far from trained states
• Sometimes, there can be “tricks” to make imitation learning work!



Autonomous Driving Through Imitation





Dataset Aggregation

• Imitation learning drawback:
• Distribution of observations in training is different from distribution of 

observations during test
• Some states have never been seen during demonstration

• How to make the distributions equal?
• Train perfect policy
• Change data set → DAgger (Dataset Aggregation)



Dataset Aggregation (DAgger) Algorithm

1. Train policy from some initial data, 𝒟𝑖 =
𝑠0, 𝑎0, 𝑠1, 𝑎1, … , 𝑠𝑁−1, 𝑎𝑁−1, 𝑠𝑁

2. Run policy to obtain new observations 𝑠𝑁+1, 𝑠𝑁+2, … , 𝑠𝑁+𝑀
• Note: time indices and states here may not continue from initial data

3. Use humans to label data by providing actions for new 
observations, 𝑎𝑁+1, … , 𝑎𝑁+𝑀−1

• This creates another data set, ഥ𝒟𝑖 =
𝑠𝑁+1, 𝑎𝑁+1, 𝑠𝑁+2, 𝑎𝑁+2… , 𝑎𝑁+𝑀−1, 𝑠𝑁+𝑀

4. Combine two datasets, 𝒟𝑖 ← 𝒟𝑖 ∪ ഥ𝒟𝑖

• Go back to first step



Challenges

• Non-Markovian behaviour
• Perhaps augment state/observation space to include some history

• Use neural networks that implicitly capture time series data: RNNs/LSTMs

• Unnatural data collection
• Humans are probably not very good at collecting correction data in this 

manner

• Inconsistencies in human action



Addressing Drift

• Main goal: Teach system to correct errors

• Explicitly demonstrate corrections (DAgger, Dataset Aggregation)

• During demonstration, add noise to “force” mistakes, and see how humans 
correct them

• Ask humans to intentionally make mistakes

• Prior knowledge and heurisitics
• Example: Learn from stabilizing controller



Imitation Learning Tricks

• Common neural network architectures
• LSTM – since we have time-series data
• CNN – usually in combination with LSTM, if the observations are images

• Simplify action space:
• Driving example: action space simplified to {left, centre, right}

• Clever data collection
• Driving example: side cameras

• Inverse reinforcement learning
• Learn goal, instead of policy, from data



Imitation Learning Drawbacks

• Very small amount of data – challenging for training deep neural 
networks

• Humans are not very good at providing some kinds of actions
• Quadrotor motor speed

• Non-humanoid machines

• Hard to perform better at tasks humans are not very good at



Reinforcement Learning

• Humans can learn without imitation
• Given goal/task

• Try an initial strategy

• See how well the task is performed

• Adjust strategy next time

• Reinforcement learning agent
• Start with initial policy 𝜋𝜃 𝑎 𝑠

• Execute policy

• Obtain reward, σ𝑡 𝑟 𝑠𝑡 , 𝑎𝑡
• Improve policy by updating 𝜃, based on rewards



RL vs. Other ML Paradigms

• No supervisor

• Sequential data in time

• Reward feedback is obtained after a long time
• Many actions combined together will receive reward

• Actions are dependent on each other

• In robotics: lack of data


