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* Markov Decision Process

* Imitation Learning



Markov Decision Process

 An MDP with a particular policy results in a
Markov chain: p(s¢4+1|S¢, a;), ar~mg (a;|s;)
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Extensions of Problem Setup

 Partially observability
 Partially Observable Markov Decision Process (POMDP)
» State not fully known; instead, act based on observations

O¢ "o At Ot+1 " At41
p(5t+1®‘ p(S¢+1lse, a)
St " St+1 " St+2

* Policy: mg(alo)
* In this class, state s will be synonymous with observation o.



Reinforcement Learning Objective

* Given: an MDP with state space S, action space A, transition
probabilities T, and reward function (s, a)

* Objective: Maximize discounted sum of rewards (“return”)

maximize E ) y*r(s,, a;)
Tt
t
* y € (0,1]: discount factor — larger roughly means “far-sighted”

* Prioritizes immediate rewards
* ¥ < 1 avoids infinite rewards; y = 1 is possible if all sequences are finite

e Constraints: often implicit
e Subject to transition matrix I (system dynamics)
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Markov Decision Process
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Reinforcement Learning and Optimal Control

* Reinforcement Learning

maximizeE ) y*r(s,, a;)
g
:

Dynamics constraint is implicit

* And not necessary needed
Typically, no other explicit
constraints

Problem set up captured entirely
in the reward

Probabilistic

e Optimal control

t
minimize |(x(tr), tr) + f

fc(x(t), u(t), t)dt
0

subject to x(t) = f(x(t),u(t))
g(x(t),u(t)) >0
x(t) € R, u(t) € R™ x(0) = x,

* Explicit constraints
e Can be continuous time
* Not necessarily probabilistic



Imitation Learning

 Collect data through expert demonstration — sequence of states and
actions, {sy, ag, S1, a1, .., SN—1, AN—1, SN }
* Note: Expert may not be solving maximize E[Y, y*r (s, a;)]
T

e

* Learn my(a;|s;) from data via regression
* Minimize E[X[|a; — mg(a¢|s:)|l]
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Imitation Learning

* Collect data through expert demonstration — sequence of states and
actions, {sg, ag, S1, A1, o) SN—1, AN—1, SN }
* Expert may not be solving maximize E[Y, y*r(s;, a;)]
YA

* Learn mg(a;|s;) from data via regression
* Minimize EQX|la; — g (a;|se) |

e Usually doesn’t work due to “drift”: small mistakes add up, and takes
the system far from trained states

* Sometimes, there can be “tricks” to make imitation learning work!



Autonomous Driving Through Imitation
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Dataset Aggregation

* Imitation learning drawback:

* Distribution of observations in training is different from distribution of
observations during test

* Some states have never been seen during demonstration

A ——

* How to make the distributions equal?
* Train perfect policy
* Change data set > DAgger (Dataset Aggregation)




Dataset Aggregation (DAgger) Algorithm

1. Train policy from some initial data, D; =
{50, a0,51,a4, o+, SN—1, AN -1, SN}

2. Run policy to obtain new observations {Sy+1, SN+2, «+» SN+M}
* Note: time indices and states here may not continue from initial data

3. Use humans to label data by providing actions for new
observations, {ayi1, ..., An+p—1)
e This creates another data set, D; =
{SN+1) AN 41, SN+2) AN 42 o) AN+ M—1, SN+M}
4. Combine two datasets, D; « D; U D;
* Go back to first step



Challenges

* Non-Markovian behaviour
* Perhaps augment state/observation space to include some history
* Use neural networks that implicitly capture time series data: RNNs/LSTMs

 Unnatural data collection

 Humans are probably not very good at collecting correction data in this
manner

* |nconsistencies in human action



Addressing Drift

* Main goal: Teach system to correct errors
 Explicitly demonstrate corrections (DAgger, Dataset Aggregation)

* During demonstration, add noise to “force” mistakes, and see how humans
correct them

* Ask humans to intentionally make mistakes

* Prior knowledge and heurisitics
* Example: Learn from stabilizing controller



Imitation Learning Tricks

e Common neural network architectures
e LSTM — since we have time-series data
* CNN — usually in combination with LSTM, if the observations are images

e Simplify action space:
* Driving example: action space simplified to {left, centre, right}

* Clever data collection
* Driving example: side cameras

* Inverse reinforcement learning
e Learn goal, instead of policy, from data



Imitation Learning Drawbacks

* Very small amount of data — challenging for training deep neural
networks

* Humans are not very good at providing some kinds of actions
* Quadrotor motor speed
* Non-humanoid machines

* Hard to perform better at tasks humans are not very good at



Reinforcement Learning

* Humans can learn without imitation
* Given goal/task
* Try an initial strategy
* See how well the task is performed
* Adjust strategy next time

* Reinforcement learning agent
e Start with initial policy gy (als)
* Execute policy
* Obtain reward, ), (s, a;)
* Improve policy by updating 6, based on rewards



RL vs. Other ML Paradigms

* No supervisor
e Sequential data in time

* Reward feedback is obtained after a long time

* Many actions combined together will receive reward
* Actions are dependent on each other

* In robotics: lack of data



