Project

- Project report:
 - 4-page summary of your project
 - Due Apr. 20, on CourSys
- Project presentation:
 - Apr. 1, 3, 5 10 minutes per person
 - Project does not need to be finished at this point
 - Summarize what you have done, and what remains to be done

CMPT 882

Mar. 15

Outline

- Markov Decision Process
- Imitation Learning

Markov Decision Process

• An MDP with a particular policy results in a Markov chain: $p(s_{t+1}|s_t, a_t), a_t \sim \pi_{\theta}(a_t|s_t)$

State space includes

- Reading paper
- Doing math
- Coding
- Doing robotic experiments
- Watching YouTube
- Writing paper
- Sleeping

Extensions of Problem Setup

- Partially observability
 - Partially Observable Markov Decision Process (POMDP)
 - State not fully known; instead, act based on observations

- Policy: $\pi_{\theta}(a|o)$
- In this class, state s will be synonymous with observation o.

Reinforcement Learning Objective

- Given: an MDP with state space S, action space A, transition probabilities T, and reward function r(s, a)
- Objective: Maximize discounted sum of rewards ("return") $\max_{\pi_{\theta}} \mathbb{E} \sum_{t} \gamma^{k} r(s_{t}, a_{t})$
 - $\gamma \in (0,1]$: discount factor larger roughly means "far-sighted"
 - Prioritizes immediate rewards
 - $\gamma < 1$ avoids infinite rewards; $\gamma = 1$ is possible if all sequences are finite
- Constraints: often implicit
 - Subject to transition matrix \mathcal{T} (system dynamics)

Markov Decision Process

• An MDP with a particular policy results in a Markov chain: $p(s_{t+1}|s_t, a_t), a_t \sim \pi_{\theta}(a_t|s_t)$

State space includes

- Reading paper
- Doing math
- Coding
- Doing robotic experiments
- Watching YouTube
- Writing paper
- Sleeping

Markov Decision Process

• An MDP with a particular policy results in a Markov chain: $p(s_{t+1}|s_t, a_t), a_t \sim \pi_{\theta}(a_t|s_t)$

State space includes

- Reading paper
- Doing math
- Coding
- Doing robotic experiments
- Watching YouTube
- Writing paper
- Sleeping

 \rightarrow different reward

Reinforcement Learning and Optimal Control

- Reinforcement Learning $\max_{\pi_{\theta}} \mathbb{E} \sum_{t} \gamma^{k} r(s_{t}, a_{t})$
 - Dynamics constraint is implicit
 - And not necessary needed
 - Typically, no other explicit constraints
 - Problem set up captured entirely in the reward
 - Probabilistic

• Optimal control $\begin{array}{l} \underset{u(\cdot)}{\text{minimize }} l(x(t_f), t_f) + \int_0^{t_f} c(x(t), u(t), t) dt \\ \text{subject to } \dot{x}(t) = f(x(t), u(t)) \\ g(x(t), u(t)) \ge 0 \\ x(t) \in \mathbb{R}^n, u(t) \in \mathbb{R}^m, x(0) = x_0 \end{array}$

- Explicit constraints
- Can be continuous time
- Not necessarily probabilistic

- Collect data through expert demonstration sequence of states and actions, {s₀, a₀, s₁, a₁, ..., s_{N-1}, a_{N-1}, s_N}
 - Note: Expert may not be solving maximize $\mathbb{E}[\sum_{t} \gamma^{k} r(s_{t}, a_{t})]$

- Learn $\pi_{\theta}(a_t|s_t)$ from data via regression
 - Minimize $\mathbb{E}[\sum \|a_t \pi_{\theta}(a_t|s_t)\|]$

- Collect data through expert demonstration sequence of states and actions, {s₀, a₀, s₁, a₁, ..., s_{N-1}, a_{N-1}, s_N}
 - Expert may not be solving maximize $\mathbb{E}[\sum_{t} \gamma^{k} r(s_{t}, a_{t})]$

- Learn $\pi_{\theta}(a_t|s_t)$ from data via regression
 - Minimize $\mathbb{E}[\sum \|a_t \pi_{\theta}(a_t|s_t)\|]$

- Collect data through expert demonstration sequence of states and actions, $\{s_0, a_0, s_1, a_1, \dots, s_{N-1}, a_{N-1}, s_N\}$
 - Expert may not be solving maximize $\mathbb{E}[\sum_{t} \gamma^{k} r(s_{t}, a_{t})]$
- Learn $\pi_{\theta}(a_t|s_t)$ from data via regression
 - Minimize $\mathbb{E}(\sum \|a_t \pi_{\theta}(a_t | s_t)\|)$
- Usually doesn't work due to "drift": small mistakes add up, and takes the system far from trained states
 - Sometimes, there can be "tricks" to make imitation learning work!

Autonomous Driving Through Imitation

Dataset Aggregation

- Imitation learning drawback:
 - Distribution of observations in training is different from distribution of observations during test
 - Some states have never been seen during demonstration

- How to make the distributions equal?
 - Train perfect policy
 - Change data set → DAgger (Dataset Aggregation)

Dataset Aggregation (DAgger) Algorithm

- 1. Train policy from some initial data, $\mathcal{D}_i = \{s_0, a_0, s_1, a_1, \dots, s_{N-1}, a_{N-1}, s_N\}$
- 2. Run policy to obtain new observations $\{s_{N+1}, s_{N+2}, ..., s_{N+M}\}$
 - Note: time indices and states here may not continue from initial data
- 3. Use humans to label data by providing actions for new observations, $\{a_{N+1}, \dots, a_{N+M-1}\}$
 - This creates another data set, $\overline{D}_i = \{s_{N+1}, a_{N+1}, s_{N+2}, a_{N+2} \dots, a_{N+M-1}, s_{N+M}\}$
- 4. Combine two datasets, $\mathcal{D}_i \leftarrow \mathcal{D}_i \cup \overline{\mathcal{D}}_i$
 - Go back to first step

Challenges

- Non-Markovian behaviour
 - Perhaps augment state/observation space to include some history
 - Use neural networks that implicitly capture time series data: RNNs/LSTMs
- Unnatural data collection
 - Humans are probably not very good at collecting correction data in this manner
- Inconsistencies in human action

Addressing Drift

- Main goal: Teach system to correct errors
- Explicitly demonstrate corrections (DAgger, Dataset Aggregation)
- During demonstration, add noise to "force" mistakes, and see how humans correct them
- Ask humans to intentionally make mistakes
- Prior knowledge and heurisitics
 - Example: Learn from stabilizing controller

Imitation Learning Tricks

- Common neural network architectures
 - LSTM since we have time-series data
 - CNN usually in combination with LSTM, if the observations are images
- Simplify action space:
 - Driving example: action space simplified to {left, centre, right}
- Clever data collection
 - Driving example: side cameras
- Inverse reinforcement learning
 - Learn goal, instead of policy, from data

Imitation Learning Drawbacks

- Very small amount of data challenging for training deep neural networks
- Humans are not very good at providing some kinds of actions
 - Quadrotor motor speed
 - Non-humanoid machines
- Hard to perform better at tasks humans are not very good at

Reinforcement Learning

- Humans can learn without imitation
 - Given goal/task
 - Try an initial strategy
 - See how well the task is performed
 - Adjust strategy next time
- Reinforcement learning agent
 - Start with initial policy $\pi_{\theta}(a|s)$
 - Execute policy
 - Obtain reward, $\sum_t r(s_t, a_t)$
 - Improve policy by updating θ , based on rewards

RL vs. Other ML Paradigms

- No supervisor
- Sequential data in time
- Reward feedback is obtained after a long time
 - Many actions combined together will receive reward
 - Actions are dependent on each other
- In robotics: lack of data