Project

• Project report:
 • 4-page summary of your project
 • Due Apr. 20, on CourSys

• Project presentation:
 • Apr. 1, 3, 5 – 10 minutes per person
 • Project does not need to be finished at this point
 • Summarize what you have done, and what remains to be done
Imitation Learning

CMPT 882
Mar. 15
Outline

• Markov Decision Process

• Imitation Learning
Markov Decision Process

• An MDP with a particular policy results in a Markov chain: \(p(s_{t+1} | s_t, a_t), a_t \sim \pi_\theta(a_t | s_t) \)

State space includes
- Reading paper
- Doing math
- Coding
- Doing robotic experiments
- Watching YouTube
- Writing paper
- Sleeping

Transition probabilities:
\[
\mathcal{T} = \begin{bmatrix}
0.1 & 0.9 & 0.9 & 0.2 & 0.5 & 0.1 & 0.1 \\
0.9 & 0.1 & 0.8 & 0.2 & 0.5 & 0.5 & 0.1 \\
0.5 & 0.2 & 0.8 & 0.1 & 0.5 & 0.9 & 0.1 \\
0.1 & 0.9 & 0.9 & 0.5 & 0.1 & 0.1 & 0.1 \\
\end{bmatrix}
\]
Extensions of Problem Setup

- Partially observability
 - Partially Observable Markov Decision Process (POMDP)
 - State not fully known; instead, act based on observations

\[\pi(\theta) \]

- Policy: \(\pi(\theta)(a | o) \)
- In this class, state \(s \) will be synonymous with observation \(o \).
Reinforcement Learning Objective

• Given: an MDP with state space \mathcal{S}, action space \mathcal{A}, transition probabilities \mathcal{T}, and reward function $r(s,a)$

• Objective: Maximize discounted sum of rewards (“return”)
 \[
 \maximize_{\pi_{\theta}} E \sum_{t} \gamma^k r(s_t, a_t)
 \]
 - $\gamma \in (0,1]$: discount factor – larger roughly means “far-sighted”
 - Prioritizes immediate rewards
 - $\gamma < 1$ avoids infinite rewards; $\gamma = 1$ is possible if all sequences are finite

• Constraints: often implicit
 - Subject to transition matrix \mathcal{T} (system dynamics)
Markov Decision Process

• An MDP with a particular policy results in a Markov chain: \(p(s_{t+1} | s_t, a_t), a_t \sim \pi_\theta(a_t | s_t) \)

State space includes
• Reading paper
• Doing math
• Coding
• Doing robotic experiments
• Watching YouTube
• Writing paper
• Sleeping

Transition probabilities
\[
T = \begin{bmatrix}
0.1 & 0.9 \\
0.1 & 0.9 \\
0.2 & 0.8 \\
0.5 & 0.5 \\
0.9 & 0.1 \\
1 & 1
\end{bmatrix}
\]

Reward function: \(r(s) \)
• In general, also depends on action
Markov Decision Process

• An MDP with a particular policy results in a Markov chain: $p(s_{t+1} | s_t, a_t), a_t \sim \pi(\theta | s_t)$

State space includes:
- Reading paper
- Doing math
- Coding
- Doing robotic experiments
- Watching YouTube
- Writing paper
- Sleeping

Transition probabilities

$$T = \begin{bmatrix}
0.5 & 0.5 & 0.5 \\
0.5 & 0.5 & 0.5 \\
0.5 & 0.5 & 1
\end{bmatrix}$$

Reward function: $r(s)$
• In general, also depends on action
• Better policy \rightarrow different Markov chain \rightarrow different reward
Reinforcement Learning and Optimal Control

- **Reinforcement Learning**

 \[
 \text{maximize } \mathbb{E} \sum_{t} \gamma^k r(s_t, a_t)
 \]

 - Dynamics constraint is implicit
 - And not necessary needed
 - Typically, no other explicit constraints
 - Problem set up captured entirely in the reward
 - Probabilistic

- **Optimal control**

 \[
 \begin{align*}
 \text{minimize} & \quad l(x(t_f), t_f) + \int_0^{t_f} c(x(t), u(t), t) dt \\
 \text{subject to} & \quad \dot{x}(t) = f(x(t), u(t)) \\
 & \quad g(x(t), u(t)) \geq 0 \\
 & \quad x(t) \in \mathbb{R}^n, u(t) \in \mathbb{R}^m, x(0) = x_0
 \end{align*}
 \]

 - Explicit constraints
 - Can be continuous time
 - Not necessarily probabilistic
Imitation Learning

• Collect data through expert demonstration – sequence of states and actions, \(\{s_0, a_0, s_1, a_1, \ldots, s_{N-1}, a_{N-1}, s_N\} \)
 • Note: Expert may not be solving maximize \(\max_{\pi} \mathbb{E}[\sum_t \gamma^k r(s_t, a_t)] \)

• Learn \(\pi_\theta (a_t | s_t) \) from data via regression
 • Minimize \(\mathbb{E}[\sum ||a_t - \pi_\theta (a_t | s_t)||] \)
Imitation Learning

• Collect data through expert demonstration – sequence of states and actions, $\{s_0, a_0, s_1, a_1, \ldots, s_{N-1}, a_{N-1}, s_N\}$
 • Expert may not be solving $\max_\pi \mathbb{E} \left[\sum_t \gamma^k r(s_t, a_t) \right]$

• Learn $\pi_\theta (a_t | s_t)$ from data via regression
 • Minimize $\mathbb{E} \left[\sum ||a_t - \pi_\theta (a_t | s_t)|| \right]$
Imitation Learning

- Collect data through expert demonstration – sequence of states and actions, \(\{s_0, a_0, s_1, a_1, \ldots, s_{N-1}, a_{N-1}, s_N\} \)
 - Expert may not be solving maximize \(\mathbb{E}[\sum_t \gamma^k r(s_t, a_t)] \)

- Learn \(\pi_\theta(a_t|s_t) \) from data via regression
 - Minimize \(\mathbb{E}(\sum ||a_t - \pi_\theta(a_t|s_t)||) \)

- Usually doesn’t work due to “drift”: small mistakes add up, and takes the system far from trained states
 - Sometimes, there can be “tricks” to make imitation learning work!
Autonomous Driving Through Imitation
Dataset Aggregation

• Imitation learning drawback:
 • Distribution of observations in training is different from distribution of observations during test
 • Some states have never been seen during demonstration

• How to make the distributions equal?
 • Train perfect policy
 • Change data set → DAgger (Dataset Aggregation)
Dataset Aggregation (DAgger) Algorithm

1. Train policy from some initial data, $\mathcal{D}_i = \{s_0, a_0, s_1, a_1, ..., s_{N-1}, a_{N-1}, s_N\}$
2. Run policy to obtain new observations $\{s_{N+1}, s_{N+2}, ..., s_{N+M}\}$
 - Note: time indices and states here may not continue from initial data
3. Use humans to label data by providing actions for new observations, $\{a_{N+1}, ..., a_{N+M-1}\}$
 - This creates another data set, $\overline{\mathcal{D}}_i = \{s_{N+1}, a_{N+1}, s_{N+2}, a_{N+2} ..., a_{N+M-1}, s_{N+M}\}$
4. Combine two datasets, $\mathcal{D}_i \leftarrow \mathcal{D}_i \cup \overline{\mathcal{D}}_i$
 - Go back to first step
Challenges

• Non-Markovian behaviour
 • Perhaps augment state/observation space to include some history
 • Use neural networks that implicitly capture time series data: RNNs/LSTMs

• Unnatural data collection
 • Humans are probably not very good at collecting correction data in this manner

• Inconsistencies in human action
Addressing Drift

• Main goal: Teach system to correct errors

• Explicitly demonstrate corrections (DAGGER, Dataset Aggregation)

• During demonstration, add noise to “force” mistakes, and see how humans correct them

• Ask humans to intentionally make mistakes

• Prior knowledge and heuristics
 • Example: Learn from stabilizing controller
Imitation Learning Tricks

• Common neural network architectures
 • LSTM – since we have time-series data
 • CNN – usually in combination with LSTM, if the observations are images

• Simplify action space:
 • Driving example: action space simplified to {left, centre, right}

• Clever data collection
 • Driving example: side cameras

• Inverse reinforcement learning
 • Learn goal, instead of policy, from data
Imitation Learning Drawbacks

• Very small amount of data – challenging for training deep neural networks

• Humans are not very good at providing some kinds of actions
 • Quadrotor motor speed
 • Non-humanoid machines

• Hard to perform better at tasks humans are not very good at
Reinforcement Learning

• Humans can learn without imitation
 • Given goal/task
 • Try an initial strategy
 • See how well the task is performed
 • Adjust strategy next time

• Reinforcement learning agent
 • Start with initial policy $\pi_\theta(a|s)$
 • Execute policy
 • Obtain reward, $\sum_t r(s_t, a_t)$
 • Improve policy by updating θ, based on rewards
RL vs. Other ML Paradigms

• No supervisor
• Sequential data in time
• Reward feedback is obtained after a long time
 • Many actions combined together will receive reward
 • Actions are dependent on each other
• In robotics: lack of data