Neural Networks and Markov Decision Processes

CMPT 882

Mar. 13

Outline

- Neural networks
 - Forward and backward propagation
 - Typical structures
- Markov Decision Processes
 - Definitions
 - Example
 - Objective in reinforcement learning

- Regression: Choose θ such that $y \approx f_{\theta}(x)$
 - Neural Network: A specific form of $f_{\theta}(x)$
- Forward propagation
 - Evaluation of $f_{\theta}(x)$
- Backpropagation
 - Computation of $\frac{\partial l}{\partial \theta}$, where *l* is the loss function

• A specific form of $f_{\theta}(x)$

 $y = f(x^\top W + b)$

- Parameters θ are W and b
- "Weights"

- Regression: Choose θ such that $y \approx f_{\theta}(x)$
 - Neural Network: A specific form of $f_{\theta}(x)$

- Regression: Choose θ such that $y \approx f_{\theta}(x)$
 - Neural Network: A specific form of $f_{\theta}(x)$

- Regression: Choose θ such that $y \approx f_{\theta}(x)$
 - Neural Network: A specific form of $f_{\theta}(x)$ Parameters θ are the weights W_i

- Parameters θ are the weights W_i and b_i
- f_1, f_2, f_3 are nonlinear
 - Otherwise *f* would just be a single linear function:

 $y = ((x^{\top}W_1 + b_1)W_2 + b_2)W_3 + b_3$ = $x^{\top}W_1W_2W_3 + b_1W_2W_3 + b_2W_3 + b_3$

"Activation functions"

- Regression: Choose θ such that $y \approx f_{\theta}(x)^{\dagger}$
 - Neural Network: A specific form of $f_{\theta}(x)$

- Common choices of activation functions
 - Sigmoid:

tanh *x*

• Softplus: $\log(1 + e^x)$

• Hyperbolic tangent:

 Rectified linear unit (ReLU): max(0, x)

• Key feature: easy to differentiate

Training Neural Networks and Backpropagation

- Regression: Choose θ such that $y \approx f_{\theta}(x)$
 - Neural Network: A specific form of $f_{\theta}(x)$

- Given current θ, X, Y , compute $f_{\theta}(X)$ to then obtain loss, $l(\theta; X, Y)$
 - $l(\theta; X, Y)$ compares $f_{\theta}(X)$ with ground truth Y
 - Evaluation of *f* : "Forward propagation"
- Minimize $l(\theta; X, Y)$
 - Stochastic gradient descent
 - Evaluation of $\frac{\partial l}{\partial W}$: "Backpropagation"

• Example:
$$\frac{\partial y}{\partial W_1} = \frac{\partial y}{\partial h_2} \frac{\partial h_2}{\partial h_1} \frac{\partial h_1}{\partial W_1}$$

• Just the chain rule

Backpropagation

- $y = f_3(h_2W_3 + b_3),$
- where $h_2 = f_2(h_1W_2 + b_2) = h_2(W_2)$
- So $y = f_3(h_2(W_2)W_3 + b_3) = f_3(W_2, W_3)$

But $h_2 = f_2(h_1W_2 + b_2)$, • where $h_1 = f_1(x^TW_1 + b_1) = h_1(W_1)$ • So $h_2 = f_2(h_1(W_1)W_2 + b_2) = f_2(W_1, W_2)$ • So $y = f_2(h_2(W_1, W_2)W_2 + b_2) =$

• So
$$y = f_3(h_2(W_1, W_2)W_3 + b_3) = f_3(W_1, W_2, W_3)$$

Example: gradient with respect to W_1

•
$$\frac{\partial y}{\partial W_1} = \frac{\partial f_3}{\partial h_2} \frac{\partial h_2}{\partial W_1} = \frac{\partial f_3}{\partial h_2} \frac{\partial h_2}{\partial h_1} \frac{\partial h_1}{\partial W_1}$$

- Each term is a tensor, which results from taking the gradient of a vector w.r.t. a matrix
- Software like TensorFlow performs this (and other operations common in machine learning) efficiently

Common Operations

- Fully connected (dot product)
- Convolution
 - Translationally invariant
 - Controls overfitting
- Pooling (fixed function)
 - Down-sampling
 - Controls overfitting
- Nonlinearity layer (fixed function)
 - Activation functions, e.g. ReLU

Stanford CS231n

Example: Small VGG Net From Stanford CS231n

Neural Network Architectures

0

h

Х

W

- Convolutional neural network (CNN)
 - Has translational invariance properties from convolution
 - Common used for computer vision
- Recurrent neural network RNN
 - Has feedback loops to capture temporal or sequential information
 - Useful for handwriting recognition, speech recognition, reinforcement learning
 - Long short-term memory (LSTM): special type of RNN with advantages in numerical properties
- Others
 - General feedforward networks, variational autoencoders (VAEs), conditional VAEs,

Training Neural Networks

- Data preprocessing
 - Removing bad data
 - Transform input data (e.g. rotating, stretching, adding noise)
- Training process (optimization algorithm)
 - L1 and L2 regularization
 - Dropout: randomly set neurons to zero in each training iteration
 - Learning rate (step size) and other hyperparameter tuning
- Software packages: efficient gradient computation
 - Caffe, Torch, Theano, TensorFlow

Outline

- Neural networks
 - Forward and backward propagation
 - Typical structures
- Markov Decision Processes
 - Definitions
 - Example
 - Objective in reinforcement learning

Markov Decision Process

- Probabilistic model of robots and other systems
- State: $s \in S$, discrete or continuous
- Action (control): $a \in \mathcal{A}$, discrete or continuous
- Transition operator (dynamics): ${\mathcal T}$
 - $\mathcal{T}_{ijk} = p(s_{t+1} = i | s_t = j, a_t = k) \leftarrow a \text{ tensor (multidimensional array)}$

State in MDPs and Reinforcement Learning

- In optimal control, state usually represents internal states of a robot
- In RL, state usually also include the internal states of a robot, but often also include
 - State of other robots
 - State of the environment
 - Sensor measurements
- Distinction between state and observation can be blurred
- In general, the state contains all variables other than actions that determine the next state through the transition probability $p(s_{t+1}|s_t, a_t)$

Policy and Reward

- Control policy (feedback control): $\pi(a|s)$
 - Parametrized by some parameters

 $\theta: \pi_{\theta}(a|s) \coloneqq p(a|s)$

 Can be stochastic: probability of applying action a at state s

Policy and Reward

- Control policy (feedback control): $\pi(a|s)$
 - Parametrized by some parameters

 $\theta : \pi_{\theta}(a|s) \coloneqq p(a|s)$

- Can be stochastic: probability of applying action a at state s
- Reward function: $r(s_t, a_t)$
 - Reward received for being at state \boldsymbol{s}_t and applying action \boldsymbol{a}_t
 - Analogous to the cost in optimal control

Markov Decision Process

• An MDP with a particular policy results in a Markov chain: $p(s_{t+1}|s_t, a_t), a_t \sim \pi_{\theta}(a_t|s_t)$

State space includes

- Reading paper
- Doing math
- Coding
- Doing robotic experiments
- Watching YouTube
- Writing paper
- Sleeping

Extensions of Problem Setup

- Partially observability
 - Partially Observable Markov Decision Process (POMDP)
 - State not fully known; instead, act based on observations

- Policy: $\pi_{\theta}(a|o)$
- In this class, state s will be synonymous with observation o.

Reinforcement Learning Objective

- Given: an MDP with state space S, action space A, transition probabilities T, and reward function r(s, a)
- Objective: Maximize discounted sum of rewards ("return") $\max_{\pi_{\theta}} \mathbb{E} \sum_{t} \gamma^{k} r(s_{t}, a_{t})$
 - $\gamma \in (0,1]$: discount factor larger roughly means "far-sighted"
 - Prioritizes immediate rewards
 - $\gamma < 1$ avoids infinite rewards; $\gamma = 1$ is possible if all sequences are finite
- Constraints: often implicit
 - Subject to transition matrix \mathcal{T} (system dynamics)

Markov Decision Process

• An MDP with a particular policy results in a Markov chain: $p(s_{t+1}|s_t, a_t), a_t \sim \pi_{\theta}(a_t|s_t)$

State space includes

- Reading paper
- Doing math
- Coding
- Doing robotic experiments
- Watching YouTube
 - Writing paper
 - Sleeping

Markov Decision Process

• An MDP with a particular policy results in a Markov chain: $p(s_{t+1}|s_t, a_t), a_t \sim \pi_{\theta}(a_t|s_t)$

- State space includes
- Reading paper
- Doing math
- Coding
- Doing robotic experiments
- Watching YouTube
- Writing paper
- Sleeping

Reinforcement Learning vs. Optimal Control

- Reinforcement Learning $\max_{\pi_{\theta}} \mathbb{E} \sum_{t} \gamma^{k} r(s_{t}, a_{t})$
 - Dynamics constraint is implicit
 - And not necessary needed
 - Typically, no other explicit constraints
 - Problem set up captured entirely in the reward
 - Probabilistic

• Optimal control $\begin{array}{l} \underset{u(\cdot)}{\text{minimize }} l(x(t_f), t_f) + \int_0^{t_f} c(x(t), u(t), t) dt \\ \text{subject to } \dot{x}(t) = f(x(t), u(t)) \\ g(x(t), u(t)) \ge 0 \\ x(t) \in \mathbb{R}^n, u(t) \in \mathbb{R}^m, x(0) = x_0 \end{array}$

- Explicit constraints
- Can be continuous time
- Not necessarily probabilistic