
Neural Networks and
Markov Decision Processes

CMPT 882

Mar. 13

Outline

• Neural networks
• Forward and backward propagation

• Typical structures

• Markov Decision Processes
• Definitions

• Example

• Objective in reinforcement learning

Neural Networks

• Regression: Choose 𝜃 such that 𝑦 ≈ 𝑓𝜃 𝑥
• Neural Network: A specific form of 𝑓𝜃 𝑥

• Forward propagation
• Evaluation of 𝑓𝜃 𝑥

• Backpropagation

• Computation of
𝜕𝑙

𝜕𝜃
, where 𝑙 is the loss function

Neural Networks

• A specific form of 𝑓𝜃 𝑥

𝑥1

𝑥2

𝑥3

𝑦1

𝑦2

𝑦3

𝑦4

𝑦1 = 𝑓 𝑥⊤𝑤1 + 𝑏1

1

𝑦2 = 𝑓 𝑥⊤𝑤2 + 𝑏2

𝑦3 = 𝑓 𝑥⊤𝑤3 + 𝑏3

𝑦4 = 𝑓 𝑥⊤𝑤4 + 𝑏4

𝑦 = 𝑓 𝑥⊤𝑊 + 𝑏
• Parameters 𝜃 are 𝑊 and 𝑏
• “Weights”

Neural Networks
• Regression: Choose 𝜃 such that 𝑦 ≈ 𝑓𝜃 𝑥

• Neural Network: A specific form of 𝑓𝜃 𝑥

ℎ = 𝑓1 𝑥⊤𝑊1 + 𝑏1

𝑥 ℎ

𝑦

𝑦 = 𝑓2 ℎ⊤𝑊2 + 𝑏2

input layer hidden layer
output layer

“neuron”

Neural Networks

ℎ1 = 𝑓1 𝑥⊤𝑊1 + 𝑏1

𝑥 ℎ1

ℎ2

ℎ2 = 𝑓2 ℎ1𝑊2 + 𝑏2

input layer hidden layer 1

output layer

𝑦

hidden layer 2

𝑦 = 𝑓3 ℎ2𝑊3 + 𝑏3

• Regression: Choose 𝜃 such that 𝑦 ≈ 𝑓𝜃 𝑥
• Neural Network: A specific form of 𝑓𝜃 𝑥

Neural Networks

• Parameters 𝜃 are the weights 𝑊𝑖
and 𝑏𝑖

• 𝑓1, 𝑓2, 𝑓3 are nonlinear
• Otherwise 𝑓 would just be a single

linear function:
𝑦 = 𝑥⊤𝑊1 + 𝑏1 𝑊2 + 𝑏2 𝑊3 + 𝑏3
= 𝑥⊤𝑊1𝑊2𝑊3 + 𝑏1𝑊2𝑊3 + 𝑏2𝑊3 + 𝑏3

• “Activation functions”ℎ1 = 𝑓1 𝑥⊤𝑊1 + 𝑏1

𝑥 ℎ1

ℎ2

ℎ2 = 𝑓2 ℎ1𝑊2 + 𝑏2

input layer hidden layer 1

output layer

𝑦

hidden layer 2

𝑦 = 𝑓3 ℎ2𝑊3 + 𝑏3

• Regression: Choose 𝜃 such that 𝑦 ≈ 𝑓𝜃 𝑥
• Neural Network: A specific form of 𝑓𝜃 𝑥

Neural Networks • Common choices of activation
functions
• Sigmoid:

1

1 + 𝑒−𝑥

• Softplus:
log 1 + 𝑒𝑥

• Hyperbolic tangent:
tanh 𝑥

• Rectified linear unit (ReLU):
max 0, 𝑥

• Key feature: easy to differentiate

ℎ1 = 𝑓1 𝑥⊤𝑊1 + 𝑏1

𝑥 ℎ1

ℎ2

ℎ2 = 𝑓2 ℎ1𝑊2 + 𝑏2

input layer hidden layer 2

output layer

𝑦

hidden layer 2

𝑦 = 𝑓3 ℎ2𝑊3 + 𝑏3

• Regression: Choose 𝜃 such that 𝑦 ≈ 𝑓𝜃 𝑥
• Neural Network: A specific form of 𝑓𝜃 𝑥

• Regression: Choose 𝜃 such that 𝑦 ≈ 𝑓𝜃 𝑥
• Neural Network: A specific form of 𝑓𝜃 𝑥

Training Neural Networks and Backpropagation

• Given current 𝜃, 𝑋, 𝑌, compute 𝑓𝜃 𝑋 to
then obtain loss, 𝑙 𝜃; 𝑋, 𝑌
• 𝑙 𝜃; 𝑋, 𝑌 compares 𝑓𝜃 𝑋 with ground truth 𝑌

• Evaluation of 𝑓: “Forward propagation”

• Minimize 𝑙 𝜃; 𝑋, 𝑌
• Stochastic gradient descent

• Evaluation of
𝜕𝑙

𝜕𝑊
: “Backpropagation”

• Example:
𝜕𝑦

𝜕𝑊1
=

𝜕𝑦

𝜕ℎ2

𝜕ℎ2

𝜕ℎ1

𝜕ℎ1

𝜕𝑊1

• Just the chain rule
ℎ1 = 𝑓1 𝑥⊤𝑊1 + 𝑏1

𝑥 ℎ1

ℎ2

ℎ2 = 𝑓2 ℎ1𝑊2 + 𝑏2

input layer hidden layer 2

output layer

𝑦

hidden layer 2

𝑦 = 𝑓3 ℎ2𝑊3 + 𝑏3

Backpropagation 𝑦 = 𝑓3 ℎ2𝑊3 + 𝑏3 ,

• where ℎ2 = 𝑓2 ℎ1𝑊2 + 𝑏2 = ℎ2 𝑊2

• So 𝑦 = 𝑓3 ℎ2 𝑊2 𝑊3 + 𝑏3 = 𝑓3 𝑊2,𝑊3

But ℎ2 = 𝑓2 ℎ1𝑊2 + 𝑏2 ,

• where ℎ1 = 𝑓1 𝑥⊤𝑊1 + 𝑏1 = ℎ1 𝑊1

• So ℎ2 = 𝑓2 ℎ1 𝑊1 𝑊2 + 𝑏2 = 𝑓2 𝑊1,𝑊2

• So 𝑦 = 𝑓3 ℎ2 𝑊1,𝑊2 𝑊3 + 𝑏3 =
𝑓3 𝑊1,𝑊2,𝑊3

Example: gradient with respect to 𝑊1

•
𝜕𝑦

𝜕𝑊1
=

𝜕𝑓3

𝜕ℎ2

𝜕ℎ2

𝜕𝑊1
=

𝜕𝑓3

𝜕ℎ2

𝜕ℎ2

𝜕ℎ1

𝜕ℎ1

𝜕𝑊1

• Each term is a tensor, which results from taking
the gradient of a vector w.r.t. a matrix

• Software like TensorFlow performs this (and
other operations common in machine learning)
efficiently

ℎ1 = 𝑓1 𝑥⊤𝑊1 + 𝑏1

𝑥 ℎ1

ℎ2

ℎ2 = 𝑓2 ℎ1𝑊2 + 𝑏2

input layer hidden layer 2

output layer

𝑦

hidden layer 2

𝑦 = 𝑓3 ℎ2𝑊3 + 𝑏3

Common Operations

• Fully connected (dot product)

• Convolution
• Translationally invariant
• Controls overfitting

• Pooling (fixed function)
• Down-sampling
• Controls overfitting

• Nonlinearity layer (fixed function)
• Activation functions, e.g. ReLU

Stanford CS231n

towarddatascience.com

Example: Small VGG Net From Stanford CS231n

Neural Network Architectures

• Convolutional neural network (CNN)
• Has translational invariance properties from

convolution
• Common used for computer vision

• Recurrent neural network RNN
• Has feedback loops to capture temporal or

sequential information
• Useful for handwriting recognition, speech

recognition, reinforcement learning
• Long short-term memory (LSTM): special type of

RNN with advantages in numerical properties

• Others
• General feedforward networks, variational

autoencoders (VAEs), conditional VAEs,

Training Neural Networks

• Data preprocessing
• Removing bad data
• Transform input data (e.g. rotating, stretching, adding noise)

• Training process (optimization algorithm)
• L1 and L2 regularization
• Dropout: randomly set neurons to zero in each training iteration
• Learning rate (step size) and other hyperparameter tuning

• Software packages: efficient gradient computation
• Caffe, Torch, Theano, TensorFlow

Outline

• Neural networks
• Forward and backward propagation

• Typical structures

• Markov Decision Processes
• Definitions

• Example

• Objective in reinforcement learning

Markov Decision Process

• Probabilistic model of robots and other systems

• State: 𝑠 ∈ 𝒮, discrete or continuous

• Action (control): 𝑎 ∈ 𝒜, discrete or continuous

• Transition operator (dynamics): 𝒯
• 𝒯𝑖𝑗𝑘 = 𝑝 𝑠𝑡+1 = 𝑖|𝑠𝑡 = 𝑗, 𝑎𝑡 = 𝑘 a tensor (multidimensional array)

𝑎𝑡

𝑠𝑡 𝑠𝑡+1
𝑝 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡

𝑠𝑡+2

𝑎𝑡+1

𝑝 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡

State in MDPs and Reinforcement Learning

• In optimal control, state usually represents internal states of a robot

• In RL, state usually also include the internal states of a robot, but often also
include
• State of other robots
• State of the environment
• Sensor measurements

• Distinction between state and observation can be blurred

• In general, the state contains all variables other than actions that
determine the next state through the transition probability 𝑝 𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡

Policy and Reward

• Control policy (feedback control): 𝜋 𝑎 𝑠
• Parametrized by some parameters

𝜃: 𝜋𝜃 𝑎 𝑠 ≔ 𝑝 𝑎 𝑠

• Can be stochastic: probability of applying action 𝑎 at
state 𝑠

• Reward function: 𝑟 𝑠𝑡 , 𝑎𝑡
• Reward received for being at state 𝑠𝑡 and applying

action 𝑎𝑡

𝑎𝑡

𝑠𝑡 𝑠𝑡+1
𝑝 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡

𝑠𝑡+2

𝑎𝑡+1

𝑝 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡

𝜋𝜃 𝑎𝑡 𝑠𝑡 𝜋𝜃 𝑎𝑡 𝑠𝑡

Policy and Reward

• Control policy (feedback control): 𝜋 𝑎 𝑠
• Parametrized by some parameters

𝜃: 𝜋𝜃 𝑎 𝑠 ≔ 𝑝 𝑎 𝑠

• Can be stochastic: probability of applying action 𝑎 at
state 𝑠

• Reward function: 𝑟 𝑠𝑡 , 𝑎𝑡
• Reward received for being at state 𝑠𝑡 and applying

action 𝑎𝑡
• Analogous to the cost in optimal control

Markov Decision Process

• An MDP with a particular policy results in a
Markov chain: 𝑝 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 , 𝑎𝑡~𝜋𝜃 𝑎𝑡|𝑠𝑡

read
paper

YouTube

codemath
write
paper

robot
expt.

sleep

0.1

0.9

0.9 0.1

0.9

0.1 0.2

0.8 0.5

0.5

State space includes
• Reading paper
• Doing math
• Coding
• Doing robotic experiments
• Watching YouTube
• Writing paper
• Sleeping

Transition probabilities

𝒯 =

0.1 0.9
0.1 0.9

0.2 0.8
0.5 0.5
0.9 0.1

1
1

Extensions of Problem Setup

• Partially observability
• Partially Observable Markov Decision Process (POMDP)
• State not fully known; instead, act based on observations

• Policy: 𝜋𝜃 𝑎|𝑜

• In this class, state 𝑠 will be synonymous with observation 𝑜.

𝑎𝑡

𝑠𝑡 𝑠𝑡+1
𝑝 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡

𝑠𝑡+2

𝑎𝑡+1

𝑝 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡

𝑜𝑡 𝑜𝑡+1

Reinforcement Learning Objective

• Given: an MDP with state space 𝒮, action space 𝒜, transition
probabilities 𝒯, and reward function 𝑟 𝑠, 𝑎

• Objective: Maximize discounted sum of rewards (“return”)

maximize
𝜋𝜃

𝔼

𝑡

𝛾𝑘𝑟 𝑠𝑡 , 𝑎𝑡

• 𝛾 ∈ 0,1 : discount factor – larger roughly means “far-sighted”
• Prioritizes immediate rewards
• 𝛾 < 1 avoids infinite rewards; 𝛾 = 1 is possible if all sequences are finite

• Constraints: often implicit
• Subject to transition matrix 𝒯 (system dynamics)

Markov Decision Process

• An MDP with a particular policy results in a
Markov chain: 𝑝 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 , 𝑎𝑡~𝜋𝜃 𝑎𝑡|𝑠𝑡

1

−5

22 104

10

0.1

0.9

0.9 0.1

0.9

0.1 0.2

0.8 0.5

0.5

Reward function: 𝑟 𝑠
• In general, also depends

on action

State space includes
• Reading paper
• Doing math
• Coding
• Doing robotic experiments
• Watching YouTube
• Writing paper
• Sleeping

Transition probabilities

𝒯 =

0.1 0.9
0.1 0.9

0.2 0.8
0.5 0.5
0.9 0.1

1
1

Markov Decision Process

• An MDP with a particular policy results in a
Markov chain: 𝑝 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 , 𝑎𝑡~𝜋𝜃 𝑎𝑡|𝑠𝑡

1

−5

22 104

10

0.5

0.5

0.1 0.9

0.5

0.5 0.5

0.5 0.5

0.5

Reward function: 𝑟 𝑠
• In general, also depends

on action
• Better policy →

different Markov chain
→ different reward

State space includes
• Reading paper
• Doing math
• Coding
• Doing robotic experiments
• Watching YouTube
• Writing paper
• Sleeping

Transition probabilities

𝒯 =

0.5 0.5
0.5 0.5

0.5 0.5
0.5 0.5
0.1 0.9

1
1

Reinforcement Learning vs. Optimal Control

• Reinforcement Learning

maximize
𝜋𝜃

𝔼

𝑡

𝛾𝑘𝑟 𝑠𝑡 , 𝑎𝑡

• Dynamics constraint is implicit
• And not necessary needed

• Typically, no other explicit
constraints

• Problem set up captured entirely
in the reward

• Probabilistic

• Optimal control

• Explicit constraints

• Can be continuous time

• Not necessarily probabilistic

minimize 𝑙 𝑥 𝑡𝑓 , 𝑡𝑓 +න
0

𝑡𝑓

𝑐 𝑥 𝑡 , 𝑢 𝑡 , 𝑡 𝑑𝑡

subject to ሶ𝑥 𝑡 = 𝑓 𝑥 𝑡 , 𝑢 𝑡

𝑢 ⋅

𝑥 𝑡 ∈ ℝ𝑛, 𝑢 𝑡 ∈ ℝ𝑚, 𝑥 0 = 𝑥0

𝑔 𝑥 𝑡 , 𝑢 𝑡 ≥ 0

