Neural Networks and Markov Decision Processes

CMPT 882
Mar. 13
Outline

• Neural networks
 • Forward and backward propagation
 • Typical structures

• Markov Decision Processes
 • Definitions
 • Example
 • Objective in reinforcement learning
Neural Networks

• Regression: Choose θ such that $y \approx f_\theta(x)$
 • Neural Network: A specific form of $f_\theta(x)$

• Forward propagation
 • Evaluation of $f_\theta(x)$

• Backpropagation
 • Computation of $\frac{\partial l}{\partial \theta}$, where l is the loss function
Neural Networks

• A specific form of $f_\theta(x)$

$$y_1 = f(x^\top w_1 + b_1)$$
$$y_2 = f(x^\top w_2 + b_2)$$
$$y_3 = f(x^\top w_3 + b_3)$$
$$y_4 = f(x^\top w_4 + b_4)$$

$$y = f(x^\top W + b)$$

• Parameters θ are W and b
• “Weights”
Neural Networks

• Regression: Choose θ such that $y \approx f_\theta(x)$
 • Neural Network: A specific form of $f_\theta(x)$

\[
x \rightarrow h \rightarrow y
\]

- input layer
- hidden layer
- output layer

“neuron”

\[
h = f_1(x^T W_1 + b_1) \quad y = f_2(h^T W_2 + b_2)
\]
Neural Networks

- Regression: Choose θ such that $y \approx f_\theta(x)$
 - Neural Network: A specific form of $f_\theta(x)$

\[
\begin{align*}
 h_1 &= f_1(x^T W_1 + b_1) \\
 h_2 &= f_2(h_1 W_2 + b_2) \\
 y &= f_3(h_2 W_3 + b_3)
\end{align*}
\]
Neural Networks

• Regression: Choose θ such that $y \approx f_\theta(x)$
 • Neural Network: A specific form of $f_\theta(x)$
 • Parameters θ are the weights W_i and b_i

• f_1, f_2, f_3 are nonlinear
 • Otherwise f would just be a single linear function:
 $y = (x^T W_1 + b_1) W_2 + b_2 W_3 + b_3$

• “Activation functions”
Neural Networks

- Regression: Choose θ such that $y \approx f_{\theta}(x)$
 - Neural Network: A specific form of $f_{\theta}(x)$

$$h_1 = f_1(x^T W_1 + b_1)$$
$$h_2 = f_2(h_1 W_2 + b_2)$$
$$h_2 = f_2(h_1 W_2 + b_2)$$

- Common choices of activation functions
 - Sigmoid:
 $$\frac{1}{1 + e^{-x}}$$
 - Softplus:
 $$\log(1 + e^x)$$
 - Hyperbolic tangent:
 $$\tanh x$$
 - Rectified linear unit (ReLU):
 $$\max(0, x)$$

- Key feature: easy to differentiate
Training Neural Networks and Backpropagation

- Regression: Choose θ such that $y \approx f_\theta(x)$
 - Neural Network: A specific form of $f_\theta(x)$

- Given current θ, X, Y, compute $f_\theta(X)$ to then obtain loss, $l(\theta; X, Y)$
 - $l(\theta; X, Y)$ compares $f_\theta(X)$ with ground truth Y
 - Evaluation of f: "Forward propagation"

- Minimize $l(\theta; X, Y)$
 - Stochastic gradient descent
 - Evaluation of $\frac{\partial l}{\partial W}$: "Backpropagation"

 - Example: $\frac{\partial y}{\partial W_1} = \frac{\partial y}{\partial h_2} \frac{\partial h_2}{\partial h_1} \frac{\partial h_1}{\partial W_1}$
 - Just the chain rule
Backpropagation

\[y = f_3(h_2W_3 + b_3), \]
- where \(h_2 = f_2(h_1W_2 + b_2) = h_2(W_2) \)
- So \(y = f_3(h_2(W_2)W_3 + b_3) = f_3(W_2, W_3) \)

But \(h_2 = f_2(h_1W_2 + b_2), \)
- where \(h_1 = f_1(x^TW_1 + b_1) = h_1(W_1) \)
- So \(h_2 = f_2(h_1(W_1)W_2 + b_2) = f_2(W_1, W_2) \)
- So \(y = f_3(h_2(W_1, W_2)W_3 + b_3) = f_3(W_1, W_2, W_3) \)

Example: gradient with respect to \(W_1 \)

\[\frac{\partial y}{\partial W_1} = \frac{\partial f_3}{\partial h_2} \frac{\partial h_2}{\partial W_1} = \frac{\partial f_3}{\partial h_2} \frac{\partial h_2}{\partial h_1} \frac{\partial h_1}{\partial W_1} \]
- Each term is a tensor, which results from taking the gradient of a vector w.r.t. a matrix
- Software like TensorFlow performs this (and other operations common in machine learning) efficiently
Common Operations

- Fully connected (dot product)
- Convolution
 - Translationally invariant
 - Controls overfitting
- Pooling (fixed function)
 - Down-sampling
 - Controls overfitting
- Nonlinearity layer (fixed function)
 - Activation functions, e.g. ReLU
Example: Small VGG Net From Stanford CS231n
Neural Network Architectures

• Convolutional neural network (CNN)
 • Has translational invariance properties from convolution
 • Common used for computer vision

• Recurrent neural network RNN
 • Has feedback loops to capture temporal or sequential information
 • Useful for handwriting recognition, speech recognition, reinforcement learning
 • Long short-term memory (LSTM): special type of RNN with advantages in numerical properties

• Others
 • General feedforward networks, variational autoencoders (VAEs), conditional VAEs,
Training Neural Networks

• Data preprocessing
 • Removing bad data
 • Transform input data (e.g. rotating, stretching, adding noise)

• Training process (optimization algorithm)
 • L1 and L2 regularization
 • Dropout: randomly set neurons to zero in each training iteration
 • Learning rate (step size) and other hyperparameter tuning

• Software packages: efficient gradient computation
 • Caffe, Torch, Theano, TensorFlow
Outline

• Neural networks
 • Forward and backward propagation
 • Typical structures

• Markov Decision Processes
 • Definitions
 • Example
 • Objective in reinforcement learning
Markov Decision Process

- Probabilistic model of robots and other systems
- State: \(s \in S \), discrete or continuous
- Action (control): \(a \in A \), discrete or continuous
- Transition operator (dynamics): \(T \)
 - \(T_{ijk} = p(s_{t+1} = i|s_t = j, a_t = k) \) \(\leftarrow \) a tensor (multidimensional array)
State in MDPs and Reinforcement Learning

• In optimal control, state usually represents internal states of a robot

• In RL, state usually also include the internal states of a robot, but often also include
 - State of other robots
 - State of the environment
 - Sensor measurements

• Distinction between state and observation can be blurred

• In general, the state contains all variables other than actions that determine the next state through the transition probability $p(s_{t+1}|s_t, a_t)$
Policy and Reward

- Control policy (feedback control): $\pi(a|s)$
 - Parametrized by some parameters θ: $\pi_\theta(a|s) := p(a|s)$
 - Can be stochastic: probability of applying action a at state s
Policy and Reward

- Control policy (feedback control): $\pi(a|s)$
 - Parametrized by some parameters
 \[\theta: \pi_\theta(a|s) := p(a|s) \]
 - Can be stochastic: probability of applying action a at state s

- Reward function: $r(s_t, a_t)$
 - Reward received for being at state s_t and applying action a_t
 - Analogous to the cost in optimal control
Markov Decision Process

• An MDP with a particular policy results in a Markov chain: $p(s_{t+1}|s_t, a_t), a_t \sim \pi_\theta(a_t|s_t)$

State space includes:
- Reading paper
- Doing math
- Coding
- Doing robotic experiments
- Watching YouTube
- Writing paper
- Sleeping

Transition probabilities:

$$T = \begin{bmatrix}
0.1 & 0.9 \\
0.1 & 0.2 & 0.8 \\
0.5 & 0.5 & 0.9 \\
0.9 & 1 & 1
\end{bmatrix}$$
Extensions of Problem Setup

• Partially observability
 • Partially Observable Markov Decision Process (POMDP)
 • State not fully known; instead, act based on observations

\[\pi_\theta(a|o) \]

• In this class, state \(s \) will be synonymous with observation \(o \).
Reinforcement Learning Objective

• Given: an MDP with state space \mathcal{S}, action space \mathcal{A}, transition probabilities \mathcal{T}, and reward function $r(s,a)$

• Objective: Maximize discounted sum of rewards (“return”)
 \[
 \max_{\pi_\theta} \mathbb{E} \sum_{t} \gamma^k r(s_t, a_t)
 \]
 \(
 \gamma \in (0,1]: \text{discount factor – larger roughly means “far-sighted”}
 \)
 • Prioritizes immediate rewards
 • $\gamma < 1$ avoids infinite rewards; $\gamma = 1$ is possible if all sequences are finite

• Constraints: often implicit
 • Subject to transition matrix \mathcal{T} (system dynamics)
Markov Decision Process

• An MDP with a particular policy results in a Markov chain: $p(s_{t+1}|s_t, a_t), a_t \sim \pi_\theta(a_t|s_t)$

State space includes
- Reading paper
- Doing math
- Coding
- Doing robotic experiments
- Watching YouTube
- Writing paper
- Sleeping

Transition probabilities

$T = \begin{bmatrix}
0.1 & 0.9 \\
0.1 & 0.9 \\
0.2 & 0.8 \\
0.5 & 0.5 \\
0.9 & 0.1 \\
1 & 1
\end{bmatrix}$

Reward function: $r(s)$
• In general, also depends on action
Markov Decision Process

• An MDP with a particular policy results in a Markov chain: \(p(s_{t+1} | s_t, a_t), a_t \sim \pi_\theta(a_t | s_t) \)

State space includes
- Reading paper
- Doing math
- Coding
- Doing robotic experiments
- Watching YouTube
- Writing paper
- Sleeping

Reward function: \(r(s) \)
- In general, also depends on action
- Better policy \(\rightarrow \) different Markov chain \(\rightarrow \) different reward

Transition probabilities
\[
T = \begin{bmatrix}
0.5 & 0.5 & 0.5 & 0.5 \\
0.5 & 0.5 & 0.5 & 0.5 \\
0.5 & 0.5 & 0.5 & 0.5 \\
0.1 & 0.9 & 1 & 1
\end{bmatrix}
\]
Reinforcement Learning vs. Optimal Control

• Reinforcement Learning
 \[\text{maximize} \quad \mathbb{E} \sum_{t} \gamma^k r(s_t, a_t) \]
 • Dynamics constraint is implicit
 • And not necessary needed
 • Typically, no other explicit constraints
 • Problem set up captured entirely in the reward
 • Probabilistic

• Optimal control
 \[\text{minimize} \quad l(x(t_f), t_f) + \int_{0}^{t_f} c(x(t), u(t), t) \, dt \]
 subject to
 \[\dot{x}(t) = f(x(t), u(t)) \]
 \[g(x(t), u(t)) \geq 0 \]
 \[x(t) \in \mathbb{R}^n, u(t) \in \mathbb{R}^m, x(0) = x_0 \]
 • Explicit constraints
 • Can be continuous time
 • Not necessarily probabilistic