Neural Networks and
Markov Decision Processes

CMPT 882
Mar. 13

Outline

* Neural networks
* Forward and backward propagation
e Typical structures

* Markov Decision Processes
* Definitions
* Example
* Objective in reinforcement learning

Neural Networks

* Regression: Choose 8 such that y = fg(x)
* Neural Network: A specific form of fg(x)

* Forward propagation
* Evaluation of fg(x)

* Backpropagation

: al . :
 Computation of PYL where [is the loss function

Neural Networks

* A specific form of fg(x)

y =f(x'W +b)
* Parameters @ are W and b
* “Weights”

Neural Networks

* Regression: Choose 8 such that y = fg(x)
* Neural Network: A specifiyc form of fg(x)

X h

input layer hidden layer

output layer

“neuron” h=fi(x"W; + by) y = fo(h"W, + by)

Neural Networks

* Regression: Choose 8 such that y = fg(x)
* Neural Network: A specif'hc2 form of fg(x)

output layer
y = f3(h; W3 + b3)

input layer hidden layer 1

hidden layer 2
hy = fi(x"Wy + by)
h, = f,(hyW, + by)

Neural Networks

* Regression: Choose 8 such that y = fg(x)

* Neural Network: A specific form of fo(x) « Parameters 0 are the weights W/,
h, and bi

* 1, f2, f3 are nonlinear

* Otherwise f would just be a single
linear function:

output layer y = ((x"W; + b))W, + b,)W5 + by

¥ = f3(haWs + bs) = x "W, W, Ws + by WoWs + b,Ws + by

input layer hidden layer1 o o,
h, = f,(x™W, + b,) Niddenlayer2 * “Activation functions

hy, = fo(hyW5 + by)

Neural Networks « Common choices of activation

» Regression: Choose @ such that y ~ f,(x) functions 3 |
* Neural Network: A specific form of f(x) * Sigmoid: 1 |
h, [SSS7SSSSES

1+e*

» Softplus: |
log(1+e*) |

* Hyperbolic tangent:

output layer tanh x
y = f3(h; W3 + b3) S
nput layer hidden laver 2 * Rectified linear unit (ReLU): L /
idden layer : |
i max(0, x : |
Y2 e ayer (0,) /]

hy, = fo(hyW5 + by)

* Key feature: easy to differentiate

Training Neural Networks and Backpropagation

* Regression: Choose 8 such that y = fg(x)

 Neural Network: A specific form of fg (x) Given current 8,X,Y, compute fy(X) to

h, then obtain loss, [(6; X,Y)
* 1(8;X,Y) compares fg(X) with ground truth Y
 Evaluation of f: “Forward propagation”

* Minimize [(6;X,Y)

e Stochastic gradient descent

output layer a1
vy = fz(h,W5 + b3) * Evaluation of R “Backpropagation”

] dy dh, dh
. * Example: 61/31; - ahy o, W,
input layer hidden layer 2 A 2 Ohy OWy
hidden layer 2 * Just the chain rule

hy = fi(x"W; + by)
hy, = fo(hyW5 + by)

Backpropagation

output layer
y = f3(h; W3 + b3)

input layer hidden layer 2

hy = f1(XTW1 +by) hidden layer 2

hy, = fo(hyW5 + by)

y = f3(h,W5 + bs),
¢ Where hz — fz(h1W2 + bz) - hz(Wz)

* Soy = f3(h,(W)W3 + b3) = f3(W,, W)

But hz — fZ(h1W2 + bz),
° Where hl — fl(xTW]_ + bl) - hl(Wl)
* So hy, = fo,(hy (W)W, + by) = fL(Wy, W5)

A)

Example: gradient with respect to W/,
6y _ 6f3 th _ 6f3 ahz Bhl
oW, dh,dW; dh, Ohq AWy

* Each term is a tensor, which results from taking
the gradient of a vector w.r.t. a matrix

e Software like TensorFlow performs this (and
other operations common in machine learning)
efficiently

]
—1 3
—1 0 B
Source pixel «{{g%{}
- el Elal
Common Operations Efleltr
2 0|~ 04—
/Tﬁﬁ T o
2 | A 5 g‘ 3 b g
—1 o | LT3 %-ﬁ 1 ’ _
3t | 4.1 . ﬂ >]
el Te 2 Te —r T 1]
 Fully connected (dot product) EBAani- 0t 2] T
|2 =12 }f Lo ﬂg S =aPpsd L
A0 A [e //////
o . 7 4 // // _// L]
Convolution 2= // Hege
* Translationally invariant N /:// Pl
* Controls overfitting S
= // //
towarddatascience.com L= ///
. : : : =
Pooling (fixed function) =
* Down-sampling
e Controls overfitting t11111 214
X max pool with 2x2 filters
5|6 | 7|8 and stride 2 6 | 8
* Nonlinearity layer (fixed function) 302010] 3| 4
* Activation functions, e.g. RelLU 112134

Stanford CS231n

Example: Small VGG Net From Stanford CS231n

RELU RELU

RELU RELU

=)
el
L
o
-
=)
(IN
'

Neural Network Architectures

e Convolutional neural network (CNN)

* Has translational invariance properties from
convolution @

* Common used for computer vision VCjITW] :>
* Recurrent neural network RNN f o

» Has feedback loops to capture temporal or (%)
sequential information

* Useful for handwriting recognition, speech
recognition, reinforcement learning

* Long short-term memory (LSTM): special type of
RNN with advantages in numerical properties

e Others

* General feedforward networks, variational
autoencoders (VAEs), conditional VAEs,

mEaae /o

\e\e M\ \F\ o\ o\

\o\=\ \= NEA =\ of\
\o\o/\e \fiie\ X o\

ooooooooooooooo

x x x
oL
+ o+ +

T

NI S N

x
Be

[E e ERT

LR TR TR EE

VRN,

L

TEET

—

—

=
+
fay
C _/2
<)

®

Training Neural Networks

e Data preprocessing
 Removing bad data
* Transform input data (e.g. rotating, stretching, adding noise)

* Training process (optimization algorithm)
* L1 and L2 regularization
* Dropout: randomly set neurons to zero in each training iteration
* Learning rate (step size) and other hyperparameter tuning

» Software packages: efficient gradient computation
e Caffe, Torch, Theano, TensorFlow

Outline

* Neural networks
* Forward and backward propagation
e Typical structures

* Markov Decision Processes
* Definitions
* Example
* Objective in reinforcement learning

Markov Decision Process

* Probabilistic model of robots and other systems
e State: s € §, discrete or continuous

* Action (control): a € A, discrete or continuous
* Transition operator (dynamics): T

* Tijk = p(Ser1 = i|s¢ = j,a; = k) € atensor (multidimensional array)
At At+1

p(S¢r1lse ag) p(S¢t1lse, ap)
St " St+1 " St+2

State in MDPs and Reinforcement Learning

* |n optimal control, state usually represents internal states of a robot

* In IIRLastate usually also include the internal states of a robot, but often also
include

e State of other robots
e State of the environment
 Sensor measurements

e Distinction between state and observation can be blurred

* In general, the state contains all variables other than actions that
determine the next state through the transition probability p(s;+1(S¢, a;)

Policy and Reward

* Control policy (feedback control): m(als)
* Parametrized by some parameters

0:mq(als) = p(als)

e Can be stochastic: probability of applying action a at
state s

//ﬂ\\\ //\)
ap Apy1
e VJ T (atV\“/
y \ p(Se+1lse ar) r - \ P(Stt1lse ar) y N
St " St+1 " St+2
N 4 N 4 N 4

Policy and Reward

* Control policy (feedback control): m(als)
* Parametrized by some parameters

0:mq(als) = p(als)

e Can be stochastic: probability of applying action a at
state s

 Reward function: r(s;, a;)

* Reward received for being at state s; and applying
action a;

* Analogous to the cost in optimal control

Markov Decision Process

 An MDP with a particular policy results in a
Markov chain: p(s¢4+11S¢, a;), ar~mg (a;|s;)

read 0.1 0.1
paper

0.9 0.8
0.9
YouTube

0.9O k

0.5

robot
expt.

sleep

0.5

~write

paper

State space includes

Reading paper

Doing math

Coding

Doing robotic experiments
Watching YouTube

Writing paper

Sleeping

Transition probabilities

0.1 0.9
0.1 0.9
0.2 0.8

T = 0.5

0.9

0.5

0.1

Extensions of Problem Setup

 Partially observability
 Partially Observable Markov Decision Process (POMDP)
» State not fully known; instead, act based on observations

O¢ "o At Ot+1 " At41
p(5t+1®‘ p(S¢+1lse, a)
St " St+1 " St+2

* Policy: mg(alo)
* In this class, state s will be synonymous with observation o.

Reinforcement Learning Objective

* Given: an MDP with state space S, action space A, transition
probabilities T, and reward function (s, a)

* Objective: Maximize discounted sum of rewards (“return”)

maximize E) y*r(s,, a;)
Tt
t
* y € (0,1]: discount factor — larger roughly means “far-sighted”

* Prioritizes immediate rewards
* ¥ < 1 avoids infinite rewards; y = 1 is possible if all sequences are finite

e Constraints: often implicit
e Subject to transition matrix I (system dynamics)

Markov Decision Process

State space includes
* Reading paper

| | _ _ + Doing math
* An MDP with a particular policy resultsina . Cs:j?fgma

Markov chain: p(St+1 |St’ at)' Ar~Tg (at |St) * Doing robotic experiments
e Watching YouTube

* Writing paper
4 0.5 . 10 e Sleeping

0.9 0.8, 0.5 Transition pr(;)k1>abilities 06

0.9 : .
0.1 0.9
—5 0.2 0.8

Reward function: r(s) O \ 0.9 |
 Ingeneral, also depends 0.9 0.1 - 1

on action

Markov Decision Process

 An MDP with a particular policy results in a
Markov chain: p(s¢4+11S¢, a;), ar~mg (a;|s;)

0.5

Reward function: r(s)
* Ingeneral, alsodepends 0.1
on action
* Better policy 2
different Markov chain
- different reward

10

> 10

State space includes

Reading paper

Doing math

Coding

Doing robotic experiments
Watching YouTube

Writing paper

Sleeping

Transition probabilities

0.5 0.5
0.5 0.5
0.5 0.5
J = 0.5 0.5
0.1
1

0.9

Reinforcement Learning vs. Optimal Control

* Reinforcement Learning

maximizeE) y*r(s,, a;)
g
:

Dynamics constraint is implicit

* And not necessary needed
Typically, no other explicit
constraints

Problem set up captured entirely
in the reward

Probabilistic

e Optimal control

t
minimize |(x(tr), tr) + f

fc(x(t), u(t), t)dt
0

subject to x(t) = f(x(t),u(t))
g(x(t),u(t)) >0
x(t) € R, u(t) € R™ x(0) = x,

* Explicit constraints
e Can be continuous time
* Not necessarily probabilistic

