
Regression
CMPT 882

Mar. 11

Outline

• Probability Overview

• Regression

• Classification

Regression
• Given 𝑥 ∈ ℝ𝑛

• “features”, “covariate”, “predictors”

• Predict 𝑦 ∈ ℝ𝑚

• “response”, “outputs”

• Learn the function 𝑓:ℝ𝑛 → ℝ𝑚 such that 𝑦 ≈ 𝑓 𝑥
• 𝑓 is the model for regression
• Use data: 𝑥𝑖 , 𝑦𝑖 𝑖=1

𝑁

• Parametrize the function 𝑓 using the parameters 𝜃→ 𝑦 ≈ 𝑓𝜃 𝑥
• 𝜃 and the form of 𝑓 determines the class of functions in your model
• Learning 𝑓→ learning parameters 𝜃

Regression

• Supervised learning is regression
• 𝑓𝜃 is determined through “supervision” by data 𝑥𝑖 , 𝑦𝑖

• Deep learning is regression using a neural network
• Neural network (for now): complex 𝑓𝜃 with many components in 𝜃

• Neural networks are hard to analyze, but analyzing regression with
simple(r) models provides good intuition

Models for Regression

• Simplest model: Linear
• 𝑦 = 𝜃⊤𝑥 + 𝜖, where 𝜖 is noise

• Put data into matrix vector form: (scalar 𝑦)

• 𝑋 =
−𝑥1

⊤ −
⋮

−𝑥𝑁
⊤ −

∈ ℝ𝑁×𝑛, 𝑌 =

𝑦1
⋮
𝑦𝑁

∈ ℝ𝑁

• Minimize loss function: 𝑙 𝜃 = 𝑌 − 𝑋𝜃 2
2

• Seems to make sense if noise is zero-mean

𝜃∗ = argmin
𝜃

𝑌 − 𝑋𝜃 2
2

𝜃∗ = 𝑋𝑇𝑋 −1𝑋𝑇𝑌

Feature Augmentation

• Raw data: 𝑥𝑖 , 𝑦𝑖 𝑖=1
𝑁

• But perhaps 𝑦 = 𝑓 𝑥 is nonlinear

• Augment data: ҧ𝑥𝑖 = 1, 𝑥𝑖 , 𝑥𝑖
2 , ത𝑦𝑖 = 𝑦𝑖

• Use linear model between ҧ𝑥 and ത𝑦
• ത𝑦 = 𝜃⊤ ҧ𝑥 + 𝜖 = 𝜃0 + 𝜃1𝑥 + 𝜃2𝑥

2 + 𝜖

• Effectively a quadratic model

Feature Augmentation

• Raw data: 𝑥𝑖 , 𝑦𝑖 𝑖=1
𝑁

• But perhaps 𝑦 = 𝑓 𝑥 is nonlinear

• Augment data: ҧ𝑥𝑖 = 1, 𝑥𝑖 , 𝑥𝑖
2 , ത𝑦𝑖 = 𝑦𝑖

• Use linear model between ҧ𝑥 and ത𝑦
• ത𝑦 = 𝜃⊤ ҧ𝑥 + 𝜖 = 𝜃0 + 𝜃1𝑥 + 𝜃2𝑥

2 + 𝜖

• Effectively a quadratic model

• In general, ҧ𝑥𝑖 = 1, 𝑥𝑖 , 𝑥𝑖
2, … 𝑥𝑖

𝑁
→ degree N polynomial

• Correspondingly, more parameters are required

Observations

• More parameters → less training error,
but potentially more test error
• Training error: error when fitting model 𝑓𝜃

to data

• Test error: error when using model to do
prediction

• In our example, the true model is
quadratic
• High order polynomial would have very

large test errors → overfitting

• In general, the true model is unknown

Addressing Overfitting

• Validation of Trained Models (hold-out data)
• Divide data up into training and validation (hold-out) data

• Do training on the training data →minimize training error

• Validate the model on validation data → obtain validation error

• Regularization
• Add penalty to size of parameters

𝑁-Fold Cross Validation

• Divide data into 𝑁 (roughly) equal parts

• Go through each part
• Do training on the other 𝑁 − 1 parts (so one part is hold-out)

• Evaluate model on the hold-out data to get → validation error

• Validation error is the average of all validation errors from above
• Approximates performance during test, where new data is generated

Regularization

• L2 regularization:
• Heuristic: the underlying ground

truth model does not have large 𝜃

• 𝑙 𝜃 = 𝑌 − 𝑋𝜃 2
2 + 𝜆 𝜃 2

2

• “Tikhonov regularization”

• Statistics: “ridge regression”

• Machine learning: “weight decay”

• L1 regularization:
• Heuristic: many parameters in the

underlying ground truth model are 0

• 𝑙 𝜃 = 𝑌 − 𝑋𝜃 2
2 + 𝜆 𝜃 1

• Statistics: “LASSO”

• Signal processing: “basis pursuit”

• “Elastic net regularization”: combination of both

• 𝑙 𝜃 = 𝑌 − 𝑋𝜃 2
2 + 𝜆 1 − 𝛼 𝜃 2

2 + 𝛼 𝜃 1

• Previously: 𝑙 𝜃 = 𝑦 − 𝑋𝜃 2
2

• Example: 𝑙 𝜃 = ∑ 𝑦𝑖 − 𝜃0 − 𝜃1𝑥𝑖 − 𝜃2𝑥𝑖
2 − 𝜃3𝑥𝑖

3 − 𝜃4𝑥𝑖
4 2

Regularization

L1: 𝜽 𝟏 = ∑𝒊 𝜽𝒊

• Does not prioritize reduction of
any component of 𝜃

• Encourages sparsity

L2: 𝜽 𝟐 = ∑𝒊𝜽𝒊
𝟐

• Prioritizes reduction of large
components of 𝜃

Outline

• Probability Overview

• Regression

• Classification

Probability Review

• Discrete random variable
• Probability mass function (pmf)

𝑝 𝑥 ≔ 𝑃 𝑋 = 𝑥

• ∑𝑥 𝑝 𝑥 = 1

• Continuous random variable
• Probability density function (pdf)

𝑃 𝑋 ∈ 𝑎, 𝑏 = න
𝑎

𝑏

𝑝 𝑥 𝑑𝑥

• ∞−׬
∞
𝑝 𝑥 𝑑𝑥 = 1

• Sensor measurements and robot state are modeled as random
variables
• Random variables denoted with upper case: 𝑋
• Realized, specific value denoted with lower case: 𝑥

Basic Properties of Random Variables

• Joint distribution
𝑝 𝑥, 𝑦 ≔ 𝑃 𝑋 = 𝑥 and 𝑌 = 𝑦

• If 𝑋 and 𝑌 are independent, then
𝑝 𝑥, 𝑦 = 𝑝 𝑥 𝑝 𝑦

• Condition probability
• The probability that 𝑋 = 𝑥 given that

we know 𝑌 = 𝑦, denoted 𝑝 𝑥 𝑦

𝑝 𝑥 𝑦 ≔
𝑝 𝑥, 𝑦

𝑝 𝑦

• If 𝑋 and 𝑌 are independent, then
𝑝 𝑥 𝑦 = 𝑝 𝑥

• Useful re-arrangement
𝑝 𝑥, 𝑦 = 𝑝 𝑥 𝑦 𝑝 𝑦

Theorem of total probability and Bayes’ rule
Discrete random variables

• 𝑝 𝑦 = ∑𝑥 𝑝 𝑥, 𝑦 = ∑𝑥 𝑝 𝑦 𝑥 𝑝 𝑥

• Using law of total probability

• Notational simplification:

Continuous random variables

• 𝑝 𝑦 = ׬ 𝑝 𝑥, 𝑦 𝑑𝑥 = ׬ 𝑝 𝑦 𝑥 𝑝 𝑥 𝑑𝑥

• 𝑝 𝑥, 𝑦 = 𝑝 𝑥 𝑦 𝑝 𝑦 = 𝑝 𝑦 𝑥 𝑝 𝑥
• Isolate 𝑝 𝑥 𝑦 to obtain Bayes’ rule

𝑝 𝑥 𝑦 =
𝑝 𝑦 𝑥 𝑝 𝑥

𝑝 𝑦

𝑝 𝑥 𝑦 =
𝑝 𝑦 𝑥 𝑝 𝑥

∑𝑥 𝑝 𝑦 𝑥 𝑝 𝑥
𝑝 𝑥 𝑦 =

𝑝 𝑦 𝑥 𝑝 𝑥

׬ 𝑝 𝑦 𝑥 𝑝 𝑥 𝑑𝑥

𝑝 𝑥 𝑦 = 𝜂𝑝 𝑦 𝑥 𝑝 𝑥

Expectation and variance

Discrete random variables

• 𝐸 𝑋 = ∑𝑥 𝑥𝑝 𝑥

• Expectation is a linear operator

• Covariance:

Continuous random variables

• 𝐸 𝑋 = ׬ 𝑥𝑝 𝑥 𝑑𝑥

𝐸 𝑎𝑋 + 𝑏 = 𝑎𝐸 𝑋 + 𝑏

cov 𝑋, 𝑌 = 𝐸 𝑋 − 𝐸 𝑋 𝑌 − 𝐸 𝑌 = 𝐸 𝑋𝑌⊤ − 𝐸 𝑋 𝐸 𝑌 ⊤

Maximum Likelihood

• Simplest model: Linear
• 𝑦 = 𝜃⊤𝑥 + 𝜖, where 𝜖 is noise
• Assume noise is normally distributed with zero mean and variance 𝜎2: 𝜖~𝑁 0, 𝜎2

• 𝑃𝜃 𝑦 𝑥 ~𝑁 𝜃⊤𝑥, 𝜎2

• Data consists of 𝑥𝑖 , 𝑦𝑖 𝑖=1
𝑁

• Pick the most likely 𝜃

• 𝜃∗ = argmax
𝜃

𝑃𝜃 𝑦1, 𝑦2, … , 𝑦𝑁|𝑥1, 𝑥2, … , 𝑥𝑁

• If we assume 𝑦𝑖 are independent and identically distributed (i.i.d.), then

𝑃𝜃 𝑦1, 𝑦2, … , 𝑦𝑁|𝑥1, 𝑥2, … , 𝑥𝑁 =ෑ

𝑖=1

𝑁

𝑃𝜃 𝑦𝑖|𝑥𝑖

Maximum Likelihood
𝜃∗ = argmax

𝜃
𝑃𝜃 𝑦1, 𝑦2, … , 𝑦𝑁|𝑥1, 𝑥2, … , 𝑥𝑁

= argmax
𝜃

ෑ

𝑖=1

𝑁

𝑃𝜃 𝑦𝑖|𝑥𝑖

• Now, use the fact that 𝑃𝜃 𝑦 𝑥 ~𝑁 𝜃⊤𝑥, 𝜎2

= argmax
𝜃

ෑ

𝑖=1

𝑁
1

2𝜋𝜎
𝑒
−
𝑦𝑖−𝜃

⊤𝑥𝑖
2

2𝜎2

= argmax
𝜃

𝑒
− ∑𝑖=1

𝑁 𝑦𝑖−𝜃
⊤𝑥𝑖

2

2𝜎2

= argmin
𝜃

෍

𝑖=1

𝑁

𝑦𝑖 − 𝜃⊤𝑥𝑖
2

= argmin
𝜃

𝑦 − 𝑋𝜃 2
2

Maximum Likelihood vs. 2-Norm Minimization
• Assume noise is normally distributed, then the following are equivalent:

• 𝜃 obtained from maximum likelihood

• 𝜃 obtained from minimizing 2-norm of error

• In general, different loss functions correspond different assumptions
about noise and parameter distributions
• L2 regularization: 𝜖 normally distributed, 𝜃 is normally distributed

• L1 regularization: 𝜖 normally distributed, 𝜃 Laplacian distributed

Normal
distribution

Laplace
distribution

Classification

• Given 𝑥 ∈ ℝ𝑛

• “features”, “covariate”, “predictors”

• Predict 𝒚 ∈ 𝟎, 𝟏 𝒎

• “response”, “outputs”

• Sometimes there may be many values for each component of 𝑦

• For example, in optical character recognition (numbers only), 𝑦 ∈ 0,1,… , 9

• Learn the function 𝑓:ℝ𝑛 → ℝ𝑚 such that 𝑦 ≈ 𝑓 𝑥
• Use data: 𝑥𝑖 , 𝑦𝑖 𝑖=1

𝑁

Logistic Regression

• Common model for binary classification, 𝑦 ∈ 0,1

• Assume 𝑃𝜃 𝑦 = 1 𝑥 = 𝑓 ∑𝑖=1
𝑁 𝜃𝑖𝑥

𝑖 where 𝑓 𝑡 =
𝑒𝑡

1+𝑒𝑡

• Interpretation: Suppose ∑𝑖=1
𝑁 𝜃𝑖𝑥

𝑖 = 𝐶 is fixed

• Then 𝑃𝜃 𝑦 = 1 𝑥 is fixed, and equal to
𝑒𝐶

1+𝑒𝐶

• 2D example: 𝜃1𝑥
1 + 𝜃2𝑥

2 = 𝐶 is a line

• In addition,
• 𝑓 𝑡 → 0 as 𝑡 → −∞

• 𝑓 𝑡 → 1 as 𝑡 → ∞

𝑃𝜃 𝑦 = 1 𝑥 =
𝑒𝐶1

1 + 𝑒𝐶1

𝑃𝜃 𝑦 = 1 𝑥 =
𝑒𝐶2

1 + 𝑒𝐶2

Logistic Regression

• Assume 𝑃𝜃 𝑦 = 1 𝑥 = 𝑓 ∑𝑖=1
𝑁 𝜃𝑖𝑥

𝑖 where 𝑓 𝑡 =
𝑒𝑡

1+𝑒𝑡

• Observe that 𝑃𝜃 𝑦 𝑥 =
𝑒𝑦𝜃

⊤𝑥

1+𝑒𝜃
⊤𝑥

• Maximize the probability by choosing 𝜃

𝜃∗ = argmax
𝜃

ෑ

𝑖=1

𝑛

𝑃𝜃 𝑦𝑖 𝑥𝑖

Logistic Regression

𝜃∗ = argmax
𝜃

ෑ

𝑖=1

𝑛

𝑃𝜃 𝑦𝑖 𝑥𝑖

= argmax
𝜃

ෑ

𝑖=1

𝑛
𝑒𝑦𝑖𝜃

⊤𝑥𝑖

1 + 𝑒𝜃
⊤𝑥𝑖

= argmax
𝜃

log ෑ

𝑖=1

𝑛
𝑒𝑦𝑖𝜃

⊤𝑥𝑖

1 + 𝑒𝜃
⊤𝑥𝑖

= argmax
𝜃

෍

𝑖=1

𝑛

𝑦𝑖𝜃
⊤𝑥𝑖 − log 1 + 𝑒

ഥ𝜃𝑇𝑥𝑖

= argmin
𝜃

෍

𝑖=1

𝑛

log 1 + 𝑒𝜃
⊤𝑥𝑖 − 𝜃⊤ ෍

𝑖=1

𝑛

𝑦𝑖𝑥𝑖

𝑔 𝑡 = log 1 + 𝑒𝑡 is convex

Neural Networks

• A specific form of 𝑓𝜃 𝑥

𝑥1

𝑥2

𝑥3

𝑦1

𝑦2

𝑦3

𝑦4

𝑦1 = 𝑓 𝑥⊤𝑤1 + 𝑏1

1

𝑦2 = 𝑓 𝑥⊤𝑤2 + 𝑏2

𝑦3 = 𝑓 𝑥⊤𝑤3 + 𝑏3

𝑦4 = 𝑓 𝑥⊤𝑤4 + 𝑏4

𝑦 = 𝑓 𝑥⊤𝑊 + 𝑏
• Parameters 𝜃 are 𝑊 and 𝑏
• “Weights”

Neural Networks
• Regression: Choose 𝜃 such that 𝑦 ≈ 𝑓𝜃 𝑥

• Neural Network: A specific form of 𝑓𝜃 𝑥

ℎ = 𝑓1 𝑥⊤𝑊1 + 𝑏1

𝑥 ℎ

𝑦

𝑦 = 𝑓2 ℎ⊤𝑊2 + 𝑏2

input layer hidden layer
output layer

“neuron”

Neural Networks

ℎ1 = 𝑓1 𝑥⊤𝑊1 + 𝑏1

𝑥 ℎ1

ℎ2

ℎ2 = 𝑓2 ℎ1𝑊2 + 𝑏2

input layer hidden layer 2

output layer

𝑦

hidden layer 2

𝑦 = 𝑓3 ℎ2𝑊3 + 𝑏3

• Regression: Choose 𝜃 such that 𝑦 ≈ 𝑓𝜃 𝑥
• Neural Network: A specific form of 𝑓𝜃 𝑥

Neural Networks

• Parameters 𝜃 are the weights 𝑊𝑖
and 𝑏𝑖

• 𝑓1, 𝑓2, 𝑓3 are nonlinear
• Otherwise 𝑓 would just be a single

linear function:
𝑦 = 𝑥⊤𝑊1 + 𝑏1 𝑊2 + 𝑏2 𝑊3 + 𝑏3
= 𝑥⊤𝑊1𝑊2𝑊3 + 𝑏1𝑊2𝑊3 + 𝑏2𝑊3 + 𝑏3

• “Activation functions”ℎ1 = 𝑓1 𝑥⊤𝑊1 + 𝑏1

𝑥 ℎ1

ℎ2

ℎ2 = 𝑓2 ℎ1𝑊2 + 𝑏2

input layer hidden layer 2

output layer

𝑦

hidden layer 2

𝑦 = 𝑓3 ℎ2𝑊3 + 𝑏3

• Regression: Choose 𝜃 such that 𝑦 ≈ 𝑓𝜃 𝑥
• Neural Network: A specific form of 𝑓𝜃 𝑥

Neural Networks

• Common choices of activation
functions
• Sigmoid:

1

1 + 𝑒−𝑥

• Softplus:
log 1 + 𝑒𝑥

• Hyperbolic tangent:
tanh 𝑥

• Rectified linear unit (ReLU):
max 0, 𝑥

ℎ1 = 𝑓1 𝑥⊤𝑊1 + 𝑏1

𝑥 ℎ1

ℎ2

ℎ2 = 𝑓2 ℎ1𝑊2 + 𝑏2

input layer hidden layer 2

output layer

𝑦

hidden layer 2

𝑦 = 𝑓3 ℎ2𝑊3 + 𝑏3

• Regression: Choose 𝜃 such that 𝑦 ≈ 𝑓𝜃 𝑥
• Neural Network: A specific form of 𝑓𝜃 𝑥

Training Neural Networks

• Given current 𝜃, 𝑋, 𝑌, compute
𝑙 𝜃; 𝑋, 𝑌
• Compares 𝑓𝜃 𝑋 with ground truth 𝑌
• Evaluation of 𝑓: “Forward propagation”

• Minimize 𝑙 𝜃; 𝑋, 𝑌
• Stochastic gradient descent

• Computing the gradient
• Chain rule:

𝑑𝑦

𝑑𝑥
=

𝑑𝑦

ℎ2
×

𝑑ℎ2

𝑑ℎ1
×

𝑑ℎ1

𝑑𝑥

• Evaluation of
𝑑𝑦

𝑑𝑥
: “Back propagation”

ℎ1 = 𝑓1 𝑥⊤𝑊1 + 𝑏1

𝑥 ℎ1

ℎ2

ℎ2 = 𝑓2 ℎ1𝑊2 + 𝑏2

input layer hidden layer 2

output layer

𝑦

hidden layer 2

𝑦 = 𝑓3 ℎ2𝑊3 + 𝑏3

Matrices

• Regression: Choose 𝜃 such that 𝑦 ≈ 𝑓𝜃 𝑥
• Neural Network: A specific form of 𝑓𝜃 𝑥

Common Operations

• Fully connected (dot product)

• Convolution
• Translationally invariant
• Controls overfitting

• Pooling (fixed function)
• Down-sampling
• Controls overfitting

• Nonlinearity layer (fixed function)
• Activation functions, e.g. ReLU

Stanford CS231n

towarddatascience.com

Example: Small VGG Net From Stanford CS231n

Neural Network Architectures

• Convolutional neural network (CNN)
• Has translational invariance properties from convolution

• Common used for computer vision

• Recurrent neural network RNN
• Has feedback loops to capture temporal or sequential information

• Useful for handwriting recognition, speech recognition, reinforcement
learning

• Long short-term memory (LSTM): special type of RNN with advantages in
numerical properties

• Others
• General feedforward networks, variational autoencoders (VAEs), conditional

VAEs,

Training Neural Networks

• Training process (optimization algorithm)
• Standard L1 and L2 regularization

• Dropout: randomly set neurons to zero in each training iteration

• Transform input data (e.g. rotating, stretching, adding noise)

• Learning rate (step size) and other hyperparameter tuning

• Software packages: Efficient gradient computation
• Caffe, Torch, Theano, Tensor Flow

