Regression

CMPT 882
Mar. 11

Outline

* Probability Overview
* Regression

e Classification

Regression

e Givenx € R"

” u n

* “features”, “covariate”, “predictors”

* Predicty € R™

N

* “response”, “outputs”

* Learn the function f: R™ - R™ such that y = f(x)
* fis the model for regression
e Use data: {x;, y;}_,

 Parametrize the function f using the parameters 8 2 y = fg(x)
* 0 and the form of f determines the class of functions in your model
* Learning f = learning parameters 6

Regression

e Supervised learning is regression
* fo is determined through “supervision” by data {x;, y; }

* Deep learning is regression using a neural network
* Neural network (for now): complex fg with many componentsin 0

* Neural networks are hard to analyze, but analyzing regression with
simple(r) models provides good intuition

Models for Regression 8

e Simplest model: Linear
* y=0Tx + €, where € is noise

 Put data into matrix vector form: (scalar y))

—x] — Y1 |
X = EIRNX",Y=<5>EIR%N 1

— Xy — YN | | | | | |
 Minimize loss function: [(8) = ||Y — X6||5 E 0 1 2 3 4 5 6

* Seems to make sense if noise is zero-mean
0* = arg mginlIY — X0||5
0* = (XTX)"1xTy

Feature Augmentation

* Raw data: {x;, y; 1,
* But perhaps y = f(x) is nonlinear
* Augment data: x; = (1,xi,xi2),37i = Y;

* Use linear model between x and y
cy=0"kx+e=0,+0,;x+0,x*+¢€
 Effectively a quadratic model

Feature Augmentation

* Raw data: {x;, y; 1,
* But perhaps y = f(x) is nonlinear

* Augment data: x; = (in,xiz),}_’i = Yi

* Use linear model between x and y
cy=0"x+e=0y+0,x+0,x° +¢

 Effectively a quadratic model

* In general, x; = (1 Xi, X l, N) — degree N polynomial
* Correspondingly, more parameters are required

Observations

* More parameters =2 less training error,
but potentially more test error

* Training error: error when fitting model fg
to data

* Test error: error when using model to do
prediction

* In our example, the true model is
guadratic

* High order polynomial would have very
large test errors > overfitting

* In general, the true model is unknown

Addressing Overfitting

* VValidation of Trained Models (hold-out data)

 Divide data up into training and validation (hold-out) data
* Do training on the training data = minimize training error
* Validate the model on validation data = obtain validation error

e Regularization
* Add penalty to size of parameters

N-Fold Cross Validation

* Divide data into N (roughly) equal parts

* Go through each part

e Do training on the other N — 1 parts (so one part is hold-out)
 Evaluate model on the hold-out data to get = validation error

* Validation error is the average of all validation errors from above
* Approximates performance during test, where new data is generated

Regularization

e Previously: [(8) = ||y — X0]||5
* Example: [(8) = Z(yi — 0y — 01x; — O,x7 — O3x7 — 94%4)2

* L2 regularization: * L1 regularization:
* Heuristic: the underlying ground * Heuristic: many parameters in the
truth model does not have large 6 underlying ground truth model are 0
« 1(0) = |lY — X615 + All6]|5 » 1(0) = Iy — X615 + All6ll;
* “Tikhonov regularization” e Statistics: “LASSO”
* Statistics: “ridge regression” Signal processing: “basis pursuit”

Machine learning: “weight decay”

“Elastic net regularization”: combination of both
+ 10) = Y — X013 + (1 — N6113 + ll6],)

Regularization

L1: [|6]l; = 316 L2: |61, = X, 6
* Does not prioritize reduction of * Prioritizes reduction of large
any component of 6 components of 6

* Encourages sparsity

3 T

25

2,

1.5

1+

0.5

, o - N w » [¢)] D ~ (o] ©
T T T T T T T T

w
N
N
o
-
N
w
w
N
N
o
-
N
w

Outline

* Probability Overview
* Regression

e Classification

Probability Review

 Sensor measurements and robot state are modeled as random
variables
 Random variables denoted with upper case: X
* Realized, specific value denoted with lower case: x

e Discrete random variable e Continuous random variable
e Probability mass function (pmf) * Probability density function (pdf)
p(x) == P(X = x) P(X € [, b)) jb (x)d
a, = x)dx
¢ Tep(x) =1 P

¢ [Z p(x)dx =1

Basic Properties of Random Variables

* Joint distribution * Condition probability
p(x,y) =P(X =xandY =y) e The probability that X = x given that
we know Y =y, d(enot)ed p(x|y)
. i p\x,y
If X and Y are independent, then p(x|y) =

p(x,y) =px)p(y) p(y)

* If X and Y are independent, then
p(x|y) = p(x)

e Useful re-arrangement
p(x,y) = plxly)p(y)

Theorem of total probability and Bayes’ rule

Discrete random variables Continuous random variables
* () =Xxp,y) = XapWlpx) « p(y) = [p(x,y)dx = [p(y|x)p(x)dx

* px,y) =pxly)p(y) = py[x)p(x)
* |solate p(x|y) to obtain Bayes’ rule

p(y|x)p(x)
p(y)

p(xly) =

e Using law of total probability

_ pOIx)px) __ pOlxpx)
P =5 o PO = T G op s

* Notational simplification: p(x|y) = np(y|x)p(x)

Expectation and variance

Discrete random variables Continuous random variables

* E[X] = X, xp(x) * E[X] = [xp(x)dx

* Expectation is a linear operator

ElaX + b] = aE|X]+ b
 Covariance:

cov(X,Y) = E[(X —E[X])(Y —E[YD] = E[XY "] — E[X]E[Y]T

Maximum Likelihood 2"

* Simplest model: Linear
* vy =0Tx + €, where € is noise
* Assume noise is normally distributed with zero mean and variance ¢* E~N(O a?)

« Pa(y|x)~N(OTx,0%)

» Data consists of {x;, y;}1-1
* Pick the most likely 6
e 0F = argmeang(yl,yz, o VN|XD X0, o, Xy)

* |If we assume y; are independent and identically distl;\i,buted (i.i.d.), then

PQ(leyZJ '"JleleXZJ ""xN) — I_IPQ(yilxi)

Maximum Likelihood

0* —argmang(yl,yz,. YN X1, X9, -,
—
» Now, use the fact that Pg(ylx)va(HTx 02)
(3’1 HTxl)
= arg m@ax< 1_[\/_

\l 1 (N)

N (Vi—0 x;
= arg mgaX{ ~ = 202 }

= argmin- Z(yl — 07 x;)?

\

-~

L=
= argmmny X602

Xy)

Maximum Likelihood vs. 2-Norm Minimization

* Assume noise is normally distributed, then the following are equivalent:
* 0 obtained from maximum likelihood
* 0 obtained from minimizing 2-norm of error

* In general, different loss functions correspond different assumptions
about noise and parameter distributions
* L2 regularization: € normally distributed, 8 is normally distributed
* L1 regularization: € normally distributed, 6 Laplacian distributed

[=g=g=y
I
Fy N
==
[Tl

[=p
Il
R
=
Il
UITTT

Normal
distribution

| Laplace
Tdistribution

Classification

e Givenx € R"

n ”n

e “features”, “covariate”, “predictors”

* Predict y € {0, 1}™

/(]

* “response”, “outputs”
* Sometimes there may be many values for each component of y
* For example, in optical character recognition (numbers only), y € {0,1, ..., 9}

* Learn the function f: R®™ - R™ such that y = f(x)
e Use data: {x;, y; }\-,

Logistic Regression

« Common model for binary classification, y € {0,1}

* Assume Py(y = 1|x) = f(Z’ivzl Qixi) where f(t) =

et

1+etl

Po(y =1|x) =

1+e4

* Interpretation: Suppose Z’ivzl Hixi = (is fixed
C

* Then Pg(y = 1 |x) is fixed, and equal to 1:96
2D example: 8;x1 + 8,x% = Cisaline

* In addition,
 f(t) >0ast » —

e f(t) >last >

Logistic Regression

et

1+etl

* Assume Py(y = 1|x) = f(Z’ivzl 9ixi) where f(t) =

eyQTx

* Observe that Pg(y|x) =

14+e07x

* Maximize the probability by choosing 0

0" = arg max 1_[Po(yilx;)
i=1

Logistic Regression

n
0" = arg meaxl_[Po(yilx;)

eyieTxi
= darg max
510 I Il + e

e:Vingi
= arg meaxlog 1_[T4 007

n =1

= arg meaxZ (yiQTxi — log (1 —+ engi))

=1

n n
= arg min Z log(l + engi) -0 z ViXi
el ; -
= Y =1

g(t) =log(1 + eb) is convex

Neural Networks

* A specific form of fg(x)

y =f(x'W +b)
* Parameters @ are W and b
* “Weights”

Neural Networks

* Regression: Choose 8 such that y = fg(x)
* Neural Network: A specifiyc form of fg(x)

X h

input layer hidden layer

output layer

“neuron” h=fi(x"W; + by) y = fo(h"W, + by)

Neural Networks

* Regression: Choose 8 such that y = fg(x)
* Neural Network: A specif'hc2 form of fg(x)

output layer
y = f3(h; W3 + b3)

input layer hidden layer 2

hidden layer 2
hy = fi(x"W; + by)
hy, = f,(hyW; + by)

Neural Networks

* Regression: Choose 8 such that y = fg(x)

* Neural Network: A specific form of fo(x) « Parameters 0 are the weights W/,
h, and bi

* 1, f2, f3 are nonlinear

* Otherwise f would just be a single
linear function:

output layer y = ((x"W; + b))W, + b,)W5 + by
¥ = f3(haWs + bs) = x "W, W, Ws + by WoWs + b,Ws + by
input layer hidden layer 2 dden | , “Acti _ ¢ . .
hy = f,(xTW, + b,) niddenlayer ctivation tunctions

hy, = fo(hyW5 + by)

Neural Networks
* Regression: Choose 8 such that y = fg(x)

* Neural Network: A specific form of f(x) Common choices of activation
h, functions |
e Sigmoid: f
1 :
Tvex —

» Softplus: !
log(1+e*) |
output layer :

y = f3(h, W3 + b3)

* Hyperbolic tangent:
input layer hidden layer 2 tanh x

hy = fi(x"Wy + b)) hidden layer 2]
hy = f2(uW; + by) . . .
* Rectified linear unit (ReLU): |
max (0, x) |

Training Neural Networks

* Regression: Choose 8 such that y = f5(x)

* Neural Network: A specific form of fg(x) e Givencurrent8. X.Y compute

1(6;X,Y)
« Compares fg(X) with ground truth Y
* Evaluation of f: “Forward propagation”

h;

* Minimize [(0; X,Y)

» Stochastic gradient descent

output layer _ _
Y = fa(h,W5 + bs3) Computing the gradient
dy'_ dy dhy Ay

* Chain rule: =
dx h2 dhl dx

input layer hidden layer 2 e | ,
hy = fi(xTW; +b,) 100N TAVEr W
hy = f,(hyW; + by)

Matrices

. d o" . ”
* Evaluation of d—i:: Back propagation

]
—1 3
—1 0 B
Source pixel «{{g%{}
- el Elal
Common Operations Efleltr
2 0|~ 04—
/Tﬁﬁ T o
2 | A 5 g‘ 3 b g
—1 o | LT3 %-ﬁ 1 ’ _
3t | 4.1 . ﬂ >]
el Te 2 Te —r T 1]
 Fully connected (dot product) EBAani- 0t 2] T
|2 =12 }f Lo ﬂg S =aPpsd L
A0 A [e //////
o . 7 4 // // _// L]
Convolution 2= // Hege
* Translationally invariant N /:// Pl
* Controls overfitting S
= // //
towarddatascience.com L= ///
. : : : =
Pooling (fixed function) =
* Down-sampling
e Controls overfitting t11111 214
X max pool with 2x2 filters
5|6 | 7|8 and stride 2 6 | 8
* Nonlinearity layer (fixed function) 302010] 3| 4
* Activation functions, e.g. RelLU 112134

Stanford CS231n

Example: Small VGG Net From Stanford CS231n

RELU RELU

RELU RELU

=)
el
L
o
-
=)
(IN
'

Neural Network Architectures

* Convolutional neural network (CNN)
* Has translational invariance properties from convolution
 Common used for computer vision

e Recurrent neural network RNN

* Has feedback loops to capture temporal or sequential information

» Useful for handwriting recognition, speech recognition, reinforcement
learning

* Long short-term memory (LSTM): special type of RNN with advantages in
numerical properties

e Others

* General feedforward networks, variational autoencoders (VAEs), conditional
VAEs,

Training Neural Networks

* Training process (optimization algorithm)
e Standard L1 and L2 regularization
* Dropout: randomly set neurons to zero in each training iteration
* Transform input data (e.g. rotating, stretching, adding noise)
* Learning rate (step size) and other hyperparameter tuning

» Software packages: Efficient gradient computation
e Caffe, Torch, Theano, Tensor Flow

