# Regression 

CMPT 882
Mar. 11

## Outline

- Probability Overview
- Regression
- Classification


## Regression

- Given $x \in \mathbb{R}^{n}$
- "features", "covariate", "predictors"
- Predict $y \in \mathbb{R}^{m}$
- "response", "outputs"
- Learn the function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ such that $y \approx f(x)$
- $f$ is the model for regression
- Use data: $\left\{x_{i}, y_{i}\right\}_{i=1}^{N}$
- Parametrize the function $f$ using the parameters $\theta \rightarrow y \approx f_{\theta}(x)$
- $\theta$ and the form of $f$ determines the class of functions in your model
- Learning $f \rightarrow$ learning parameters $\theta$


## Regression

- Supervised learning is regression
- $f_{\theta}$ is determined through "supervision" by data $\left\{x_{i}, y_{i}\right\}$
- Deep learning is regression using a neural network
- Neural network (for now): complex $f_{\theta}$ with many components in $\theta$
- Neural networks are hard to analyze, but analyzing regression with simple(r) models provides good intuition


## Models for Regression

- Simplest model: Linear
- $y=\theta^{\top} x+\epsilon$, where $\epsilon$ is noise
- Put data into matrix vector form: (scalar $y$ )
$\cdot X=\left(\begin{array}{c}-x_{1}^{\top}- \\ \vdots \\ -x_{N}^{\top}-\end{array}\right) \in \mathbb{R}^{N \times n}, Y=\left(\begin{array}{c}y_{1} \\ \vdots \\ y_{N}\end{array}\right) \in \mathbb{R}^{N}$
- Minimize loss function: $l(\theta)=\|Y-X \theta\|_{2}^{2}$

- Seems to make sense if noise is zero-mean

$$
\begin{aligned}
& \theta^{*}=\arg \min _{\theta}\|Y-X \theta\|_{2}^{2} \\
& \theta^{*}=\left(X^{T} X\right)^{-1} X^{T} Y
\end{aligned}
$$

## Feature Augmentation

- Raw data: $\left\{x_{i}, y_{i}\right\}_{i=1}^{N}$
- But perhaps $y=f(x)$ is nonlinear
- Augment data: $\bar{x}_{i}=\left(1, x_{i}, x_{i}^{2}\right), \bar{y}_{i}=y_{i}$
- Use linear model between $\bar{x}$ and $\bar{y}$
- $\bar{y}=\theta^{\top} \bar{x}+\epsilon=\theta_{0}+\theta_{1} x+\theta_{2} x^{2}+\epsilon$
- Effectively a quadratic model



## Feature Augmentation

- Raw data: $\left\{x_{i}, y_{i}\right\}_{i=1}^{N}$
- But perhaps $y=f(x)$ is nonlinear
- Augment data: $\bar{x}_{i}=\left(1, x_{i}, x_{i}^{2}\right), \bar{y}_{i}=y_{i}$
- Use linear model between $\bar{x}$ and $\bar{y}$
- $\bar{y}=\theta^{\top} \bar{x}+\epsilon=\theta_{0}+\theta_{1} x+\theta_{2} x^{2}+\epsilon$
- Effectively a quadratic model

- In general, $\bar{x}_{i}=\left(1, x_{i}, x_{i}^{2}, \ldots x_{i}^{N}\right) \rightarrow$ degree $N$ polynomial
- Correspondingly, more parameters are required


## Observations

- More parameters $\rightarrow$ less training error, but potentially more test error
- Training error: error when fitting model $f_{\theta}$ to data
- Test error: error when using model to do prediction
- In our example, the true model is quadratic
- High order polynomial would have very
 large test errors $\rightarrow$ overfitting
- In general, the true model is unknown


## Addressing Overfitting

- Validation of Trained Models (hold-out data)
- Divide data up into training and validation (hold-out) data
- Do training on the training data $\rightarrow$ minimize training error
- Validate the model on validation data $\rightarrow$ obtain validation error
- Regularization
- Add penalty to size of parameters


## $N$-Fold Cross Validation

- Divide data into $N$ (roughly) equal parts
- Go through each part
- Do training on the other $N-1$ parts (so one part is hold-out)
- Evaluate model on the hold-out data to get $\rightarrow$ validation error
- Validation error is the average of all validation errors from above
- Approximates performance during test, where new data is generated
$\square$



## Regularization

- Previously: $l(\theta)=\|y-X \theta\|_{2}^{2}$
- Example: $l(\theta)=\Sigma\left(y_{i}-\theta_{0}-\theta_{1} x_{i}-\theta_{2} x_{i}^{2}-\theta_{3} x_{i}^{3}-\theta_{4} x_{i}^{4}\right)^{2}$
- L2 regularization:
- Heuristic: the underlying ground truth model does not have large $\theta$
- $l(\theta)=\|Y-X \theta\|_{2}^{2}+\lambda\|\theta\|_{2}^{2}$
- "Tikhonov regularization"
- Statistics: "ridge regression"
- Machine learning: "weight decay"
- "Elastic net regularization": combination of both
- $l(\theta)=\|Y-X \theta\|_{2}^{2}+\lambda\left((1-\alpha)\|\theta\|_{2}^{2}+\alpha\|\theta\|_{1}\right)$


## Regularization

$\mathrm{L} 1:\|\boldsymbol{\theta}\|_{1}=\sum_{i}\left|\boldsymbol{\theta}_{\boldsymbol{i}}\right|$

- Does not prioritize reduction of any component of $\theta$
- Encourages sparsity


L2: $\|\boldsymbol{\theta}\|_{2}=\sum_{i} \boldsymbol{\theta}_{\boldsymbol{i}}^{2}$

- Prioritizes reduction of large components of $\theta$



## Outline

- Probability Overview
- Regression
- Classification


## Probability Review

- Sensor measurements and robot state are modeled as random variables
- Random variables denoted with upper case: $X$
- Realized, specific value denoted with lower case: $x$
- Discrete random variable
- Probability mass function (pmf)

$$
p(x):=P(X=x)
$$

- $\sum_{x} p(x)=1$
- Continuous random variable
- Probability density function (pdf)
$P(X \in[a, b])=\int_{a}^{b} p(x) d x$
- $\int_{-\infty}^{\infty} p(x) d x=1$


## Basic Properties of Random Variables

- Joint distribution

$$
p(x, y):=P(X=x \text { and } Y=y)
$$

- If $X$ and $Y$ are independent, then $p(x, y)=p(x) p(y)$
- Condition probability
- The probability that $X=x$ given that we know $Y=y$, denoted $p(x \mid y)$

$$
p(x \mid y):=\frac{p(x, y)}{p(y)}
$$

- If $X$ and $Y$ are independent, then

$$
p(x \mid y)=p(x)
$$

- Useful re-arrangement

$$
p(x, y)=p(x \mid y) p(y)
$$

## Theorem of total probability and Bayes' rule

## Discrete random variables

- $p(y)=\sum_{x} p(x, y)=\sum_{x} p(y \mid x) p(x)$ Continuous random variables
- $p(x, y)=p(x \mid y) p(y)=p(y \mid x) p(x)$
- Isolate $p(x \mid y)$ to obtain Bayes' rule

$$
p(x \mid y)=\frac{p(y \mid x) p(x)}{p(y)}
$$

- Using law of total probability

$$
p(x \mid y)=\frac{p(y \mid x) p(x)}{\sum_{x} p(y \mid x) p(x)} \quad p(x \mid y)=\frac{p(y \mid x) p(x)}{\int p(y \mid x) p(x) d x}
$$

- Notational simplification: $p(x \mid y)=\eta p(y \mid x) p(x)$


## Expectation and variance

Discrete random variables

- $E[X]=\sum_{x} x p(x)$

Continuous random variables

- $E[X]=\int x p(x) d x$
- Expectation is a linear operator

$$
E[a X+b]=a E[X]+b
$$

- Covariance:

$$
\operatorname{cov}(X, Y)=E[(X-E[X])(Y-E[Y])]=E\left[X Y^{\top}\right]-E[X] E[Y]^{\top}
$$

## Maximum Likelihood

- Simplest model: Linear
- $y=\theta^{\top} x+\epsilon$, where $\epsilon$ is noise

- Assume noise is normally distributed with zero mean and variance $\sigma^{2}: \epsilon \sim N\left(\underset{0}{x}, \sigma^{2}\right)$
- $P_{\theta}(y \mid x) \sim N\left(\theta^{\top} x, \sigma^{2}\right)$
- Data consists of $\left\{x_{i}, y_{i}\right\}_{i=1}^{N}$
- Pick the most likely $\theta$
- $\theta^{*}=\arg \max _{\theta} P_{\theta}\left(y_{1}, y_{2}, \ldots, y_{N} \mid x_{1}, x_{2}, \ldots, x_{N}\right)$
- If we assume $y_{i}$ are independent and identically distributed (i.i.d.), then

$$
P_{\theta}\left(y_{1}, y_{2}, \ldots, y_{N} \mid x_{1}, x_{2}, \ldots, x_{N}\right)=\prod_{i=1}^{N} P_{\theta}\left(y_{i} \mid x_{i}\right)
$$

## Maximum Likelihood

$$
\begin{gathered}
\theta^{*}=\arg \max _{\theta} P_{\theta}\left(y_{1}, y_{2}, \ldots, y_{N} \mid x_{1}, x_{2}, \ldots, x_{N}\right) \\
=\arg \max _{\theta} \prod_{i=1}^{N} P_{\theta}\left(y_{i} \mid x_{i}\right)
\end{gathered}
$$

- Now, use the fact that $P_{\theta}(y \mid x) \sim N\left(\theta^{\top} x, \sigma^{2}\right)$

$$
\begin{gathered}
=\arg \max _{\theta}\left\{\prod_{i=1}^{N} \frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{\left(y_{i}-\theta^{\top} x_{i}\right)^{2}}{2 \sigma^{2}}}\right\} \\
=\arg \max _{\theta}\left\{e^{\left.-\sum_{i=1}^{N} \frac{\left(y_{i}-\theta^{\top} x_{i}\right)^{2}}{2 \sigma^{2}}\right\}}\right. \\
=\arg \min _{\theta}\left\{\sum_{i=1}^{N}\left(y_{i}-\theta^{\top} x_{i}\right)^{2}\right\} \\
=\arg \min _{\theta}\|y-X \theta\|_{2}^{2}
\end{gathered}
$$

## Maximum Likelihood vs. 2-Norm Minimization

- Assume noise is normally distributed, then the following are equivalent:
- $\theta$ obtained from maximum likelihood
- $\theta$ obtained from minimizing 2-norm of error
- In general, different loss functions correspond different assumptions about noise and parameter distributions
- L2 regularization: $\epsilon$ normally distributed, $\theta$ is normally distributed
- L1 regularization: $\epsilon$ normally distributed, $\theta$ Laplacian distributed


Laplace distribution

## Classification

- Given $x \in \mathbb{R}^{n}$
- "features", "covariate", "predictors"
- Predict $\boldsymbol{y} \in\{\mathbf{0}, \mathbf{1}\}^{\boldsymbol{m}}$
- "response", "outputs"
- Sometimes there may be many values for each component of $y$
- For example, in optical character recognition (numbers only), $y \in\{0,1, \ldots, 9\}$
- Learn the function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ such that $y \approx f(x)$
- Use data: $\left\{x_{i}, y_{i}\right\}_{i=1}^{N}$


## Logistic Regression

- Common model for binary classification, $y \in\{0,1\}$
- Assume $P_{\theta}(y=1 \mid x)=f\left(\sum_{i=1}^{N} \theta_{i} x^{i}\right)$ where $f(t)=\frac{e^{t}}{1+e^{t}}$

$$
P_{\theta}(y=1 \mid x)=\frac{e^{C_{1}}}{1+e^{C_{1}}}
$$

- Interpretation: Suppose $\sum_{i=1}^{N} \theta_{i} x^{i}=C$ is fixed
- Then $P_{\theta}(y=1 \mid x)$ is fixed, and equal to $\frac{e^{C}}{1+e^{C}}$
- 2D example: $\theta_{1} x^{1}+\theta_{2} x^{2}=C$ is a line
- In addition,
- $f(t) \rightarrow 0$ as $t \rightarrow-\infty$
- $f(t) \rightarrow 1$ as $t \rightarrow \infty$

$$
P_{\theta}(y=1 \mid x)=\frac{e^{c_{2}}}{1+e^{c_{2}}}
$$

## Logistic Regression

- Assume $P_{\theta}(y=1 \mid x)=f\left(\sum_{i=1}^{N} \theta_{i} x^{i}\right)$ where $f(t)=\frac{e^{t}}{1+e^{t}}$
- Observe that $P_{\theta}(y \mid x)=\frac{e^{y \theta^{\top} x}}{1+e^{\theta^{\top} x}}$
- Maximize the probability by choosing $\theta$

$$
\theta^{*}=\arg \max _{\theta} \prod_{i=1}^{n} P_{\theta}\left(y_{i} \mid x_{i}\right)
$$

## Logistic Regression

$$
\begin{aligned}
& \theta^{*}=\arg \max _{\theta} \prod_{i=1}^{n} P_{\theta}\left(y_{i} \mid x_{i}\right) \\
& =\arg \max _{\theta} \prod_{i=1}^{n} \frac{e^{y_{i} \theta^{\top} x_{i}}}{1+e^{\theta^{\top} x_{i}}} \\
& =\arg \max _{\theta} \log \left(\prod_{i=1}^{n} \frac{e^{y_{i} \theta^{\top} x_{i}}}{1+e^{\theta^{\top} x_{i}}}\right) \\
& =\arg \max _{\theta} \sum_{i=1}^{n}\left(y_{i} \theta^{\top} x_{i}-\log \left(1+e^{\bar{\theta}^{\top} x_{i}}\right)\right) \\
& =\arg \min _{\theta}\{\sum_{i=1}^{\log \left(1+e^{\theta^{\top} x_{i}}\right)}-\underbrace{\top}\left(\sum_{i=1}^{n} y_{i} x_{i}\right)\}
\end{aligned}
$$

## Neural Networks

- A specific form of $f_{\theta}(x)$

- Parameters $\theta$ are $W$ and $b$
- "Weights"


## Neural Networks

- Regression: Choose $\theta$ such that $y \approx f_{\theta}(x)$
- Neural Network: A specific form of $f_{\theta}(x)$


$$
\text { "neuron" } \quad h=f_{1}\left(x^{\top} W_{1}+b_{1}\right) \quad y=f_{2}\left(h^{\top} W_{2}+b_{2}\right)
$$

## Neural Networks

- Regression: Choose $\theta$ such that $y \approx f_{\theta}(x)$
- Neural Network: A specific form of $f_{\theta}(x)$

input layer hidden layer 2

$$
h_{1}=f_{1}\left(x^{\top} W_{1}+b_{1}\right) \quad \begin{gathered}
\text { hidden layer } 2 \\
h_{2}=f_{2}\left(h_{1} W_{2}+b_{2}\right)
\end{gathered}
$$

## Neural Networks

- Regression: Choose $\theta$ such that $y \approx f_{\theta}(x)$
- Neural Network: A specific form of $f_{\theta}(x)$ - Parameters $\theta$ are the weights $W_{i}$
 and $b_{i}$
- $f_{1}, f_{2}, f_{3}$ are nonlinear
- Otherwise $f$ would just be a single linear function:

$$
\begin{aligned}
y & =\left(\left(x^{\top} W_{1}+b_{1}\right) W_{2}+b_{2}\right) W_{3}+b_{3} \\
& =x^{\top} W_{1} W_{2} W_{3}+b_{1} W_{2} W_{3}+b_{2} W_{3}+b_{3}
\end{aligned}
$$

- "Activation functions"


## Neural Networks

- Regression: Choose $\theta$ such that $y \approx f_{\theta}(x)$
- Neural Network: A specific form of $f_{\theta}(x)$

- Common choices of activation functions
- Sigmoid:

$$
\frac{1}{1+e^{-x}}
$$



- Softplus:

$$
\log \left(1+e^{x}\right)
$$



- Hyperbolic tangent: $\tanh x$
- Rectified linear unit (ReLU): $\max (0, x)$


## Training Neural Networks

- Regression: Choose $\theta$ such that $y \approx f_{\theta}(x)$
- Neural Network: A specific form of $f_{\theta}(x)$

- Given current $\theta, X, Y$, compute $l(\theta ; X, Y)$
- Compares $f_{\theta}(X)$ with ground truth $Y$
- Evaluation of $f$ : "Forward propagation"
- Minimize $l(\theta ; X, Y)$
- Stochastic gradient descent
- Computing the gradient
- Chain rule: $\frac{d y}{d x}=\frac{d y}{h_{2}} \times \frac{d h_{2}}{d h_{1}} \times \frac{d h_{1}}{d x}$


Matrices

- Evaluation of $\frac{d y}{d x}$ : "Back propagation"


## Common Operations

- Fully connected (dot product)
- Convolution
- Translationally invariant
- Controls overfitting
- Pooling (fixed function)
- Down-sampling
- Controls overfitting
- Nonlinearity layer (fixed function)
- Activation functions, e.g. ReLU



## Example: Small VGG Net From Stanford CS231n



## Neural Network Architectures

- Convolutional neural network (CNN)
- Has translational invariance properties from convolution
- Common used for computer vision
- Recurrent neural network RNN
- Has feedback loops to capture temporal or sequential information
- Useful for handwriting recognition, speech recognition, reinforcement learning
- Long short-term memory (LSTM): special type of RNN with advantages in numerical properties
- Others
- General feedforward networks, variational autoencoders (VAEs), conditional VAEs,


## Training Neural Networks

- Training process (optimization algorithm)
- Standard L1 and L2 regularization
- Dropout: randomly set neurons to zero in each training iteration
- Transform input data (e.g. rotating, stretching, adding noise)
- Learning rate (step size) and other hyperparameter tuning
- Software packages: Efficient gradient computation
- Caffe, Torch, Theano, Tensor Flow

