Regression

CMPT 882

Mar. 11

Outline

- Probability Overview
- Regression
- Classification

Regression

- Given $x \in \mathbb{R}^n$
 - "features", "covariate", "predictors"
- Predict $y \in \mathbb{R}^m$
 - "response", "outputs"
- Learn the function $f: \mathbb{R}^n \to \mathbb{R}^m$ such that $y \approx f(x)$
 - f is the model for regression
 - Use data: $\{x_i, y_i\}_{i=1}^N$
- Parametrize the function f using the parameters $\theta \rightarrow y \approx f_{\theta}(x)$
 - θ and the form of f determines the class of functions in your model
 - Learning $f \rightarrow$ learning parameters θ

Regression

- Supervised learning is regression
 - f_{θ} is determined through "supervision" by data $\{x_i, y_i\}$
- Deep learning is regression using a neural network
 - Neural network (for now): complex f_{θ} with many components in θ
- Neural networks are hard to analyze, but analyzing regression with simple(r) models provides good intuition

Models for Regression

- Simplest model: Linear
 - $y = \theta^T x + \epsilon$, where ϵ is noise
- Put data into matrix vector form: (scalar y) • $X = \begin{pmatrix} -x_1^\top - \\ \vdots \\ -x_N^\top - \end{pmatrix} \in \mathbb{R}^{N \times n}, Y = \begin{pmatrix} y_1 \\ \vdots \\ y_N \end{pmatrix} \in \mathbb{R}^N$
 - Minimize loss function: $l(\theta) = ||Y X\theta||_2^2$
 - Seems to make sense if noise is zero-mean

$$\theta^* = \arg\min_{\theta} \|Y - X\theta\|_2^2$$
$$\theta^* = (X^T X)^{-1} X^T Y$$

Feature Augmentation

- Raw data: $\{x_i, y_i\}_{i=1}^N$
 - But perhaps y = f(x) is nonlinear
 - Augment data: $\bar{x}_i = (1, x_i, x_i^2), \bar{y}_i = y_i$
- Use linear model between $ar{x}$ and $ar{y}$

•
$$\bar{y} = \theta^{\mathsf{T}} \bar{x} + \epsilon = \theta_0 + \theta_1 x + \theta_2 x^2 + \epsilon$$

• Effectively a quadratic model

Feature Augmentation

- Raw data: $\{x_i, y_i\}_{i=1}^N$
 - But perhaps y = f(x) is nonlinear
 - Augment data: $\bar{x}_i = (1, x_i, x_i^2), \bar{y}_i = y_i$
- Use linear model between $ar{x}$ and $ar{y}$

•
$$\bar{y} = \theta^{\mathsf{T}} \bar{x} + \epsilon = \theta_0 + \theta_1 x + \theta_2 x^2 + \epsilon$$

- Effectively a quadratic model
- In general, $\bar{x}_i = (1, x_i, x_i^2, \dots x_i^N) \rightarrow \text{degree N polynomial}$
 - Correspondingly, more parameters are required

Observations

- More parameters → less training error, but potentially more test error
 - Training error: error when fitting model f_{θ} to data
 - **Test error**: error when using model to do prediction
- In our example, the true model is quadratic
 - High order polynomial would have very large test errors → overfitting
 - In general, the true model is unknown

Addressing Overfitting

- Validation of Trained Models (hold-out data)
 - Divide data up into training and validation (hold-out) data
 - Do training on the training data \rightarrow minimize training error
 - Validate the model on validation data ightarrow obtain validation error
- Regularization
 - Add penalty to size of parameters

N-Fold Cross Validation

- Divide data into N (roughly) equal parts
- Go through each part
 - Do training on the other N 1 parts (so one part is hold-out)
 - Evaluate model on the hold-out data to get ightarrow validation error
- Validation error is the average of all validation errors from above
 - Approximates performance during **test**, where new data is generated

Regularization

- Previously: $l(\theta) = \|y X\theta\|_2^2$
 - Example: $l(\theta) = \sum (y_i \theta_0 \theta_1 x_i \theta_2 x_i^2 \theta_3 x_i^3 \theta_4 x_i^4)^2$
- L2 regularization:
 - Heuristic: the underlying ground truth model does not have large θ
 - $l(\theta) = \|Y X\theta\|_2^2 + \lambda \|\theta\|_2^2$
 - "Tikhonov regularization"
 - Statistics: "ridge regression"
 - Machine learning: "weight decay"
 - "Elastic net regularization": combination of both
 - $l(\theta) = \|Y X\theta\|_2^2 + \lambda \left((1 \alpha) \|\theta\|_2^2 + \alpha \|\theta\|_1 \right)$

- L1 regularization:
 - Heuristic: many parameters in the underlying ground truth model are 0
 - $l(\theta) = \|Y X\theta\|_2^2 + \lambda \|\theta\|_1$
 - Statistics: "LASSO"
 - Signal processing: "basis pursuit"

Regularization

L1: $\|\boldsymbol{\theta}\|_1 = \sum_i |\boldsymbol{\theta}_i|$

- Does not prioritize reduction of any component of $\boldsymbol{\theta}$
- Encourages sparsity

L2: $\|\boldsymbol{\theta}\|_2 = \sum_i \boldsymbol{\theta}_i^2$

• Prioritizes reduction of large components of θ

Outline

- Probability Overview
- Regression
- Classification

Probability Review

- Sensor measurements and robot state are modeled as random variables
 - Random variables denoted with upper case: *X*
 - Realized, specific value denoted with lower case: *x*
- Discrete random variable
 - Probability mass function (pmf) $p(x) \coloneqq P(X = x)$
 - $\sum_{x} p(x) = 1$

- Continuous random variable
 - Probability density function (pdf) $P(X \in [a, b]) = \int_{a}^{b} p(x) dx$ • $\int_{-\infty}^{\infty} p(x) dx = 1$

Basic Properties of Random Variables

- Joint distribution $p(x, y) \coloneqq P(X = x \text{ and } Y = y)$
 - If X and Y are independent, then p(x, y) = p(x)p(y)

- Condition probability
 - The probability that X = x given that we know Y = y, denoted p(x|y) $p(x|y) \coloneqq \frac{p(x,y)}{p(y)}$
 - If X and Y are independent, then p(x|y) = p(x)
 - Useful re-arrangement p(x, y) = p(x|y)p(y)

Theorem of total probability and Bayes' rule

Discrete random variables

Continuous random variables

• $p(y) = \sum_{x} p(x, y) = \sum_{x} p(y|x)p(x)$ • $p(y) = \int p(x, y)dx = \int p(y|x)p(x)dx$

•
$$p(x,y) = p(x|y)p(y) = p(y|x)p(x)$$

• Isolate p(x|y) to obtain Bayes' rule

$$p(x|y) = \frac{p(y|x)p(x)}{p(y)}$$

Using law of total probability

$$p(x|y) = \frac{p(y|x)p(x)}{\sum_{x} p(y|x)p(x)} \qquad \qquad p(x|y) = \frac{p(y|x)p(x)}{\int p(y|x)p(x)dx}$$

• Notational simplification: $p(x|y) = \eta p(y|x)p(x)$

Expectation and variance

Discrete random variables

• $E[X] = \sum_{x} x p(x)$

Continuous random variables • $E[X] = \int xp(x)dx$

• Expectation is a linear operator

$$E[aX+b] = aE[X]+b$$

• Covariance:

 $cov(X,Y) = E[(X - E[X])(Y - E[Y])] = E[XY^{\top}] - E[X]E[Y]^{\top}$

Maximum Likelihood

- Simplest model: Linear
 - $y = \theta^T x + \epsilon$, where ϵ is noise
 - Assume noise is normally distributed with zero mean and variance σ^2 : $\epsilon \sim N(0, \sigma^2)$
 - $P_{\theta}(y|x) \sim N(\theta^{\top}x, \sigma^2)$
- Data consists of $\{x_i, y_i\}_{i=1}^N$
 - Pick the most likely heta
 - $\theta^* = \arg \max_{\theta} P_{\theta}(y_1, y_2, \dots, y_N | x_1, x_2, \dots, x_N)$
 - If we assume y_i are independent and identically distributed (i.i.d.), then

$$P_{\theta}(y_1, y_2, \dots, y_N | x_1, x_2, \dots, x_N) = \prod_{i=1}^{N} P_{\theta}(y_i | x_i)$$

Maximum Likelihood

$$\theta^* = \arg \max_{\theta} P_{\theta}(y_1, y_2, \dots, y_N | x_1, x_2, \dots, x_N)$$

$$= \arg \max_{\theta} \prod_{i=1}^{N} P_{\theta}(y_i | x_i)$$
Now, use the fact that $P_{\theta}(y|x) \sim N(\theta^{\top}x, \sigma^2)$

$$= \arg \max_{\theta} \left\{ \prod_{i=1}^{N} \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(y_i - \theta^{\top}x_i)^2}{2\sigma^2}} \right\}$$

$$= \arg \max_{\theta} \left\{ e^{-\sum_{i=1}^{N} \frac{(y_i - \theta^{\top}x_i)^2}{2\sigma^2}} \right\}$$

$$= \arg \min_{\theta} \left\{ \sum_{i=1}^{N} (y_i - \theta^{\top}x_i)^2 \right\}$$

$$= \arg \min_{\theta} \|y - X\theta\|_2^2$$

Maximum Likelihood vs. 2-Norm Minimization

- Assume noise is normally distributed, then the following are equivalent:
 - θ obtained from maximum likelihood
 - + $\boldsymbol{\theta}$ obtained from minimizing 2-norm of error
- In general, different loss functions correspond different assumptions about noise and parameter distributions
 - L2 regularization: ϵ normally distributed, θ is normally distributed
 - L1 regularization: ϵ normally distributed, θ Laplacian distributed

Classification

- Given $x \in \mathbb{R}^n$
 - "features", "covariate", "predictors"
- Predict $y \in \{0, 1\}^m$
 - "response", "outputs"
 - Sometimes there may be many values for each component of *y*
 - For example, in optical character recognition (numbers only), $y \in \{0, 1, ..., 9\}$
- Learn the function $f: \mathbb{R}^n \to \mathbb{R}^m$ such that $y \approx f(x)$
 - Use data: $\{x_i, y_i\}_{i=1}^N$

Logistic Regression

- Common model for binary classification, $y \in \{0,1\}$
- Assume $P_{\theta}(y = 1|x) = f(\sum_{i=1}^{N} \theta_i x^i)$ where $f(t) = \frac{e^t}{1 + e^t}$ $P_{\theta}(y = 1|x) = \frac{e^{C_1}}{1 + e^{C_1}}$
- Interpretation: Suppose $\sum_{i=1}^{N} \theta_i x^i = C$ is fixed
 - Then $P_{\theta}(y = 1 | x)$ is fixed, and equal to $\frac{e^{C}}{1 + e^{C}}$
 - 2D example: $\theta_1 x^1 + \theta_2 x^2 = C$ is a line
 - In addition,
 - $f(t) \rightarrow 0$ as $t \rightarrow -\infty$
 - $f(t) \rightarrow 1 \text{ as } t \rightarrow \infty$

 $\frac{e^{t}}{1+e^{t}} \qquad P_{\theta}(y=1 \mid x) = \frac{e^{C_{1}}}{1+e^{t}}$ $P_{\theta}(y=1 \mid x) = \frac{e^{C_{2}}}{1+e^{C_{2}}}$

Logistic Regression

• Assume
$$P_{\theta}(y = 1|x) = f(\sum_{i=1}^{N} \theta_i x^i)$$
 where $f(t) = \frac{e^t}{1+e^t}$
• Observe that $P_{\theta}(y|x) = \frac{e^{y\theta^{\top}x}}{1+e^{\theta^{\top}x}}$

• Maximize the probability by choosing θ $\theta^* = \arg \max_{\theta} \prod_{i=1}^n P_{\theta}(y_i | x_i)$

Logistic Regression

$$\theta^* = \arg \max_{\theta} \prod_{i=1}^{n} P_{\theta}(y_i | x_i)$$

$$= \arg \max_{\theta} \prod_{i=1}^{n} \frac{e^{y_i \theta^{\mathsf{T}} x_i}}{1 + e^{\theta^{\mathsf{T}} x_i}}$$

$$= \arg \max_{\theta} \log \left(\prod_{i=1}^{n} \frac{e^{y_i \theta^{\mathsf{T}} x_i}}{1 + e^{\theta^{\mathsf{T}} x_i}} \right)$$

$$= \arg \max_{\theta} \sum_{i=1}^{n} \left(y_i \theta^{\mathsf{T}} x_i - \log \left(1 + e^{\overline{\theta}^{\mathsf{T}} x_i} \right) \right)$$

$$= \arg \min_{\theta} \left\{ \sum_{i=1}^{n} \log (1 + e^{\theta^{\mathsf{T}} x_i}) - \theta^{\mathsf{T}} \left(\sum_{i=1}^{n} y_i x_i \right) \right\}$$

$$g(t) = \log(1 + e^t) \text{ is convex}$$

• A specific form of $f_{\theta}(x)$

 $y = f(x^\top W + b)$

- Parameters θ are W and b
- "Weights"

- Regression: Choose θ such that $y \approx f_{\theta}(x)$
 - Neural Network: A specific form of $f_{\theta}(x)$

- Regression: Choose θ such that $y \approx f_{\theta}(x)$
 - Neural Network: A specific form of $f_{\theta}(x)$

- Regression: Choose θ such that $y \approx f_{\theta}(x)$
 - Neural Network: A specific form of $f_{\theta}(x)$ Parameters θ are the weights W_i

- Parameters θ are the weights W_i and b_i
- f_1, f_2, f_3 are nonlinear
 - Otherwise *f* would just be a single linear function:
 - $y = ((x^{\top}W_1 + b_1)W_2 + b_2)W_3 + b_3$ = $x^{\top}W_1W_2W_3 + b_1W_2W_3 + b_2W_3 + b_3$
 - "Activation functions"

- Regression: Choose θ such that $y \approx f_{\theta}(x)$
 - Neural Network: A specific form of $f_{\theta}(x)$

- Common choices of activation functions
 - Sigmoid:

$$\frac{1}{1+e^{-x}}$$

tanh *x*

 Rectified linear unit (ReLU): max(0, x)

• Hyperbolic tangent:

Training Neural Networks

- Regression: Choose θ such that $y \approx f_{\theta}(x)$
 - Neural Network: A specific form of $f_{\theta}(x)$

- Given current θ , *X*, *Y*, compute $l(\theta; X, Y)$
 - Compares $f_{\theta}(X)$ with ground truth Y
 - Evaluation of f: "Forward propagation"
- Minimize $l(\theta; X, Y)$
 - Stochastic gradient descent

Common Operations

- Fully connected (dot product)
- Convolution
 - Translationally invariant
 - Controls overfitting
- Pooling (fixed function)
 - Down-sampling
 - Controls overfitting
- Nonlinearity layer (fixed function)
 - Activation functions, e.g. ReLU

Stanford CS231n

Example: Small VGG Net From Stanford CS231n

Neural Network Architectures

- Convolutional neural network (CNN)
 - Has translational invariance properties from convolution
 - Common used for computer vision
- Recurrent neural network RNN
 - Has feedback loops to capture temporal or sequential information
 - Useful for handwriting recognition, speech recognition, reinforcement learning
 - Long short-term memory (LSTM): special type of RNN with advantages in numerical properties
- Others
 - General feedforward networks, variational autoencoders (VAEs), conditional VAEs,

Training Neural Networks

- Training process (optimization algorithm)
 - Standard L1 and L2 regularization
 - Dropout: randomly set neurons to zero in each training iteration
 - Transform input data (e.g. rotating, stretching, adding noise)
 - Learning rate (step size) and other hyperparameter tuning
- Software packages: Efficient gradient computation
 - Caffe, Torch, Theano, Tensor Flow