Regression

CMPT 882

Mar. 11
Outline

• Probability Overview

• Regression

• Classification
Regression

• Given $x \in \mathbb{R}^n$
 • “features”, “covariate”, “predictors”

• Predict $y \in \mathbb{R}^m$
 • “response”, “outputs”

• Learn the function $f: \mathbb{R}^n \rightarrow \mathbb{R}^m$ such that $y \approx f(x)$
 • f is the model for regression
 • Use data: $\{x_i, y_i\}_{i=1}^N$

• Parametrize the function f using the parameters $\theta \rightarrow y \approx f_\theta(x)$
 • θ and the form of f determines the class of functions in your model
 • Learning $f \rightarrow$ learning parameters θ
Regression

• Supervised learning is regression
 • f_θ is determined through “supervision” by data $\{x_i, y_i\}$

• Deep learning is regression using a neural network
 • Neural network (for now): complex f_θ with many components in θ

• Neural networks are hard to analyze, but analyzing regression with simple(r) models provides good intuition
Models for Regression

- Simplest model: Linear
 - \(y = \theta^T x + \epsilon \), where \(\epsilon \) is noise

- Put data into matrix vector form: (scalar \(y \))
 - \(X = \begin{pmatrix} -x_1^T \\ \vdots \\ -x_N^T \end{pmatrix} \in \mathbb{R}^{N \times n}, \ Y = \begin{pmatrix} y_1 \\ \vdots \\ y_N \end{pmatrix} \in \mathbb{R}^N \)

- Minimize loss function: \(l(\theta) = \|Y - X\theta\|_2^2 \)
 - Seems to make sense if noise is zero-mean

\[
\theta^* = \arg \min_{\theta} \|Y - X\theta\|_2^2 \\
\theta^* = (X^TX)^{-1}X^TY
\]
Feature Augmentation

- Raw data: \(\{x_i, y_i\}_{i=1}^N \)
 - But perhaps \(y = f(x) \) is nonlinear
 - Augment data: \(\tilde{x}_i = (1, x_i, x_i^2), \tilde{y}_i = y_i \)

- Use linear model between \(\tilde{x} \) and \(\tilde{y} \)
 - \(\tilde{y} = \theta^T \tilde{x} + \epsilon = \theta_0 + \theta_1 x + \theta_2 x^2 + \epsilon \)
 - Effectively a quadratic model
Feature Augmentation

• Raw data: \(\{x_i, y_i\}_{i=1}^N \)
 • But perhaps \(y = f(x) \) is nonlinear
 • Augment data: \(\tilde{x}_i = (1, x_i, x_i^2) \), \(\tilde{y}_i = y_i \)

• Use linear model between \(\tilde{x} \) and \(\tilde{y} \)
 • \(\tilde{y} = \theta^T \tilde{x} + \epsilon = \theta_0 + \theta_1 x + \theta_2 x^2 + \epsilon \)
 • Effectively a quadratic model

• In general, \(\tilde{x}_i = (1, x_i, x_i^2, \ldots x_i^N) \) \(\rightarrow \) degree N polynomial
 • Correspondingly, more parameters are required
Observations

• More parameters \rightarrow less training error, but potentially more test error
 • **Training error**: error when fitting model f_θ to data
 • **Test error**: error when using model to do prediction

• In our example, the true model is quadratic
 • High order polynomial would have very large test errors \rightarrow overfitting
 • In general, the true model is unknown
Addressing Overfitting

• Validation of Trained Models (hold-out data)
 • Divide data up into training and validation (hold-out) data
 • Do training on the training data → minimize training error
 • Validate the model on validation data → obtain validation error

• Regularization
 • Add penalty to size of parameters
N-Fold Cross Validation

- Divide data into N (roughly) equal parts
- Go through each part
 - Do training on the other $N - 1$ parts (so one part is hold-out)
 - Evaluate model on the hold-out data to get validation error
- Validation error is the average of all validation errors from above
 - Approximates performance during test, where new data is generated
Regularization

- Previously: $l(\theta) = \|Y - X\theta\|_2^2$
 - Example: $l(\theta) = \sum(y_i - \theta_0 - \theta_1 x_i - \theta_2 x_i^2 - \theta_3 x_i^3 - \theta_4 x_i^4)^2$

- L2 regularization:
 - Heuristic: the underlying ground truth model does not have large θ
 - $l(\theta) = \|Y - X\theta\|_2^2 + \lambda \|\theta\|_2^2$
 - “Tikhonov regularization”
 - Statistics: “ridge regression”
 - Machine learning: “weight decay”

- “Elastic net regularization”: combination of both
 - $l(\theta) = \|Y - X\theta\|_2^2 + \lambda \left((1 - \alpha)\|\theta\|_2^2 + \alpha \|\theta\|_1\right)$

- L1 regularization:
 - Heuristic: many parameters in the underlying ground truth model are 0
 - $l(\theta) = \|Y - X\theta\|_2^2 + \lambda \|\theta\|_1$
 - Statistics: “LASSO”
 - Signal processing: “basis pursuit”
Regularization

L1: \(\|\theta\|_1 = \sum_i |\theta_i| \)
- Does not prioritize reduction of any component of \(\theta \)
- Encourages sparsity

L2: \(\|\theta\|_2 = \sum_i \theta_i^2 \)
- Prioritizes reduction of large components of \(\theta \)
Outline

• Probability Overview

• Regression

• Classification
Probability Review

• Sensor measurements and robot state are modeled as random variables
 • Random variables denoted with upper case: X
 • Realized, specific value denoted with lower case: x

• Discrete random variable
 • Probability mass function (pmf)
 \[p(x) := P(X = x) \]
 • \(\sum_x p(x) = 1 \)

• Continuous random variable
 • Probability density function (pdf)
 \[P(X \in [a, b]) = \int_a^b p(x) \, dx \]
 \[\int_{-\infty}^{\infty} p(x) \, dx = 1 \]
Basic Properties of Random Variables

• Joint distribution
 \[p(x, y) := P(X = x \text{ and } Y = y) \]

• If \(X \) and \(Y \) are independent, then
 \[p(x, y) = p(x)p(y) \]

• Condition probability
 • The probability that \(X = x \) given that we know \(Y = y \), denoted \(p(x|y) \)
 \[p(x|y) := \frac{p(x, y)}{p(y)} \]

• If \(X \) and \(Y \) are independent, then
 \[p(x|y) = p(x) \]

• Useful re-arrangement
 \[p(x, y) = p(x|y)p(y) \]
Theorem of total probability and Bayes’ rule

<table>
<thead>
<tr>
<th>Discrete random variables</th>
<th>Continuous random variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p(y) = \sum_x p(x,y) = \sum_x p(y</td>
<td>x)p(x)$</td>
</tr>
<tr>
<td>• $p(x,y) = p(x</td>
<td>y)p(y) = p(y</td>
</tr>
<tr>
<td>• Isolate $p(x</td>
<td>y)$ to obtain Bayes’ rule</td>
</tr>
<tr>
<td>• Notational simplification: $p(x</td>
<td>y) = \eta p(y</td>
</tr>
</tbody>
</table>
Expectation and variance

Discrete random variables

\[E[X] = \sum_x xp(x) \]

- Expectation is a linear operator

\[E[aX + b] = aE[X] + b \]

- Covariance:

\[\text{cov}(X,Y) = E[(X - E[X])(Y - E[Y])] = E[XY^\top] - E[X]E[Y]^\top \]
Maximum Likelihood

- Simplest model: Linear
 - \(y = \theta^T x + \epsilon \), where \(\epsilon \) is noise
 - Assume noise is normally distributed with zero mean and variance \(\sigma^2: \epsilon \sim N(0, \sigma^2) \)
 - \(P_\theta(y|x) \sim N(\theta^T x, \sigma^2) \)

- Data consists of \(\{x_i, y_i\}_{i=1}^N \)
 - Pick the most likely \(\theta \)
 - \(\theta^* = \arg\max_\theta P_\theta(y_1, y_2, ..., y_N | x_1, x_2, ..., x_N) \)
 - If we assume \(y_i \) are independent and identically distributed (i.i.d.), then
 \[
 P_\theta(y_1, y_2, ..., y_N | x_1, x_2, ..., x_N) = \prod_{i=1}^N P_\theta(y_i | x_i)
 \]
Maximum Likelihood

\[\theta^* = \arg \max_\theta P_\theta (y_1, y_2, ..., y_N | x_1, x_2, ..., x_N) \]

\[= \arg \max_\theta \prod_{i=1}^{N} P_\theta (y_i | x_i) \]

• Now, use the fact that \(P_\theta (y | x) \sim N(\theta^T x, \sigma^2) \)

\[= \arg \max_\theta \left\{ \prod_{i=1}^{N} \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(y_i-\theta^T x_i)^2}{2\sigma^2}} \right\} \]

\[= \arg \max_\theta \left\{ e^{-\sum_{i=1}^{N} \frac{(y_i-\theta^T x_i)^2}{2\sigma^2}} \right\} \]

\[= \arg \max_\theta \left\{ \sum_{i=1}^{N} (y_i - \theta^T x_i)^2 \right\} \]

\[= \arg \min_\theta \| y - X\theta \|_2^2 \]
Maximum Likelihood vs. 2-Norm Minimization

• Assume noise is normally distributed, then the following are equivalent:
 • θ obtained from maximum likelihood
 • θ obtained from minimizing 2-norm of error

• In general, different loss functions correspond different assumptions about noise and parameter distributions
 • L2 regularization: ϵ normally distributed, θ is normally distributed
 • L1 regularization: ϵ normally distributed, θ Laplacian distributed
Classification

• Given \(x \in \mathbb{R}^n \)
 • “features”, “covariate”, “predictors”

• Predict \(y \in \{0, 1\}^m \)
 • “response”, “outputs”
 • Sometimes there may be many values for each component of \(y \)
 • For example, in optical character recognition (numbers only), \(y \in \{0, 1, \ldots, 9\} \)

• Learn the function \(f : \mathbb{R}^n \to \mathbb{R}^m \) such that \(y \approx f(x) \)
 • Use data: \(\{x_i, y_i\}_{i=1}^N \)
Logistic Regression

• Common model for binary classification, $y \in \{0,1\}$

• Assume $P_\theta(y = 1|x) = f\left(\sum_{i=1}^{N} \theta_i x^i\right)$ where $f(t) = \frac{e^t}{1+e^t}$

• Interpretation: Suppose $\sum_{i=1}^{N} \theta_i x^i = C$ is fixed
 • Then $P_\theta(y = 1|x)$ is fixed, and equal to $\frac{e^C}{1+e^C}$
 • 2D example: $\theta_1 x^1 + \theta_2 x^2 = C$ is a line
 • In addition,
 • $f(t) \to 0$ as $t \to -\infty$
 • $f(t) \to 1$ as $t \to \infty$
Logistic Regression

• Assume $P_\theta (y = 1|x) = f(\sum_{i=1}^{N} \theta_i x^i)$ where $f(t) = \frac{e^t}{1+e^t}$

• Observe that $P_\theta (y|x) = \frac{e^{y\theta^\top x}}{1+e^{\theta^\top x}}$

• Maximize the probability by choosing θ

$$\theta^* = \arg \max_\theta \prod_{i=1}^{n} P_\theta (y_i|x_i)$$
Logistic Regression

\[\theta^* = \arg \max_{\theta} \prod_{i=1}^{n} P_{\theta}(y_i|x_i) \]

\[= \arg \max_{\theta} \prod_{i=1}^{n} \frac{e^{y_i\theta^T x_i}}{1 + e^{\theta^T x_i}} \]

\[= \arg \max_{\theta} \log \left(\prod_{i=1}^{n} \frac{e^{y_i\theta^T x_i}}{1 + e^{\theta^T x_i}} \right) \]

\[= \arg \max_{\theta} \sum_{i=1}^{n} \left(y_i \theta^T x_i - \log \left(1 + e^{\theta^T x_i} \right) \right) \]

\[= \arg \min_{\theta} \left\{ \sum_{i=1}^{n} \log(1 + e^{\theta^T x_i}) - \theta^T \left(\sum_{i=1}^{n} y_i x_i \right) \right\} \]

\[g(t) = \log(1 + e^t) \text{ is convex} \]
Neural Networks

- A specific form of $f_\theta(x)$

\[
\begin{align*}
\quad y_1 &= f(x^T w_1 + b_1) \\
\quad y_2 &= f(x^T w_2 + b_2) \\
\quad y_3 &= f(x^T w_3 + b_3) \\
\quad y_4 &= f(x^T w_4 + b_4)
\end{align*}
\]

\[y = f(x^T W + b)\]

- Parameters θ are W and b
- “Weights”
Neural Networks

• Regression: Choose θ such that $y \approx f_\theta(x)$
 • Neural Network: A specific form of $f_\theta(x)$

$h = f_1(x^T W_1 + b_1)$ \hspace{1cm} y = f_2(h^T W_2 + b_2)$
Neural Networks

- Regression: Choose θ such that $y \approx f_\theta(x)$
 - Neural Network: A specific form of $f_\theta(x)$

\[
\begin{align*}
 h_1 &= f_1(x^T W_1 + b_1) \\
 h_2 &= f_2(h_1 W_2 + b_2) \\
 y &= f_3(h_2 W_3 + b_3)
\end{align*}
\]
Neural Networks

• Regression: Choose θ such that $y \approx f_\theta(x)$
 • Neural Network: A specific form of $f_\theta(x)$
 • Parameters θ are the weights W_i and b_i

• f_1, f_2, f_3 are nonlinear
 • Otherwise f would just be a single linear function:

 $y = f_3(h_2W_3 + b_3)$

 $y = (x^TW_1 + b_1)W_2 + b_2)W_3 + b_3$

 $y = x^TW_1W_2W_3 + b_1W_2W_3 + b_2W_3 + b_3$

• “Activation functions”
Neural Networks

- Regression: Choose θ such that $y \approx f_\theta(x)$
 - Neural Network: A specific form of $f_\theta(x)$

- Common choices of activation functions
 - Sigmoid:
 $$\frac{1}{1 + e^{-x}}$$
 - Softplus:
 $$\log(1 + e^x)$$
 - Hyperbolic tangent: $\tanh x$
 - Rectified linear unit (ReLU):
 $$\max(0, x)$$
Training Neural Networks

- Regression: Choose θ such that $y \approx f_\theta(x)$
 - Neural Network: A specific form of $f_\theta(x)$

- Given current θ, X, Y, compute $l(\theta; X, Y)$
 - Compares $f_\theta(X)$ with ground truth Y
 - Evaluation of f: “Forward propagation”

- Minimize $l(\theta; X, Y)$
 - Stochastic gradient descent

- Computing the gradient
 - Chain rule: $\frac{dy}{dx} = \frac{dy}{h_2} \times \frac{dh_2}{dh_1} \times \frac{dh_1}{dx}$

Matrices

- Evaluation of $\frac{dy}{dx}$: “Back propagation”
Common Operations

• Fully connected (dot product)

• Convolution
 • Translationally invariant
 • Controls overfitting

• Pooling (fixed function)
 • Down-sampling
 • Controls overfitting

• Nonlinearity layer (fixed function)
 • Activation functions, e.g. ReLU
Example: Small VGG Net From Stanford CS231n
Neural Network Architectures

• Convolutional neural network (CNN)
 • Has translational invariance properties from convolution
 • Common used for computer vision

• Recurrent neural network RNN
 • Has feedback loops to capture temporal or sequential information
 • Useful for handwriting recognition, speech recognition, reinforcement learning
 • Long short-term memory (LSTM): special type of RNN with advantages in numerical properties

• Others
 • General feedforward networks, variational autoencoders (VAEs), conditional VAEs,
Training Neural Networks

• Training process (optimization algorithm)
 • Standard L1 and L2 regularization
 • Dropout: randomly set neurons to zero in each training iteration
 • Transform input data (e.g. rotating, stretching, adding noise)
 • Learning rate (step size) and other hyperparameter tuning

• Software packages: Efficient gradient computation
 • Caffe, Torch, Theano, Tensor Flow