Sensors and Regression Overview

CMPT 882
Mar. 8
Outline

• Sensors Overview

• Regression Overview
 • More details in the next lectures

• Neural Networks Overview
 • More details in
 • CMPT 726: Machine Learning
 • CMPT 822: Computer Vision
Classification of sensors

• **Proprioceptive:** measurements of internal values
 • Motor speed, heading

• **Exteroceptive:** measurements of the environment
 • Distance measurements, light intensity, sound

• **Passive:** measure of signals from the environment
 • Temperature sensors, cameras

• **Active:** send a signal to the environment and measure the response
 • Ultrasonic sensors, Laser rangefinders
 • May affect the environment
Sensor Performance

- **Dynamic range**: ratio between maximum and minimum input values that can be measured accurately

- **Resolution**: smallest difference in signal that can be detected

- **Linearity**

- **Bandwidth** or frequency: how often a measurement is made
Sensor Performance

• **Sensitivity**: ratio of output change to input change
 • May vary with input signal, if sensor is nonlinear
 • Cross-sensitivity: sensitivity to unrelated factors in the environment

• **Error**: different between sensor measurement and true value

• **Accuracy**: absolute error relative to true value as a percentage

• **Precision**: consistency/reproducibility of measurements

• Sensor models: probabilistic description of sensor measurements
 • Will discuss more in localization and mapping lectures
Types of sensors

• Encoders
• Heading sensors
• Accelerometers and IMU
• Beacons
• Active ranging
• Cameras
Encoders

• Measures position by shining light through slits and counting number of interruptions

• Converts motion into a sequence of digital pulses
 • Proprioceptive
 • Can (kind of) be used for localization
Heading Sensors

• Measures orientation or heading
 • Gyroscope: proprioceptive
 • Mechanical: up to three gimbals freely rotate without affecting axis of rotation of rotor
 • Optical: pair of lasers fired into circular optical fibre in opposite directions; rotations cause Doppler shift
 • Compass: exteroceptive

• Can be combined with velocity measurements to obtain position estimate
Accelerometer and Inertial Measurement Unit (IMU)

• Accelerometer: Measures all external forces acting on the sensor
 • Mechanical accelerometer: $F_{\text{applied}} = m\ddot{x} + c\dot{x} + kx$
 • $\Rightarrow a_{\text{applied}} = \frac{kx}{m}$ in steady state
 • Measure x, obtain a_{applied}
 • Modern accelerometers:
 • Micro Electro-Mechanical Systems (MEMS)
 • Capacitative: capacitance changes with force
 • Piezoelectric: voltage changes with force

• Inertial measurement unit (IMU)
 • Synonymous with Inertial Navigation System (INS)
 • Sensor package that measures position, orientation, and their rates
 • Combines gyroscopes and accelerometers
Beacons

• A device or structure with precisely known position

• Stars, lighthouses, landmarks

• GPS, motion capture systems

• Required for accurate measurement of position
 • Used in combination with IMU
Active Ranging

• Measures distances to nearby objects

• Time-of-flight active ranging sensors
 • Travel distance: $d = ct$, where c is the speed of wave propagation and t is time of flight
 • Sonar: uses sound waves, $c = 343 \text{ m/s}$
 • Lidar/radar: uses light waves, $c = 300 \text{ m/μs}$
 • In general, longer wavelength \rightarrow longer range, but cannot detect small features

• Geometric active ranging sensors
Cameras
Cameras
Cameras

Blurry image
Pinhole Camera
Pinhole Camera
Pinhole Camera

- Clear image
- Pinhole \rightarrow Dark image
- Larger hole \rightarrow brighter but more blurry
Solar Eclipse

• Gaps between leaves act as pinholes

• The shape of the sun is projected on the screen (ground)
Lenses

- Clear image
- Brighter image compared to pinhole camera
3D Scene Reconstruction From 2D Images

• Depth from focus

• Stereo vision: two images taken at different locations at the same time

• Structure from motion: two images of the same object taken at different times
Image Processing and Understanding

• Pixel data need to be converted into useful features

• Common operations
 • Image filtering, enhancement, compression
 • Geometric feature extraction
 • corner, edge, plane, etc.

• Deep learning computer vision techniques
Example: Self-Driving Car

- **Top mounted LiDAR** beams 1.4 million laser points per second to create a 3D map of the car's surroundings.
- **20 cameras** looking for braking vehicles, pedestrians, and other obstacles.
- A colored camera puts LiDAR map into color so the car can see traffic light changes.
- **Antennae** on the roof rack let the car position itself via GPS.
- **LiDAR modules** on the front, rear, and sides help detect obstacles in blind spots.
- A cooling system in the car makes sure everything runs without overheating.

Source: Uber
Outline

• Sensors Overview

• Regression Overview

• Neural Networks Overview
Regression

• Supervised learning / classification / regression
 • Give data \((x_1, y_1), \ldots, (x_n, y_n)\), choose a function \(f\) such that \(y \approx f(x)\)
 • \(x_i\) are the inputs/independent variables
 • \(y_i\) are the outputs/dependent variables

• Due to noise of measurements, choose \(f\) such that \(f(x) \approx y\)
 • Choose \(f\) from a class of functions with parameter \(f_\theta\)
 • \(\minimize_\theta \sum_i |f_\theta(x_i) - y_i|^2\)
 “Loss function”

Another choice: \(\sum_i |f_\theta(x_i) - y_i|^1\)
Linear Regression

• Scalar example: line fitting
 • \(y = f_{m,b}(x) = mx + b \)
 • Data: \(\{(x_i, y_i)\}_{i=1}^{N} \)

• minimize \(m,b \sum_{i} |mx_i + b - y_i|^2 \)
 • Let \(\hat{X} = (x_1, x_2, ..., x_N) \), \(Y = (y_1, y_2, ..., y_N) \)
 • Let \(\theta = (m, b) \), \(X = [\hat{X} \ 1_{N \times 1}] \)
 • Differentiate w.r.t. \(\theta \) and set to zero

\[
\sum_{i} |mx_i + b - y_i|^2 = \|m\hat{X} + b - Y\|^2
\]
\[
\|m\hat{X} + b - Y\|^2 = \|X\theta - Y\|^2
\]
\[
2X^T(X\theta - Y) = 0
\]
\[
\Rightarrow \theta^* = (X^TX)^{-1}X^TY
\]
Regression
Regularization

- Penalize size of parameters
- \(\text{minimize}_\theta \|X\theta - Y\|^2 + \lambda\|\theta\|^2 \)

\[
2X^T(X\theta - Y) + 2\lambda\theta = 0
\]
\[
X^TX\theta - X^TY + \lambda\theta = 0
\]
\[
(X^TX + \lambda I)\theta = X^TY
\]
\[
\theta = (X^TX + \lambda I)^{-1}X^TY
\]

10th order polynomial given by this \(\theta \)
Regularization

- Penalize size of parameters
- minimize $\theta \|X\theta - Y\|^2 + \lambda \|\theta\|^2$

\[
2X^T(X\theta - Y) + 2\lambda \theta = 0 \\
X^TX\theta - X^TY + \lambda \theta = 0 \\
(X^TX + \lambda I)\theta = X^TY \\
\theta = (X^TX + \lambda I)^{-1}X^TY
\]
Regularization

- Penalize size of parameters
 - minimize $\theta \|X\theta - Y\|^2 + \lambda \|\theta\|_1$
 - Optimize using gradient descent
 - 1-norm encourages sparsity

\[
\text{Theta}_{\text{opt}} =
\begin{bmatrix}
0.0000 \\
0.0000 \\
0.0000 \\
0.0000 \\
0.0000 \\
0.0000 \\
0.0232 \\
0.0000 \\
0.0000 \\
-0.0010 \\
0.0002 \\
-0.0000
\end{bmatrix}
\]

10th order polynomial given by this θ
Regularization

L1: \(\|\theta\|_1 = \sum_i |\theta_i| \)
- Does not prioritize reduction of any component of \(\theta \)
- Encourages sparsity

L2: \(\|\theta\|_2 = \sum_i \theta_i^2 \)
- Prioritizes reduction of large components of \(\theta \)
Regression

• In general, minimize “loss function”:
 • minimize $\theta l(\theta; X, Y)$, where $l : \mathbb{R}^n \rightarrow \mathbb{R}^m$
 • Scalar case: $X = (x_1, x_2, ..., x_N) = [x_1, x_2, ..., x_N]^T$

\[
\begin{bmatrix}
x_1^T \\
x_2^T \\
\vdots \\
x_N^T
\end{bmatrix}, \text{ where } x_i \in \mathbb{R}^n,
\]

• General case: $X = \begin{bmatrix} x_1^T \\ x_2^T \\
\vdots \\
x_N^T \end{bmatrix}$, where $x_i \in \mathbb{R}^n$, $Y = \begin{bmatrix} y_1^T \\ y_2^T \\
\vdots \\
y_N^T \end{bmatrix}$, where $y_i \in \mathbb{R}^m$
Stochastic Gradient Descent

- Gradient descent: $\theta^{k+1} = \theta^k - \alpha^k \nabla l(\theta)$
 - If f has many parameters, then the gradient $\nabla l(\theta)$ is difficult to compute

- Idea: Only compute a few components of the gradient

- Which components?
 - Cyclical choice: eg. Components 1 and 2, then 3 and 4, etc.
 - Random choice: **stochastic gradient descent**
Outline

• Sensors Overview

• Regression Overview

• Neural Networks Overview
Neural Networks

• A specific form of $f_\theta(x)$

\[
\begin{align*}
 y_1 &= f(x^T w_1 + b_1) \\
 y_2 &= f(x^T w_2 + b_2) \\
 y_3 &= f(x^T w_3 + b_3) \\
 y_4 &= f(x^T w_4 + b_4) \\
 y &= f(x^T W + b)
\end{align*}
\]

• Parameters θ are W and b
• “Weights”
Neural Networks

• Regression: Choose θ such that $y \approx f_\theta(x)$
 • Neural Network: A specific form of $f_\theta(x)$

$h = f_1(x^T W_1 + b_1) \quad y = f_2(h^T W_2 + b_2)$
Neural Networks

- Regression: Choose θ such that $y \approx f_{\theta}(x)$
- Neural Network: A specific form of $f_{\theta}(x)$

\[h_1 = f_1(x^T W_1 + b_1) \]
\[h_2 = f_2(h_1 W_2 + b_2) \]
\[y = f_3(h_2 W_3 + b_3) \]
Neural Networks

• Regression: Choose θ such that $y \approx f_\theta(x)$
 • Neural Network: A specific form of $f_\theta(x)$
 • Parameters θ are the weights W_i and b_i

• f_1, f_2, f_3 are nonlinear
 • Otherwise f would just be a single linear function:
 $$y = (x^T W_1 + b_1) W_2 + b_2) W_3 + b_3 = x^T W_1 W_2 W_3 + b_1 W_2 W_3 + b_2 W_3 + b_3$$
 • “Activation functions”
Neural Networks

• Regression: Choose θ such that $y \approx f_\theta(x)$
 • Neural Network: A specific form of $f_\theta(x)$

• Common choices of activation functions
 • Sigmoid:
 $$\sigma(x) = \frac{1}{1 + e^{-x}}$$
 • Softplus:
 $$\log(1 + e^x)$$
 • Hyperbolic tangent:
 $$\tanh x$$
 • Rectified linear unit (ReLU):
 $$\max(0, x)$$
Training Neural Networks

• Regression: Choose θ such that $y \approx f_\theta(x)$
 • Neural Network: A specific form of $f_\theta(x)$

• Given current θ, X, Y, compute $l(\theta; X, Y)$
 • Compares $f_\theta(X)$ with ground truth Y
 • Evaluation of f: “Forward propagation”

• Minimize $l(\theta; X, Y)$
 • Stochastic gradient descent

• Computing the gradient
 • Chain rule: $\frac{dy}{dx} = \frac{dy}{dh_2} \times \frac{dh_2}{dh_1} \times \frac{dh_1}{dx}$

• Evaluation of $\frac{dy}{dx}$: “Back propagation”
Common Operations

• Fully connected (dot product)

• Convolution
 • Translationally invariant
 • Controls overfitting

• Pooling (fixed function)
 • Down-sampling
 • Controls overfitting

• Nonlinearity layer (fixed function)
 • Activation functions, e.g. ReLU
Example: Small VGG Net From Stanford CS231n
Neural Network Architectures

• Convolutional neural network (CNN)
 • Has translational invariance properties from convolution
 • Common used for computer vision

• Recurrent neural network RNN
 • Has feedback loops to capture temporal or sequential information
 • Useful for handwriting recognition, speech recognition, reinforcement learning
 • Long short-term memory (LSTM): special type of RNN with advantages in numerical properties

• Others
 • General feedforward networks, variational autoencoders (VAEs), conditional VAEs,
Training Neural Networks

• Training process (optimization algorithm)
 • Standard L1 and L2 regularization
 • Dropout: randomly set neurons to zero in each training iteration
 • Transform input data (e.g. rotating, stretching, adding noise)
 • Learning rate (step size) and other hyperparameter tuning

• Software packages: Efficient gradient computation
 • Caffe, Torch, Theano, Tensor Flow