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Outline

e Sensors Overview

* More details in Siegwart, Nourbakhsh, Scarmuzza, “Introduction to
Autonomous Mobile Robots,” MIT Press 2011

* Regression Overview
 More details in the next lectures

* Neural Networks Overview

* More details in
e CMPT 726: Machine Learning
e CMPT 822: Computer Vision



Classification of sensors

* Proprioceptive: measurements of internal values
* Motor speed, heading

* Exteroceptive: measurements of the environment
* Distance measurements, light intensity, sound

* Passive: measure of sighals from the environment
¢ Temperature Sensors, cameras

e Active: send a signal to the environment and measure the response
» Ultrasonic sensors, Laser rangefinders
* May affect the environment



Sensor Performance

* Dynamic range: ratio between maximum and minimum input values
that can be measured accurately

* Resolution: smallest difference in signal that can be detected
* Linearity

* Bandwidth or frequency: how often a measurement is made



Sensor Performance

* Sensitivity: ratio of output change to input change
* May vary with input signal, if sensor is nonlinear
* Cross-sensitivity: sensitivity to unrelated factors in the environment

* Error: different between sensor measurement and true value
* Accuracy: absolute error relative to true value as a percentage
* Precision: consistency/reproducibility of measurements

e Sensor models: probabilistic description of sensor measurements
* Will discuss more in localization and mapping lectures



Types of sensors

* Encoders

* Heading sensors
e Accelerometers and IMU
e Beacons frame

* Active ranging

e Cameras _
Gimbal Rotor



Encoders

* Measures position by shining light through slits and counting number
of interruptions

* Converts motion into a sequence of digital pulses
* Proprioceptive
e Can (kind of) be used for localization




Heading Sensors

* Measures orientation or heading

* Gyroscope: proprioceptive
* Mechanical: up to three gimbals freely rotate without
affecting axis of rotation of rotor

e Optical: pair of lasers fired into circular optical fibre in
opposite directions; rotations cause Doppler shift

e Compass: exteroceptive

e Can be combined with velocity measurements to
obtain position estimate

Gyroscope Spin axis
frame '
| R

Gimbal M Rotor

Main drive gear Compass card gear

Gimbal rotation

Gimbal | * Adjustment gears

Gyro Adjustment knob




Accelerometer and Inertial Measurement Unit (IMU)

* Accelerometer: Measures all external forces acting on the
sensor

* Mechanical accelerometer: Fy,51ieq = mX + cx + kx e Y >
kx .
* = Qapplied =~ IN steady state
* Measure x, obtain a,pplied

* Modern accelerometers: dl
* Micro Electro-Mechanical Systems (MEMS)
» Capacitative: capacitance changes with force
* Piezoelectric: voltage changes with force
* Inertial measurement unit (IMU)
* Synonymous with Inertial Navigation System (INS) y Velocity |,
* Sensor package that measures position, orientation, and their rates Gytes . ;
* Combines gyroscopes and accelerometers Navigation | | Horisontal N
Accelero- | | f" B o position R!
LCETS Depth
IMU

INS



Beacons

* A device or structure with precisely known
position

e Stars, lighthouses, landmarks

* GPS, motion capture systems

e Required for accurate measurement of
position
* Used in combination with IMU



Active Ranging

F _

Velodyn?

* Measures distances to nearby objects

Velodyne

* Time-of-flight active ranging sensors

* Travel distance: d = ct, where c is the speed of wave propagation and t is
time of flight

* Sonar: uses sound waves, ¢ = 343 m/s

e Lidar/radar: uses light waves, ¢ = 300 m/us
* In general, longer wavelength = longer range, but cannot detect small features

* Geometric active ranging sensors



Cameras




Cameras




Cameras

Blurry image




Pinhole Camera




Pinhole Camera




Pinhole Camera

* C(Clear image
* Pinhole - Dark image
» Larger hole = brighter but more blurry




Solar Eclipse

* Gaps between leaves act as pinholes

* The shape of the sun is projected on the
screen (ground)




Lenses

e Clear image
* Brighter image compared to pinhole camera




3D Scene Reconstruction From 2D Images

* Depth from focus

* Stereo vision: two images taken at different locations at the same
time

e Structure from motion: two images of the same object taken at
different times



Image Processing and Understanding

 Pixel data need to be converted into useful features

* Common operations
* Image filtering, enhancement, compression

* Geometric feature extraction
* corner, edge, plane, etc.

* Deep learning computer vision techniques



Example: Self-Driving Car

Top mounted LIDAR beams 1.4 million
laser points per second to create a 3D
map of the car's surroundings. ,’

A colored camera puts LiDAR /—w 1 /\ Antennae on the roof

map into color so the car can _rtacI:erg ”éep?f position
see traffic light changes. itself via .

There are 20 cameras looking
for braking vehicles, pedestrians,
and other obstacles.

| UBER : —

TECRNOLOGES
CENTER

LiDAR modules on the front, rear, and sides k A cooling system in the car makes sure
help detect obstacles in blind spots. everything runs without overheating.

Source: Uber BUSINESS INSIDER
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Regression

 Supervised learning / classification / regression
* Give data (x1,¥4), ..., (X5, ¥»,), choose a function f such that y = f(x)
 x; are the inputs/independent variables
 y; are the outputs/dependent variables

* Due to noise of measurements, choose f such that f(x) = y
* Choose f from a class of functions with parameter fg
» minimizeg ¥;|fp(x;) — yil°
\

)
1

“Loss function”

Another choice: Y;|fg (x;) — y;|*



Linear Regression

* Scalar example: line fitting

° y :fm’b(X) — mx+b

» Data: {(x;, ¥i)}ioq
L 2
* minimize,, , ¥;lmx; +b — y;| > Imx; + b=y = |[m% + b - |

e Let X = (x4, %5, .o, xn), Y = (31, Va oo, YN) ; 2
|mX+b-Y|" =X6 —Y|?

e let = (m,b), X =[X 1yxi] 2XT(X0 —Y) = 0
= 0* = (XTX)_1XTY

e Differentiate w.r.t. @ and set to zero



Regression




Regularization

| * Penalize size of parameters
/ ‘  minimizey|| X0 — Y||? + 1]|8]|?

2XT(X0 —Y)+210 =0
XTX0—XTY +10 =0
XTX + D0 = XTY
0=X"X+AD"1XTY

10t order polynomial given by this 6



Regularization

* Penalize size of parameters
 minimizey || X0 — Y||? + 1/|8]|?

2XT(X0 —Y)+210 =0
XTX0—XTY +10 =0
(XTX + A0 = XTY
0=X"X+AD"1XTY

10th order polynomial given by this 6



Regularization

10t" order polynomial given by this 6

* Penalize size of parameters
« minimizey|| X8 — Y||? + 1/|8]|4
* Optimize using gradient descent
* 1-norm encourages sparsity

Theta_
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Regularization

L1: [|6]l; = 316 L2: |61, = X, 6
* Does not prioritize reduction of * Prioritizes reduction of large
any component of 6 components of 6

* Encourages sparsity
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Regression

* In general, minimize “loss function”:
* minimizegl(6;X,Y) , where [: R" - R™

* Scalarcase: X = (xq, X9, ..., Xn) = [X1, X2, oo, Xy

e General case: X =

_xir_
Xz

Xy

, Where x; E R™, Y =

— T_

V1
Vs

T

LV -

]T

, Where y; € R™



Stochastic Gradient Descent

e Gradient descent: 8%t1 = g% — a*VI(0)
* If f has many parameters, then the gradient VI(8)is difficult to compute

 |dea: Only compute a few components of the gradient

* Which components?
* Cyclical choice: eg. Components 1 and 2, then 3 and 4, etc.
 Random choice: stochastic gradient descent
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Neural Networks

* A specific form of fg(x)

y =f(x'W +b)
* Parameters @ are W and b
* “Weights”



Neural Networks

* Regression: Choose 8 such that y = fg(x)
* Neural Network: A specifiyc form of fg(x)

X h

input layer hidden layer

output layer

“neuron” h=fi(x"W; + by) y = fo(h"W, + by)



Neural Networks

* Regression: Choose 8 such that y = fg(x)
* Neural Network: A specif'hc2 form of fg(x)

output layer
y = f3(h; W3 + b3)

input layer hidden layer 2

hidden layer 2
hy = fi(x"W; + by)
hy, = f,(hyW; + by)



Neural Networks

* Regression: Choose 8 such that y = fg(x)

* Neural Network: A specific form of fo(x) « Parameters 0 are the weights W/,
h, and bi

* 1, f2, f3 are nonlinear

* Otherwise f would just be a single
linear function:

output layer y = ((x"W; + b))W, + b, )W5 + by
¥ = f3(haWs + bs) = x "W, W, Ws + by WoWs + b,Ws + by
input layer hidden layer 2 dden | , “Acti _ ¢ . .
hy = f,(xTW, + b,) niddenlayer ctivation tunctions

hy, = fo(hyW5 + by)



Neural Networks
* Regression: Choose 8 such that y = fg(x)

* Neural Network: A specific form of f(x)  Common choices of activation
h, functions |
e Sigmoid: f
1 :
Tvex —

» Softplus: !
log(1+e*) |
output layer :

y = f3(h, W3 + b3)

* Hyperbolic tangent:
input layer hidden layer 2 tanh x

hy = fi(x"Wy + b)) hidden layer 2 ]
hy = f2(uW; + by) . . .
* Rectified linear unit (ReLU): |
max (0, x) |




Training Neural Networks

* Regression: Choose 8 such that y = f5(x)

* Neural Network: A specific form of fg(x) e Givencurrent8. X.Y compute

1(6;X,Y)
« Compares fg(X) with ground truth Y
* Evaluation of f: “Forward propagation”

h;

* Minimize [(0; X,Y)

» Stochastic gradient descent

output layer _ _
Y = fa(h,W5 + bs3)  Computing the gradient
dy'_ dy  dhy Ay

* Chain rule: =
dx h2 dhl dx

input layer hidden layer 2 e | ,
hy = fi(xTW; +b,) 100N TAVEr W
hy = f,(hyW; + by)

Matrices

. d o" . ”
* Evaluation of d—i:: Back propagation
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Example: Small VGG Net From Stanford CS231n

RELU RELU

RELU RELU
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Neural Network Architectures

* Convolutional neural network (CNN)
* Has translational invariance properties from convolution
 Common used for computer vision

e Recurrent neural network RNN

* Has feedback loops to capture temporal or sequential information

» Useful for handwriting recognition, speech recognition, reinforcement
learning

* Long short-term memory (LSTM): special type of RNN with advantages in
numerical properties

e Others

* General feedforward networks, variational autoencoders (VAEs), conditional
VAEs,



Training Neural Networks

* Training process (optimization algorithm)
e Standard L1 and L2 regularization
* Dropout: randomly set neurons to zero in each training iteration
* Transform input data (e.g. rotating, stretching, adding noise)
* Learning rate (step size) and other hyperparameter tuning

» Software packages: Efficient gradient computation
e Caffe, Torch, Theano, Tensor Flow



