
HJ Reachability Analysis
CMPT 882

Mar. 1



Reachability Analysis: Avoidance

Assumptions: 
• Model of robot
• Unsafe region: Obstacle

Unsafe region

Backward reachable set 
(States leading to danger)

Reachable set

Control policy



Reachability Analysis: Goal Reaching
Backward reachable set

Target set

3

• Model of robot
• Goal region

Backward reachable set 
(States leading to goal)

Control policy



Information Pattern

• Control: chosen by “ego” robot

• Disturbances: chosen by other robot (or weather gods)
• Assume worst case

• “Open-loop” strategies
• Ego robot declares entire plan
• Other robot responds optimally (worst-case)
• Conservative, unrealistic, but computationally cheap

• “Non-anticipative” strategies
• Other robot acts based on state and control trajectory up current time
• Notation: 𝑑 ⋅ = Γ 𝑢 ⋅
• Disturbance still has the advantage: it gets to react to the control!



Reachability Analysis

5

• Model of robot
• Unsafe region

Backward reachable set (States leading to danger)

Control policy

• Model of robot
• Goal region

Backward reachable set (States leading to goal)

Control policy

• ሶ𝑥 = 𝑓 𝑥, 𝑢, 𝑑
• 𝒯

• 𝒜 𝑡 = ҧ𝑥: ∃Γ 𝑢 ⋅ , ∀𝑢 ⋅ , ሶ𝑥 = 𝑓 𝑥, 𝑢, 𝑑 , 𝑥 𝑡 = ҧ𝑥, 𝑥 0 ∈ 𝒯

• ℛ 𝑡 = ҧ𝑥: ∀Γ 𝑢 ⋅ , ∃𝑢 ⋅ , ሶ𝑥 = 𝑓 𝑥, 𝑢, 𝑑 , 𝑥 𝑡 = ҧ𝑥, 𝑥 0 ∈ 𝒯

• 𝑢∗ 𝑡, 𝑥



Reachability Analysis

6

• Model of robot
• Unsafe region

Control policy

• Model of robot
• Goal region

Control policy

• ሶ𝑥 = 𝑓 𝑥, 𝑢, 𝑑
• 𝒯 • 𝑢∗ 𝑡, 𝑥

• 𝒜 𝑡 = ҧ𝑥: ∃Γ 𝑢 ⋅ , ∀𝑢 ⋅ , ሶ𝑥 = 𝑓 𝑥, 𝑢, 𝑑 , 𝑥 𝑡 = ҧ𝑥, 𝑥 0 ∈ 𝒯

States at time 𝑡 satisfying the following:
there exists a disturbance such that for all control, system enters target set at 𝑡 = 0

• ℛ 𝑡 = ҧ𝑥: ∀Γ 𝑢 ⋅ , ∃𝑢 ⋅ , ሶ𝑥 = 𝑓 𝑥, 𝑢, 𝑑 , 𝑥 𝑡 = ҧ𝑥, 𝑥 0 ∈ 𝒯

States at time 𝑡 satisfying the following:
for all disturbances, there exists a control such that system enters target set at 𝑡 = 0

Backward reachable set (States leading to danger)

Backward reachable set (States leading to goal)



Computing Reachable Sets: 
Hamilton-Jacobi Approach
• Start from continuous time dynamic programming

• Observe that disturbances do not affect the procedure

• Remove running cost

• Pick final cost intelligently



Dynamic Programming: Continuous Time

• Let

• Dynamic programming principle:

• Approximate integral and Taylor expand 𝑉 𝑥 𝑡 + 𝛿 , 𝑡 + 𝛿

• Derive Hamilton-Jacobi partial differential equation (HJ PDE)

𝑉 𝑥 𝑡 , 𝑡 ≔ 𝐽∗ 𝑥 𝑡 , 𝑡 = min
𝑢[𝑡,0] ⋅

න
𝑡

0

𝐶 𝑥 𝑠 , 𝑢 𝑠 𝑑𝑠 + 𝑙 𝑥 𝑇

𝐽 𝑥(𝑡), 𝑡 = න
𝑡

0

𝐶 𝑥 𝑠 , 𝑢 𝑠 𝑑𝑠 + 𝑙 𝑥 𝑇 “Cost to go”

“Value function”, “𝐽∗ 𝑥 𝑡 , 𝑡 ”
𝑎

𝑏1

𝑏2

𝑏3

𝑑

ሚ𝐽𝑎𝑏1 ሚ𝐽𝑎𝑏2

ሚ𝐽𝑎𝑏3

𝐽𝑏3𝑑
∗

𝐽𝑏2𝑑
∗

𝐽𝑏1𝑑
∗

𝑉 𝑥 𝑡 , 𝑡 = min
𝑢[𝑡,𝑡+𝛿] ⋅

න
𝑡

𝑡+𝛿

𝐶 𝑥 𝑠 , 𝑢 𝑠 𝑑𝑠 + 𝑉 𝑥 𝑡 + 𝛿 , 𝑡 + 𝛿

Write out time interval explicitly for clarity



Dynamic Programming: Continuous Time

• Approximations for small 𝛿:

• Omit 𝑡 dependence…

• 𝑉 𝑥, 𝑡 does not depend on 𝑢

𝑉 𝑥 𝑡 , 𝑡 = min
𝑢[𝑡,𝑡+𝛿] ⋅

න
𝑡

𝑡+𝛿

𝐶 𝑥 𝑠 , 𝑢 𝑠 𝑑𝑠 + 𝑉 𝑥 𝑡 + 𝛿 , 𝑡 + 𝛿

𝐶 𝑥 𝑡 , 𝑢 𝑡 𝛿
𝑉 𝑥(𝑡), 𝑡 +

𝜕𝑉

𝜕𝑥
⋅ 𝛿𝑓 𝑥(𝑡), 𝑢(𝑡) +

𝜕𝑉

𝜕𝑡
𝛿

𝑥 𝑡 + 𝛿𝑓 𝑥, 𝑢

𝑉 𝑥, 𝑡 = min
𝑢

𝐶 𝑥, 𝑢 𝛿 + 𝑉 𝑥, 𝑡 +
𝜕𝑉

𝜕𝑥
⋅ 𝛿𝑓 𝑥, 𝑢 +

𝜕𝑉

𝜕𝑡
𝛿

𝑉 𝑥, 𝑡 = 𝑉 𝑥, 𝑡 + min
𝑢

𝐶 𝑥, 𝑢 𝛿 +
𝜕𝑉

𝜕𝑥
⋅ 𝛿𝑓 𝑥, 𝑢 +

𝜕𝑉

𝜕𝑡
𝛿

Assume constant 𝑢 𝑡,𝑡+𝛿 → Optimization over a vector, not a function!



Dynamic Programming: Continuous Time

• Approximations for small 𝛿:

• Omit 𝑡 dependence…

• 𝑉 𝑥, 𝑡 does not depend on 𝑢

𝑉 𝑥 𝑡 , 𝑡 = min
𝑢[𝑡,𝑡+𝛿] ⋅

න
𝑡

𝑡+𝛿

𝐶 𝑥 𝑠 , 𝑢 𝑠 𝑑𝑠 + 𝑉 𝑥 𝑡 + 𝛿 , 𝑡 + 𝛿

𝐶 𝑥 𝑡 , 𝑢 𝑡 𝛿
𝑉 𝑥(𝑡), 𝑡 +

𝜕𝑉

𝜕𝑥
⋅ 𝛿𝑓 𝑥(𝑡), 𝑢(𝑡) +

𝜕𝑉

𝜕𝑡
𝛿

𝑥 𝑡 + 𝛿𝑓 𝑥, 𝑢

𝑉 𝑥, 𝑡 = min
𝑢

𝐶 𝑥, 𝑢 𝛿 + 𝑉 𝑥, 𝑡 +
𝜕𝑉

𝜕𝑥
⋅ 𝛿𝑓 𝑥, 𝑢 +

𝜕𝑉

𝜕𝑡
𝛿

𝑉 𝑥, 𝑡 = 𝑉 𝑥, 𝑡 +
𝜕𝑉

𝜕𝑡
𝛿 + min

𝑢
𝐶 𝑥, 𝑢 𝛿 +

𝜕𝑉

𝜕𝑥
⋅ 𝛿𝑓 𝑥, 𝑢

Assume constant 𝑢 𝑡,𝑡+𝛿 → Optimization over a vector, not a function!



Dynamic Programming: Continuous Time

• Approximations for small 𝛿:

• Omit 𝑡 dependence…

• 𝑉 𝑥, 𝑡 does not depend on 𝑢

𝑉 𝑥 𝑡 , 𝑡 = min
𝑢[𝑡,𝑡+𝛿] ⋅

න
𝑡

𝑡+𝛿

𝐶 𝑥 𝑠 , 𝑢 𝑠 𝑑𝑠 + 𝑉 𝑥 𝑡 + 𝛿 , 𝑡 + 𝛿

𝐶 𝑥 𝑡 , 𝑢 𝑡 𝛿
𝑉 𝑥(𝑡), 𝑡 +

𝜕𝑉

𝜕𝑥
⋅ 𝛿𝑓 𝑥(𝑡), 𝑢(𝑡) +

𝜕𝑉

𝜕𝑡
𝛿

𝑥 𝑡 + 𝛿𝑓 𝑥, 𝑢

𝑉 𝑥, 𝑡 = min
𝑢

𝐶 𝑥, 𝑢 𝛿 + 𝑉 𝑥, 𝑡 +
𝜕𝑉

𝜕𝑥
⋅ 𝛿𝑓 𝑥, 𝑢 +

𝜕𝑉

𝜕𝑡
𝛿

0 =
𝜕𝑉

𝜕𝑡
𝛿 + min

𝑢
𝐶 𝑥, 𝑢 𝛿 +

𝜕𝑉

𝜕𝑥
⋅ 𝛿𝑓 𝑥, 𝑢

Assume constant 𝑢 𝑡,𝑡+𝛿 → Optimization over a vector, not a function!



Dynamic Programming: Continuous Time

• Approximations for small 𝛿:

• Omit 𝑡 dependence…

• 𝑉 𝑥, 𝑡 does not depend on 𝑢

𝑉 𝑥 𝑡 , 𝑡 = min
𝑢[𝑡,𝑡+𝛿] ⋅

න
𝑡

𝑡+𝛿

𝐶 𝑥 𝑠 , 𝑢 𝑠 𝑑𝑠 + 𝑉 𝑥 𝑡 + 𝛿 , 𝑡 + 𝛿

𝐶 𝑥 𝑡 , 𝑢 𝑡 𝛿
𝑉 𝑥(𝑡), 𝑡 +

𝜕𝑉

𝜕𝑥
⋅ 𝛿𝑓 𝑥(𝑡), 𝑢(𝑡) +

𝜕𝑉

𝜕𝑡
𝛿

𝑥 𝑡 + 𝛿𝑓 𝑥, 𝑢

𝑉 𝑥, 𝑡 = min
𝑢

𝐶 𝑥, 𝑢 𝛿 + 𝑉 𝑥, 𝑡 +
𝜕𝑉

𝜕𝑥
⋅ 𝛿𝑓 𝑥, 𝑢 +

𝜕𝑉

𝜕𝑡
𝛿

𝜕𝑉

𝜕𝑡
+ min

𝑢
𝐶 𝑥, 𝑢 +

𝜕𝑉

𝜕𝑥
⋅ 𝑓 𝑥, 𝑢 = 0

Assume constant 𝑢 𝑡,𝑡+𝛿 → Optimization over a vector, not a function!



Computing Reachable Sets: 
Hamilton-Jacobi Approach
• Start from continuous time dynamic programming

• Observe that disturbances do not affect the procedure

• Remove running cost

• Pick final cost intelligently



Dynamic Programming: Continuous Time
(with disturbances)

• Let

• Dynamic programming principle:

• Approximate integral and Taylor expand 𝑉 𝑥 𝑡 + 𝛿 , 𝑡 + 𝛿

• Derive Hamilton-Jacobi partial differential equation (HJ PDE)

𝑉 𝑥 𝑡 , 𝑡 = min
Γ 𝑢 ⋅

max
𝑢 ⋅

න
𝑡

0

𝐶 𝑥 𝑠 , 𝑢 𝑠 , 𝑑 𝑠 𝑑𝑠 + 𝑙 𝑥 𝑇

𝐽 𝑥(𝑡), 𝑡 = න
𝑡

0

𝐶 𝑥 𝑠 , 𝑢 𝑠 , 𝑑 𝑠 𝑑𝑠 + 𝑙 𝑥 𝑇 “Cost to go”

𝑎

𝑏1

𝑏2

𝑏3

𝑑

ሚ𝐽𝑎𝑏1 ሚ𝐽𝑎𝑏2

ሚ𝐽𝑎𝑏3

𝐽𝑏3𝑑
∗

𝐽𝑏2𝑑
∗

𝐽𝑏1𝑑
∗

𝑉 𝑥 𝑡 , 𝑡 = min
Γ 𝑢 ⋅

max
𝑢 ⋅

න
𝑡

𝑡+𝛿

𝐶 𝑥(𝑠), 𝑢 𝑠 , 𝑑 𝑠 𝑑𝑠 + 𝑉 𝑥 𝑡 + 𝛿 , 𝑡 + 𝛿

Worst-case disturbance -- do the opposite of the control



Dynamic Programming: Continuous Time
(with disturbances)
• Approximations for small 𝛿:

• Omit 𝑡 dependence…

• 𝑉 𝑥, 𝑡 does not depend on 𝑢 or 𝑑

𝑉 𝑥 𝑡 , 𝑡 = min
Γ 𝑢 ⋅

max
𝑢 ⋅

න
𝑡

𝑡+𝛿

𝐶 𝑥 𝑠 , 𝑢 𝑠 , 𝑑 𝑠 𝑑𝑠 + 𝑉 𝑥 𝑡 + 𝛿 , 𝑡 + 𝛿

𝐶 𝑥 𝑡 , 𝑢 𝑡 , 𝑑 𝑡 𝛿 𝑉 𝑥(𝑡), 𝑡 +
𝜕𝑉

𝜕𝑥
⋅ 𝛿𝑓 𝑥(𝑡), 𝑢(𝑡) +

𝜕𝑉

𝜕𝑡
𝛿

𝑥 𝑡 + 𝛿𝑓 𝑥, 𝑢, 𝑑

𝑉 𝑥, 𝑡 = max
𝑢

min
𝑑

𝐶 𝑥, 𝑢, 𝑑 𝛿 + 𝑉 𝑥, 𝑡 +
𝜕𝑉

𝜕𝑥
⋅ 𝛿𝑓 𝑥, 𝑢, 𝑑 +

𝜕𝑉

𝜕𝑡
𝛿

𝑉 𝑥, 𝑡 = 𝑉 𝑥, 𝑡 + max
𝑢

min
𝑑

𝐶 𝑥, 𝑢, 𝑑 𝛿 +
𝜕𝑉

𝜕𝑥
⋅ 𝛿𝑓 𝑥, 𝑢, 𝑑 +

𝜕𝑉

𝜕𝑡
𝛿

• Assume constant 𝑢 and 𝑑→ Optimization over vectors, not functions!
• Order of max and min reverse: disturbance has the advantage



Dynamic Programming: Continuous Time
(with disturbances)
• Approximations for small 𝛿:

• Omit 𝑡 dependence…

• 𝑉 𝑥, 𝑡 does not depend on 𝑢 or 𝑑

𝑉 𝑥 𝑡 , 𝑡 = min
Γ 𝑢 ⋅

max
𝑢 ⋅

න
𝑡

𝑡+𝛿

𝐶 𝑥 𝑠 , 𝑢 𝑠 , 𝑑 𝑠 𝑑𝑠 + 𝑉 𝑥 𝑡 + 𝛿 , 𝑡 + 𝛿

𝐶 𝑥 𝑡 , 𝑢 𝑡 , 𝑑 𝑡 𝛿 𝑉 𝑥(𝑡), 𝑡 +
𝜕𝑉

𝜕𝑥
⋅ 𝛿𝑓 𝑥(𝑡), 𝑢(𝑡) +

𝜕𝑉

𝜕𝑡
𝛿

𝑥 𝑡 + 𝛿𝑓 𝑥, 𝑢, 𝑑

𝑉 𝑥, 𝑡 = max
𝑢

min
𝑑

𝐶 𝑥, 𝑢, 𝑑 𝛿 + 𝑉 𝑥, 𝑡 +
𝜕𝑉

𝜕𝑥
⋅ 𝛿𝑓 𝑥, 𝑢, 𝑑 +

𝜕𝑉

𝜕𝑡
𝛿

𝑉 𝑥, 𝑡 = 𝑉 𝑥, 𝑡 + max
𝑢

min
𝑑

𝐶 𝑥, 𝑢, 𝑑 𝛿 +
𝜕𝑉

𝜕𝑥
⋅ 𝛿𝑓 𝑥, 𝑢, 𝑑 +

𝜕𝑉

𝜕𝑡
𝛿

• Assume constant 𝑢 and 𝑑→ Optimization over vectors, not functions!
• Order of max and min reverse: disturbance has the advantage



Dynamic Programming: Continuous Time
(with disturbances)
• Approximations for small 𝛿:

• Omit 𝑡 dependence…

• 𝑉 𝑥, 𝑡 does not depend on 𝑢 or 𝑑

𝑉 𝑥 𝑡 , 𝑡 = min
Γ 𝑢 ⋅

max
𝑢 ⋅

න
𝑡

𝑡+𝛿

𝐶 𝑥 𝑠 , 𝑢 𝑠 , 𝑑 𝑠 𝑑𝑠 + 𝑉 𝑥 𝑡 + 𝛿 , 𝑡 + 𝛿

𝐶 𝑥 𝑡 , 𝑢 𝑡 , 𝑑 𝑡 𝛿 𝑉 𝑥(𝑡), 𝑡 +
𝜕𝑉

𝜕𝑥
⋅ 𝛿𝑓 𝑥(𝑡), 𝑢(𝑡) +

𝜕𝑉

𝜕𝑡
𝛿

𝑥 𝑡 + 𝛿𝑓 𝑥, 𝑢, 𝑑

𝑉 𝑥, 𝑡 = max
𝑢

min
𝑑

𝐶 𝑥, 𝑢, 𝑑 𝛿 + 𝑉 𝑥, 𝑡 +
𝜕𝑉

𝜕𝑥
⋅ 𝛿𝑓 𝑥, 𝑢, 𝑑 +

𝜕𝑉

𝜕𝑡
𝛿

0 =
𝜕𝑉

𝜕𝑡
𝛿 + max

𝑢
min
𝑑

𝐶 𝑥, 𝑢, 𝑑 𝛿 +
𝜕𝑉

𝜕𝑥
⋅ 𝛿𝑓 𝑥, 𝑢, 𝑑

• Assume constant 𝑢 and 𝑑→ Optimization over vectors, not functions!
• Order of max and min reverse: disturbance has the advantage



Dynamic Programming: Continuous Time
(with disturbances)
• Approximations for small 𝛿:

• Omit 𝑡 dependence…

• 𝑉 𝑥, 𝑡 does not depend on 𝑢 or 𝑑

𝑉 𝑥 𝑡 , 𝑡 = min
Γ 𝑢 ⋅

max
𝑢 ⋅

න
𝑡

𝑡+𝛿

𝐶 𝑥 𝑠 , 𝑢 𝑠 , 𝑑 𝑠 𝑑𝑠 + 𝑉 𝑥 𝑡 + 𝛿 , 𝑡 + 𝛿

𝐶 𝑥 𝑡 , 𝑢 𝑡 , 𝑑 𝑡 𝛿 𝑉 𝑥(𝑡), 𝑡 +
𝜕𝑉

𝜕𝑥
⋅ 𝛿𝑓 𝑥(𝑡), 𝑢(𝑡) +

𝜕𝑉

𝜕𝑡
𝛿

𝑥 𝑡 + 𝛿𝑓 𝑥, 𝑢, 𝑑

𝑉 𝑥, 𝑡 = max
𝑢

min
𝑑

𝐶 𝑥, 𝑢, 𝑑 𝛿 + 𝑉 𝑥, 𝑡 +
𝜕𝑉

𝜕𝑥
⋅ 𝛿𝑓 𝑥, 𝑢, 𝑑 +

𝜕𝑉

𝜕𝑡
𝛿

0 =
𝜕𝑉

𝜕𝑡
+ max

𝑢
min
𝑑

𝐶 𝑥, 𝑢, 𝑑 +
𝜕𝑉

𝜕𝑥
⋅ 𝑓 𝑥, 𝑢, 𝑑

• Assume constant 𝑢 and 𝑑→ Optimization over vectors, not functions!
• Order of max and min reverse: disturbance has the advantage



Computing Reachable Sets: 
Hamilton-Jacobi Approach
• Start from continuous time dynamic programming

• Observe that disturbances do not affect the procedure

• Remove running cost

• Pick final cost intelligently



Remove Running Cost, Pick Final Cost

• Hamilton-Jacobi Equation

• 0 =
𝜕𝑉

𝜕𝑡
+max

𝑑
min
𝑢

𝐶 𝑥, 𝑢, 𝑑 +
𝜕𝑉

𝜕𝑥
⋅ 𝑓 𝑥, 𝑢, 𝑑 , 𝑉 0, 𝑥 = 𝑙 𝑥

• Remove running cost

• 0 =
𝜕𝑉

𝜕𝑡
+max

𝑑
min
𝑢

𝜕𝑉

𝜕𝑥
⋅ 𝑓 𝑥, 𝑢, 𝑑 , 𝑉 0, 𝑥 = 𝑙 𝑥

• Pick final cost such that
• 𝑥 ∈ 𝒯 ⇔ 𝑙 𝑥 ≤ 0

• Example: If 𝒯 = 𝑥: 𝑥𝑟
2 + 𝑦𝑟

2 ≤ 𝑅 ⊆ ℝ3, we can pick 𝑙 𝑥𝑟 , 𝑦𝑟 , 𝜃𝑟 = 𝑥𝑟
2 + 𝑦𝑟

2 − 𝑅

𝜃𝑟

𝑥𝑟, 𝑦𝑟

𝑥 =

𝑥𝑟
𝑦𝑟
𝜃𝑟

𝒯 = 𝑥: 𝑥𝑟
2 + 𝑦𝑟

2 ≤ 𝑅 ⊆ ℝ3



Pick Final Cost

• Pick final cost such that
• 𝑥 ∈ 𝒯 ⇔ 𝑙 𝑥 ≤ 0

• If 𝒯 = 𝑥: 𝑥𝑟
2 + 𝑦𝑟

2 ≤ 𝑅 ⊆ ℝ3, we can pick 𝑙 𝑥𝑟 , 𝑦𝑟 , 𝜃𝑟 = 𝑥𝑟
2 + 𝑦𝑟

2 − 𝑅

• Why is this correct?
• Final state 𝑥 0 is in 𝒯 if and only if 𝑙 𝑥 0 ≤ 0

• To avoid 𝒯, control should maximize 𝑙 𝑥 0
• Worst-case disturbance would minimize

• 𝑉 𝑡, 𝑥 = min
Γ 𝑢

max
𝑢

𝑙 𝑥 0

𝑥𝑔 0

𝑥𝑏 0

𝑙 𝑥 ≤ 0, 
target set

𝑉 𝑥𝑔 0 , 0 > 0

𝑉 𝑥𝑏 0 , 0 ≤ 0
𝑥𝑏 𝑡

𝑥𝑔 𝑡

𝑙 𝑥 , “Target set”



Reaching vs. Avoiding

• Avoiding danger

• BRS definition
𝒜 𝑡 = ҧ𝑥: ∃Γ 𝑢 ⋅ , ∀𝑢 ⋅ , ሶ𝑥 = 𝑓 𝑥, 𝑢, 𝑑 , 𝑥 𝑡 = ҧ𝑥, 𝑥 0 ∈ 𝒯

• Value function
𝑉 𝑡, 𝑥 = min

Γ 𝑢
max
𝑢

𝑙 𝑥 0

• HJ PDE
𝜕𝑉

𝜕𝑡
+ max

𝑢
min
𝑑

𝜕𝑉

𝜕𝑥

⊤

𝑓 𝑥, 𝑢, 𝑑 = 0

• Optimal control

𝑢∗ = argmax
𝑢

min
𝑑

𝜕𝑉

𝜕𝑥

⊤

𝑓 𝑥, 𝑢, 𝑑

• Reaching a goal

• BRS definition
ℛ 𝑡 = ҧ𝑥: ∀Γ 𝑢 ⋅ , ∃𝑢 ⋅ , ሶ𝑥 = 𝑓 𝑥, 𝑢, 𝑑 , 𝑥 𝑡 = ҧ𝑥, 𝑥 0 ∈ 𝒯

• Value function
𝑉 𝑡, 𝑥 = max

Γ 𝑢
min
𝑢

𝑙 𝑥 0

• HJ PDE
𝜕𝑉

𝜕𝑡
+ min

𝑢
max
𝑑

𝜕𝑉

𝜕𝑥

⊤

𝑓 𝑥, 𝑢, 𝑑 = 0

• Optimal control

𝑢∗ = argmin
𝑢

max
𝑑

𝜕𝑉

𝜕𝑥

⊤

𝑓 𝑥, 𝑢, 𝑑



Optimal Control and Disturbance

• Example: Scalar control and disturbance affine system
• Dynamics: ሶ𝑥 = 𝑓 𝑥 + σ𝑖 𝑔𝑖 𝑥 𝑢𝑖 + σ𝑗 ℎ𝑗 𝑥 𝑑𝑗 , 𝑥 ∈ ℝ

• Control and disturbance constraints: 𝑢𝑖 ∈ 𝑢𝑖 , ത𝑢𝑖 , 𝑑𝑗 ∈ 𝑑𝑗 , ҧ𝑑𝑗

𝜕𝑉

𝜕𝑡
+ min

𝑢𝑖∈ 𝑢𝑖,ഥ𝑢𝑖
max

𝑑𝑗∈ 𝑑𝑗, ത𝑑𝑗

𝜕𝑉

𝜕𝑥

⊤

𝑓 𝑥, 𝑢, 𝑑 = 0

𝜕𝑉

𝜕𝑡
+ min

𝑢𝑖∈ 𝑢𝑖,ഥ𝑢𝑖
max

𝑑𝑗∈ 𝑑𝑗, ത𝑑𝑗

𝜕𝑉

𝜕𝑥
𝑓 𝑥 +

𝑖

𝑔𝑖 𝑥 𝑢𝑖 +

𝑗

ℎ𝑗 𝑥 𝑑𝑗 = 0

𝜕𝑉

𝜕𝑡
+ min

𝑢𝑖∈ 𝑢𝑖,ഥ𝑢𝑖
max

𝑑𝑗∈ 𝑑𝑗, ത𝑑𝑗

𝜕𝑉

𝜕𝑥
𝑓 𝑥 +

𝑖

𝜕𝑉

𝜕𝑥
𝑔𝑖 𝑥 𝑢𝑖 +

𝑗

𝜕𝑉

𝜕𝑥
ℎ𝑗 𝑥 𝑑𝑗 = 0

𝑢𝑖 =
𝑢𝑖 ,

𝜕𝑉

𝜕𝑥
𝑔𝑖 𝑥 ≥ 0

ത𝑢𝑖 ,
𝜕𝑉

𝜕𝑥
𝑔𝑖 𝑥 < 0

𝑑𝑗 =
𝑑𝑗 ,

𝜕𝑉

𝜕𝑥
𝑔𝑖 𝑥 < 0

ҧ𝑑𝑗 ,
𝜕𝑉

𝜕𝑥
𝑔𝑖 𝑥 ≥ 0



Optimal Control and Disturbance

• Easy to compute for many common types of control and disturbance 
constraints

• Interval constraints: easy -- see last slide

• Polytopic constraints: easy -- test all vertices

• Other: ideally, need analytic expression
• Optimization needs to be done at every grid point!

Eg.
𝜕𝑉

𝜕𝑡
+min

𝑢
max
𝑑

𝜕𝑉

𝜕𝑥

⊤
𝑓 𝑥, 𝑢, 𝑑 = 0



Terminology

• Minimal backward reachable set
• 𝒜 𝑡 = ҧ𝑥: ∃Γ 𝑢 ⋅ , ∀𝑢 ⋅ , ሶ𝑥 = 𝑓 𝑥, 𝑢, 𝑑 , 𝑥 𝑡 = ҧ𝑥, 𝑥 0 ∈ 𝒯

• Control minimizes size of reachable set

• Maximal backward reachable set
• ℛ 𝑡 = ҧ𝑥: ∀Γ 𝑢 ⋅ , ∃𝑢 ⋅ , ሶ𝑥 = 𝑓 𝑥, 𝑢, 𝑑 , 𝑥 𝑡 = ҧ𝑥, 𝑥 0 ∈ 𝒯

• Control maximizes size of reachable set


