Continuous Time LQR and
Robotic Safety via Reachability

CMPT 882
Feb. 27

References

* Dynamic Programming:

* Bertsekas, Dynamic Programming and Optimal Control. Athena Scientific,
2017, 1886529434,

e Reachability Analysis:

* Chen & Tomlin. “Hamilton-Jacobi Reachability: Some Recent Theoretical
Advances and Applications in Unmanned Airspace Management”. Annual
Review.

Hamilton-Jacobi Equation

Hamilton-Jacobi partial differential equation

OV_I_ n e)_I_OV x| =0
5 ml}n X, U P fl,u)| =0,

Minimization over u is typically easy
* Most systems are control affine: f(x,u) has the form f(x) + g(x)u
» Control constraints are typically “box” constraints, e.g. |u;| < 1

PDE is solved on a grid
« x € R" means V(t, x) is computed on an (n + 1)-dimensional grid

V(x,t) is often not differentiable (or continuous)
* Viscosity solutions
* Lax Friedrichs numerical method

V(x, tf) = 1(x)

Example: Continuous LQR

J(x(t),t) =] C(x(s),u(s))ds + l(x(T))
* Linear system: x = Ax + Bu

* Cost involving quadratic expressions:
1 (T 1
JGot) = f (x(O)TQx(®) +u(®) Ru(t))dt + x(T) Lx(T)
t

* L,0Q, R are symmetric positive semidefinite
* T is given
e x(t) and u(t) are unconstrained

* The Hamilton-Jacobi equation becomes

v 1 oV)
a2 + > min [ic(t)TQx(t) +u(t) TRu(t) + El (Ax(t) + Bu(t))} =0

|
Pre-Hamiltonian: H (x, u, Z—Z)

Continuous Time LQR

* Pre-Hamiltonian: H (x,1,57) = x()TQx(t) + u(t) "Ru(t) + 3_ - (Ax(t) + Bu(t))

* Take Jacobian to optimize H: Z—Z = Ru(s) + B -Z—Z
2

0 : e ..
* Observe that -z = R = 0, so first order condition is sufficient

. OH . _ 1%
. Settmgato zero, we get u*(t) = —R 1BTa

e Plugging this back into H, we get the Hamiltonian:

av\ 1 1 av\' v (aV\' v
x 7\ _Z T | p-1pT2" —1pT " “v . —1pT 2"
H <x'6x> 2x(t) Qx(t)+2<R B ax> RR™!B ax+(6x> (Ax BR1B ax)

v\ 1 1/0v\"' 4 \' v
H* | == T N s BR—lBT_ o _ —-1pT
<x, 0x> 5 x(t) ' Qx(t) + 5 <0x> P + <0x> (Ax BR™'B ax>

T T
H* (x, 6_V> = lx(t)TQx(t) _1(6_1;) BR‘lBTa—V + <6—V> Ax

Continuous Time LQR

* Hamilton-Jacobi equation:
v [(aV

v 1 1/ov\' ! 1
E‘FEX(I')TQX(IE) _§<E> BR 1BT£+ (a) Ax = O; V(X(T),T) ZEX(T)TLX(T)

* Strategy for obtaining solution: guess something that works
* V(x,t) =xTK(x, K(t) =0

av 1 _. 51
—_— T —_—
5 = 7% K(t)x, iz K(t)x

Continuous Time LQR

* Hamilton-Jacobi equation:

1 _. 1 1/ov\' . _av [aV\' 1 T
SXTK(0)x +5x(6)7Qx(8) _§<ﬂ> BR™'BT—+ (ax> Ax =0, V(x(¢t) tf) = Ex(tf) Lx(tr)

* Strategy for obtaining solution: guess something that works
* V(x,t) =xTK(x, K(t) =0

av 1 _. 51
—_— T —_—
5~ 7% K(t)x, iz K(t)x

Continuous Time LQR

* Hamilton-Jacobi equation:

1 : 1 1 1
ExTK(t)x + Ex(t)TQx(t) — ExTK(t)TBR_lBTK(t)x +x"K(t)"Ax = 0, V(x(tr) tr) = Ex(tf)TLx(tf)

 Strategy for obtaining solution: guess something that works
* V(x,t) =>xTK(x, K(t) =0

av 1 . av
—_— T —_—
5 = 7% K(t)x, I K(t)x

Continuous Time LQR

Scalar, therefore

1 1
: : : —x"K({t)"TAx + =xTATK(t)x symmetric
* Hamilton-Jacobi equation: 2 2" (.)/
1 . 1 1 ' '
ExTK(t)x + Ex(t)TQx(t) — ExTK(t)TBR_lBTK(t)x +x"K(t)TAx =0

e Collect like terms
1 .
~xT (K(t) +0—K®TBRIBTK(t) + K(H)TA + ATK(t)) x=0

* This equation must hold for all x(t), so
K)+Q—-K@)"BRTIBTKt) +K(t)TA+ATK(t) =0

* Boundary condition: V(x(T),T) = %x(T)TLx(T)
* Therefore K(T) =L

Continuous Time LQR

* Hamilton-Jacobi equation:

%xTI'((t)x + %x(t)TQx(t) — %xTK(t)TBR_lBTK(t)x +xTK(t)TAx = 0, V(x(tr) tr) = %x(T)TLx(T)

* PDE becomes ODE:
Kt)+Q—-K@®)"BRIBTK(t)+ K)TA+ATK(t) =0, K(T)=L

* “Riccati equation”
* Integrate backwards in time
* Optimal control is linear state feedback!

oV
u*(t,x) = —R—lBTa = —R1BTK(t)x

Comments

» Suppose |u(t)| < 1is a constraint
e Useu(t) =—-R BTK(t)xif | -R™'B"K(t)x| <1
e Useu(t) =1if—RBTK(t)x > 1

What if there is control constraint? e Useu(t)=—-1if—R'BTK(t)x < —1
* Easy: Let controllers saturate
 Difficult but proper: Explicitly treat it in the minimization of |

No control constraint

MATLAB commands

* Discrete time: d1gr; continuous time: 1gr

In general, need to solve

i)/ av _ _
v + min [C(x, u) +a flew)| =0, V(x,T) = L(x)

* V(x,t)is (n + 1)-dimensional, if x € R"
» Optimal state feedback control: u*(t,x) = arg min [C(x, u) + Z—Z - f(x, u)]
u

Time Horizon

* Finite time horizon problems

* Time-varying value function: optimal cost from some time and state
 Jr(x) for discrete time, V(t, x) for continuous time

* Time-varying control policy: achieves optimal cost
* uy(x) for discrete time, u*(t, x) for continuous time

* Infinite time horizon problems
* Let final time be 0, and apply DP backwards until convergence

 Convergence not guaranteed; if J;. (x) / V (¢, x) converges, then we have a
time-invariant value function and control policy

* Joo (), ugo (x) / Voo (%), Uco (%)

Robotic Safety

e Verification methods

Assumptions

Prove safety
Control policy

* Considers all possible system behaviours, given assumptions

e Can be written as an optimal control problem

Reachability Analysis: Avoidance

Reachable set |j<afe region
. 4

Assumptions: Control policy
* Model of robot

* Unsafe region: Obstacle Backward reachable set

(States leading to danger)

Assumptions

e System dynamics: x = f(x,u,d),t < 0 (by convention, final time is 0)

* State x
x * Single vehicle, multiple vehicle, relative coordinates
(s yr)
X
ﬁ(xz Y2, 02) }’1 \//
’\} 4 97' Xy
1
(1, y1,61) T =l
X1,) &)
e & v, o 6r
6,

 Disturbance d: uncontrolled factors that affect the system, such as wind

e Can be used to model other agents, when state includes them
* Assume worst case

Information Pattern

e Control: chosen by “ego” robot

* Disturbances: chosen by other robot (or weather gods)
* Assume worst case

* “Open-loop” strategies
* Ego robot declares entire plan
* Other robot responds optimally (worst-case)
* Conservative, unrealistic, but computationally cheap

* “Non-anticipative” strategies
* Other robot acts based on state and control trajectory up current time
* Notation: d(-) = I'[u](-)
* Disturbance still has the advantage: it gets to react to the control!

Assumptions

e “Target set”, T
* Can specify set of states leading to danger
* Expressed through set notation

Obstacle X = [
lxll at (%, 7)
X =

"8

0,
T = {x:\/(xl — X2+ () — P2 < r} C R3

Reachability Analysis: Avoidance

Backward reachable set Unsafe region

Control policy
* Model of robot

e Unsafe region
Backward reachable set

(States leading to danger)

Reachability Analysis: Goal Reaching

Backward reachable set

Target set

Control policy
* Model of robot

* Goal region
Backward reachable set

(States leading to goal)

Reachability Analysis

 Model of robot
* Unsafe region

« x=f(xud)
VA

* Model of robot
* Goal region

o A(t) = {x:3Aru](),Vu(),x = f(x,u,d),x(t) = x,x(0) € T}

Backward reachable set (States leading to danger) é A

Control policy
o u*(t, x)
Control policy

Backward reachable set (States leading to goal)

o R(t) = {x: VIl u](),3u),x = f(x,u,d),x(t) = x,x(0) € T}

Reachability Analysis

* Model of robot
* Unsafe region

« x=f(xud)
VA

* Model of robot
* Goal region

States at time t satisfying the following:
there exists a disturbance such that for all control, system

o A(t) = {x:3Au](),vul-),x = f(x,u,d),x(t) = X,

Backward reachable set (States leading to danger)

-

Control policy

o u*(t, x)

Control policy

-

Backward reachable set (States leading to goal)

o R(t) = {: vl ul(), 3ul),x = f(x,u,d),x(t) = x,

States at time t satisfying the following:
for all disturbances, there exists a control such that system

21

Terminology

* Minimal backward reachable set
* A(t) = {x:A[u] (), vul),x = f(x,u,d),x(t) = x,x(0) € T}
* Control minimizes size of reachable set

e Maximal backward reachable set
« R(t) = {x: VI [u](),3ul), x = f(x,u,d), x(t) = x,x(0) € T}
e Control maximizes size of reachable set

o' (=
* Minimal and maximal backward reachable tube] .

« A() = {x: 3AT[u](),Vu(-),x = f(x,u,d),x(t) = x,3s € [t,0],x(s) € T}
e R(t) = {x:VIu](-),Ful),x = f(x,u,d), x(t) = x,3s € [t,0],x(s) € T}

Computing Reachable Sets

e Start from continuous time dynamic programming
* Observe that disturbances do not affect the procedure
* Remove running cost

* Pick final cost intelligently

