Project Proposal
* Due Feb. 18: two paragraphs

* Project options
* Thoroughly understand and critically evaluate 3 to 5 papers in a course topic
e Reproduce the results of 1 to 2 papers in a course topic, and suggest or make improvements
 Mini Research project related to a course topic
e Other: please consult with instructor

* Course topics:
* Dynamical systems
* Nonlinear optimization
Optimal control (we are here)
Machine learning in robotics (eg. computer vision in robotics, reinforcement learning)
Localization and mapping



Optimal Control Part I

CMPT 882
Feb. 12



Outline

* Open-loop control: Numerical solutions
* Single shooting

* Multiple shooting

* Collocation



Last Time: Single Shooting

minimize l(x(tf), tf) +J fc(x(t),u(t), t)dt

u(-) to

subjectto X = f(x,u)

g(x(@®,u®)) =0, €|ty ty]
where x(t) € R™u(t) € R™, x(ty) = x,

* Discretized problem:
N—-1
minimize  [(x(ty), ty) + z c(x(t;), qi, t) (tip1 — t7)
1 =0

subjectto  vie{0,1,.., N —1},
x(ti41) = x(t;) + f(x (&), q;) (41 — t;)
g(x(t;),q;) =0



Last Time: Single Shooting

N-1

miniqmize [(x(ty), ty) + z c(x(ty), qi, ti) (i1 — ti)
i=0
subjectto  vi € {0,1,...,N — 1},
x(tiv1) = x(t) + f(x (), q) (tiv1 — t;)
g(x(t;),q;) =0

 Discretized problem:

e Variations: Different numerical schemes
* For ODE constraint
* For cost function

* Main disadvantage
* Integration error
* Errorsin “earlier” controls can greatly affect final state
* Initial guess matters a lot



Multiple Shooting

minimize
q

subject to

minimize
S,C[

subject to

N-1
LCe(En), ) + ) eGr(eD, qi t) (tiaa — &)
=0

vie{o1,.. N—1},
x(tiyq) = x(t;) + f(x(ty), q;) (41 — t;)
g(x(ti), ql) =0

!

N-1
h(swotn) + ) (50, u,t) (o1 — 1)
i=0

vie{0,1,.. N —1},
Siv1 = Si + f(51,q) (tip1 — 1)
g(si; CIL) = 0



Multiple Shooting

N-1
. . minimize  h(sy, ty) + Z c(si, qir t) (i — &)
* Discretized problem: 4 =0

subjectto  vie{0,1,.., N — 1},

Siv1 = Si + f(s1,q) (Eip1 — )
9(si,qi) =0
e Same variations as single shooting available (numerical schemes)

e State is now a decision variable

 State constraints do not necessarily need to be satisfied throughout
optimization process

* Improves numerical stability
* Reduces integration error



Inverted Pole on Cart 7

* State: (x,v,0, w) B o s o i
* Position, speed, angle of pole, angular speed of pole R
e Equations of motion: (M + m)¥ + bx + mlé cos @ —mlf?sind = F
(I + ml?)6 + mglsin® = —ml¥ cos

* Parameters: M, m, [, 1, b, g — mass of cart and pole, length and moment of
inertial of pole, friction coefficient, acceleration due to gravity

e Control: F —force of pushing

* Constraints:
e Start from initial state (0,0,0,0), reach final state (0,0, 7, 0) attime T
* Maximum force limit

» Cost: Control effort: fOT F2(t)dt



Inverted Pole on Cart
10
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N-1
Direct Collocation minimize  h(sy, tw) + Z (511 ) (b — £

subjectto  vi €{0,1,...,N — 1},

* No numerical integration A A i
9(s1,q) =0

* Directly approximates x(t) and u(t)
* Piecewise: eg. Hermite-Simpson method
* Global: eg. Pseudospectral methods

* Impose dynamics constraints at discrete time points (“collocation
points”)



Hermite-Simpson Collocation

: . x; and u; are decision
* Discretize time: to < t; < - < ty = ty, hi=tigs — f/ i ane

x; = x(ty), u; = u(t;)
* (Assume scalar x for now, and ) write  x(t) = b; o + b; 1 (t — t;) + b; 5 (t — t;)* + b; 3(t — t;)3, t € [t;, t;41]
X(t) = byq +2b;,(t —t;) +3b;3(t — )%, t € [ty ti44]

1. Some algebra: Att; and t;,q:

T x@) ] 1 X 1 0 0 0 [buo
@) |_| flewud | _fo 1 0 0 |[bis
X(ti+1) Xit+1 1 h hZ h3 bi)z
%(tip)) U Garnuind] 1001 20 3n21 b,
* Obtain coefficients in terms of decision variables by taking inverse

D o] T 1 0 0 0 17 Xi

bi,l _ 0 1 0 0 f(xi,ui)

bio| [-3/h* -2/h 3/h*  —1/h Xji1

bis) L 2/h®  1/h*  =2/h*  1/h® 1 Lf (Xi41, Uise))



Dynamics Constraint

2.

3.

Choice of collocation points: t; +tiyq
e =Ty
 Ujpg T U
e =5 —
* Plugint;: — b b b 2 b 3
' Xie =big+bii(tic—t;) +bia(tic — ;) + biz(tic —t;)

Xic=biqy +2b5(tic —t;) + 3bis(tic — ti)z

Dynamics constraint at collocation points:
Xic — f(xi,c:ui,c) =0

* X X;c depend on bi,o; bi,l, bi,z, bi,g

* bj o, bi1, big, b3 depend on x;, x4, Uj, Uiy
* u; . dependsonu;, U

1
0

— |-3/h?

2/h3

0
1
—2/h
1/h?

0
0
3/h?
—2/h3

0
0
~1/h
1/h?

Xi
f i uy)
Xi+1
f(xip1, Uivr)




Hermite-Simpson collocation

e Optimization problem, with simple integration

m},nimi%ve_l h(xy, ty) + Z c(xpuy, t) (g — ) Xic = big + by (tic — t;) + bip(tic — t')z + bi 3(tic — ti)3
{xi}i=1r{ui}i=1 ;
_bll+2b12(tlc t)+3bl3(tlc

bL,O 1
bi,l . 0 f(xl
bi'z}lg/hz —2/h 3/h2 1/hH xl+1 }
bis) L2/83 1/h*  —2/h3  1/R2JLf Crigr tisn)
Ujtq T Uy

2

subjectto Vi €{0,1,...,N — 1},

Xic — f(xi,Cr ui,c) =0
g(xilui) =0

L

Ujc =



Hermite-Simpson collocation

* Optimization problem, with simple integration
N-1
minimize  h(xy,ty) + z c(xi, ug, 6) (L1 — &)
L3N Au Nt =
subjectto Vi € {0,1,...,N — 1},
xi,c - f(xi,w Uic) = 0

,g(xi, ui) = 0

* Key difference from shooting methods
* Dynamics constraint: no numerical integration



Pseudospectral Methods

* Represent entire state trajectory as sum of weighted basis functions
* Chebyshev polynomials, Legendre polynomials, etc.

* Pros:
* Fewer decision variables
 Numerically more accurate

* Cons:
* Dense optimization problems



N-1

miniqmize [(x(ty), ty) + Z c(x(t;), g ti)(ti41 — ti)
. . =0

Receding Horizon Control |ssiecto wiegou,.n-1

x(tiv1) = x(t;) + f(x(t), q)(Ei41 — )
9(x(t;),qi) =0

* Start from Xx,, initial state; solve optimization
g provides control from time steps 0 to N — 1 € not necessary a long time horizon
* Apply control only at time step O

xo , ’/
" é Obstacle

Goal



N-1

miniqmize [(x(ty), ty) + Z c(x(t;), g ti)(ti41 — ti)
. . =0

Receding Horizon Control |ssiecto wiegou,.n-1

x(tiv1) = x(t;) + f(x(t), q)(Ei41 — )
9(x(t;),qi) =0

* Start from Xx,, initial state; solve optimization
g provides control from time steps 0 to N — 1 € not necessary a long time horizon
* Apply control only at time step O

* Now, the state is at x(t;,1); re-solve the optimization
e Obtain control from time stepsi + 1toi + N

Obstacle
Goal



N-1

miniqmize [(x(ty), ty) + Z c(x(t;), g ti)(ti41 — ti)
. . =0

Receding Horizon Control |ssiecto wiegou,.n-1

x(tiv1) = x(t;) + f(x(t), q)(Ei41 — )
9(x(t;),qi) =0

* Start from Xx,, initial state; solve optimization
g provides control from time steps 0 to N — 1 € not necessary a long time horizon
* Apply control only at time step O

* Now, the state is at x(t;,1); re-solve the optimization
e Obtain control from time stepsi + 1toi + N
* Apply control attime stepi + 1

o=
X1

Obstacle
Goal



N-1

miniqmize [(x(ty), ty) + Z c(x(t;), g ti)(ti41 — ti)
. . =0

Receding Horizon Control |ssiecto wiegou,.n-1

x(tiv1) = x(t;) + f(x(t), q)(Ei41 — )
9(x(t;),qi) =0

* Start from Xx,, initial state; solve optimization
g provides control from time steps 0 to N — 1 € not necessary a long time horizon
* Apply control only at time step O

* Now, the state is at x(t;,1); re-solve the optimization
e Obtain control from time stepsi + 1toi + N
* Apply control attime stepi + 1
* Repeat

New
Obstacle

Obstacle

Goal



N-1

miniqmize [(x(ty), ty) + Z c(x(t;), g ti)(ti41 — ti)
. . =0

Receding Horizon Control |ssiecto wiegou,.n-1

x(tiv1) = x(t;) + f(x(t), q)(Ei41 — )
9(x(t;),qi) =0

* Start from Xx,, initial state; solve optimization
g provides control from time steps 0 to N — 1 € not necessary a long time horizon
* Apply control only at time step O

* Now, the state is at x(t;,1); re-solve the optimization
e Obtain control from time stepsi + 1toi + N
* Apply control attime stepi + 1

New
Obstacle

Obstacle
Goal



Receding Horizon Control

* Main requirement
 Computation must be fast enough compared to re-planning frequency
* Re-planning frequency varies greatly depending on application
* Agile mobile vehicles: milliseconds to a second
e Building temperature control: minutes to hours

 Theoretical considerations

e Recursive feasibility: feasible first optimization problem = feasible kth optimization
problem

* Performance guarantees: eg. goal satisfaction

* Special popular case
* Model-predictive control: uses a model of the system



Optimal Control

* Open-loop solutions
 Differential flatness
* Shooting methods
* Collocation

* Receding horizon control:
e Apply first part of the open-loop solution
* Resolve open-loop optimization

* Relevant software packages
e Optimization: cvx, Gurobi, SeDuMi, Mosek, Cplex, Matlab (fmincon)
 Shooting/collocation: casadi, ACADO, Matlab bvp4c (and similar)
e Receding horizon control: ACADO, Matlab (MPC toolbox)



