Project Proposal

• Due Feb. 18: two paragraphs

Project options

- Thoroughly understand and critically evaluate 3 to 5 papers in a course topic
- Reproduce the results of 1 to 2 papers in a course topic, and suggest or make improvements
- Mini Research project related to a course topic
- Other: please consult with instructor

Course topics:

- Dynamical systems
- Nonlinear optimization
- Optimal control (we are here)
- Machine learning in robotics (eg. computer vision in robotics, reinforcement learning)
- Localization and mapping

Optimal Control Part III

CMPT 882

Feb. 12

Outline

- Open-loop control: Numerical solutions
 - Single shooting
 - Multiple shooting
 - Collocation

Last Time: Single Shooting

minimize
$$l(x(t_f), t_f) + \int_{t_0}^{t_f} c(x(t), u(t), t) dt$$

subject to $\dot{x} = f(x, u)$
 $g(x(t), u(t)) \ge 0, \quad t \in [t_0, t_f]$
where $x(t) \in \mathbb{R}^n, u(t) \in \mathbb{R}^m, x(t_0) = x_0$

• Discretized problem:

minimize
$$l(x(t_N), t_N) + \sum_{i=0}^{N-1} c(x(t_i), q_i, t_i)(t_{i+1} - t_i)$$
 subject to
$$\forall i \in \{0, 1, ..., N-1\},$$

$$x(t_{i+1}) = x(t_i) + f(x(t_i), q_i)(t_{i+1} - t_i)$$

$$g(x(t_i), q_i) \ge 0$$

Last Time: Single Shooting

minimize $l(x(t_N), t_N) + \sum_{i=0}^{N-1} c(x(t_i), q_i, t_i)(t_{i+1} - t_i)$

Discretized problem:

subject to $\forall i \in \{0,1,...,N-1\},\ x(t_{i+1}) = x(t_i) + f(x(t_i),q_i)(t_{i+1}-t_i)$

 $g(x(t_i), q_i) \ge 0$

- Variations: Different numerical schemes
 - For ODE constraint
 - For cost function
- Main disadvantage
 - Integration error
 - Errors in "earlier" controls can greatly affect final state
 - Initial guess matters a lot

Multiple Shooting

Multiple Shooting

• Discretized problem:

minimize
$$h(s_N, t_N) + \sum_{i=0}^{N-1} c(s_i, q_i, t_i)(t_{i+1} - t_i)$$

subject to $\forall i \in \{0, 1, ..., N-1\},$
 $s_{i+1} = s_i + f(s_i, q_i)(t_{i+1} - t_i)$
 $g(s_i, q_i) \ge 0$

- Same variations as single shooting available (numerical schemes)
- State is now a decision variable
 - State constraints do not necessarily need to be satisfied throughout optimization process
 - Improves numerical stability
 - Reduces integration error

Inverted Pole on Cart

- State: (x, v, θ, ω)
 - Position, speed, angle of pole, angular speed of pole
- Equations of motion: $(M+m)\ddot{x} + b\dot{x} + ml\ddot{\theta}\cos\theta ml\dot{\theta}^2\sin\theta = F$ $(I+ml^2)\ddot{\theta} + mgl\sin\theta = -ml\ddot{x}\cos\theta$
 - Parameters: M, m, l, I, b, g mass of cart and pole, length and moment of inertial of pole, friction coefficient, acceleration due to gravity
 - Control: F force of pushing
- Constraints:
 - Start from initial state (0,0,0,0), reach final state $(0,0,\pi,0)$ at time T
 - Maximum force limit
- Cost: Control effort: $\int_0^T F^2(t)dt$

Inverted Pole on Cart

Direct Collocation

minimize
$$h(s_N, t_N) + \sum_{i=0}^{N-1} c(s_i, q_i, t_i)(t_{i+1} - t_i)$$

subject to $\forall i \in \{0, 1, ..., N-1\},$
 $\frac{s_{i+1} = s_i + f(s_i, q_i)(t_{i+1} - t_i)}{g(s_i, q_i) \ge 0}$

No numerical integration

- Directly approximates x(t) and u(t)
 - Piecewise: eg. Hermite-Simpson method
 - Global: eg. Pseudospectral methods
- Impose dynamics constraints at discrete time points ("collocation points")

Hermite-Simpson Collocation

Discretize time:

$$t_0 < t_1 < \dots < t_N \coloneqq t_f, \qquad h \coloneqq t_{i+1} - t_i \qquad \text{variables}$$
 $x_i \coloneqq x(t_i), \qquad u_i = u(t_i)$

• (Assume scalar
$$x$$
 for now, and) write $x(t) = b_{i,0} + b_{i,1}(t-t_i) + b_{i,2}(t-t_i)^2 + b_{i,3}(t-t_i)^3$, $t \in [t_i, t_{i+1}]$ $\dot{x}(t) = b_{i,1} + 2b_{i,2}(t-t_i) + 3b_{i,3}(t-t_i)^2$, $t \in [t_i, t_{i+1}]$

Some algebra: At t_i and t_{i+1} :

$$\begin{bmatrix} x(t_i) \\ \dot{x}(t_i) \\ x(t_{i+1}) \\ \dot{x}(t_{i+1}) \end{bmatrix} = \begin{bmatrix} x_i \\ f(x_i, u_i) \\ x_{i+1} \\ f(x_{i+1}, u_{i+1}) \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & h & h^2 & h^3 \\ 0 & 1 & 2h & 3h^2 \end{bmatrix} \begin{bmatrix} b_{i,0} \\ b_{i,1} \\ b_{i,2} \\ b_{i,3} \end{bmatrix}$$

Obtain coefficients in terms of decision variables by taking inverse

$$\begin{bmatrix}
b_{i,0} \\
b_{i,1} \\
b_{i,2} \\
b_{i,3}
\end{bmatrix} = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
-3/h^2 & -2/h & 3/h^2 & -1/h \\
2/h^3 & 1/h^2 & -2/h^3 & 1/h^2
\end{bmatrix} \begin{bmatrix}
x_i \\
f(x_i, u_i) \\
x_{i+1} \\
f(x_{i+1}, u_{i+1})
\end{bmatrix}$$

Dynamics Constraint

2. Choice of collocation points:

$$t_{i,c} = \frac{t_i + t_{i+1}}{2}$$

$$u_{i,c} \coloneqq \frac{u_{i+1} + u_i}{2}$$

• Plug in $t_{i,c}$:

$$x_{i,c} = b_{i,0} + b_{i,1}(t_{i,c} - t_i) + b_{i,2}(t_{i,c} - t_i)^2 + b_{i,3}(t_{i,c} - t_i)^3$$

$$\dot{x}_{i,c} = b_{i,1} + 2b_{i,2}(t_{i,c} - t_i) + 3b_{i,3}(t_{i,c} - t_i)^2$$

3. Dynamics constraint at collocation points:

$$\dot{x}_{i,c} - f(x_{i,c}, u_{i,c}) = 0$$

- $x_{i,c}$, $\dot{x}_{i,c}$ depend on $b_{i,0}$, $b_{i,1}$, $b_{i,2}$, $b_{i,3}$
- $b_{i,0}$, $b_{i,1}$, $b_{i,2}$, $b_{i,3}$ depend on x_i , x_{i+1} , u_i , u_{i+1}
- $u_{i,c}$ depends on u_i, u_{i+1}

$$\begin{bmatrix} b_{i,0} \\ b_{i,1} \\ b_{i,2} \\ b_{i,3} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -3/h^2 & -2/h & 3/h^2 & -1/h \\ 2/h^3 & 1/h^2 & -2/h^3 & 1/h^2 \end{bmatrix} \begin{bmatrix} x_i \\ f(x_i, u_i) \\ x_{i+1} \\ f(x_{i+1}, u_{i+1}) \end{bmatrix}$$

Hermite-Simpson collocation

Optimization problem, with simple integration

$$x_{i,c} = b_{i,0} + b_{i,1}(t_{i,c} - t_i) + b_{i,2}(t_{i,c} - t_i)^2 + b_{i,3}(t_{i,c} - t_i)^3$$

$$\dot{x}_{i,c} = b_{i,1} + 2b_{i,2}(t_{i,c} - t_i) + 3b_{i,3}(t_{i,c} - t_i)^2$$

$$\begin{bmatrix} b_{i,0} \\ b_{i,1} \\ b_{i,2} \\ b_{i,3} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -3/h^2 & -2/h & 3/h^2 & -1/h \\ 2/h^3 & 1/h^2 & -2/h^3 & 1/h^2 \end{bmatrix} \begin{bmatrix} x_i \\ f(x_i, u_i) \\ x_{i+1} \\ f(x_{i+1}, u_{i+1}) \end{bmatrix}$$

$$u_{i,c} = \frac{u_{i+1} + u_i}{2}$$

Hermite-Simpson collocation

Optimization problem, with simple integration

- Key difference from shooting methods
 - Dynamics constraint: no numerical integration

Pseudospectral Methods

- Represent entire state trajectory as sum of weighted basis functions
 - Chebyshev polynomials, Legendre polynomials, etc.

• Pros:

- Fewer decision variables
- Numerically more accurate

• Cons:

Dense optimization problems

minimize
$$l(x(t_N), t_N) + \sum_{i=0}^{N-1} c(x(t_i), q_i, t_i)(t_{i+1} - t_i)$$

subject to $\forall i \in \{0, 1, ..., N-1\},$
 $x(t_{i+1}) = x(t_i) + f(x(t_i), q_i)(t_{i+1} - t_i)$
 $g(x(t_i), q_i) \ge 0$

- Start from x_0 , initial state; solve optimization
 - q provides control from time steps 0 to $N-1 \leftarrow$ not necessary a long time horizon
 - Apply control only at time step 0

minimize
$$l(x(t_N), t_N) + \sum_{i=0}^{N-1} c(x(t_i), q_i, t_i)(t_{i+1} - t_i)$$

subject to $\forall i \in \{0, 1, ..., N-1\},$
 $x(t_{i+1}) = x(t_i) + f(x(t_i), q_i)(t_{i+1} - t_i)$
 $g(x(t_i), q_i) \ge 0$

- Start from x_0 , initial state; solve optimization
 - q provides control from time steps 0 to $N-1 \leftarrow$ not necessary a long time horizon
 - Apply control only at time step 0
- Now, the state is at $x(t_{i+1})$; re-solve the optimization
 - Obtain control from time steps i + 1 to i + N

minimize
$$l(x(t_N), t_N) + \sum_{i=0}^{N-1} c(x(t_i), q_i, t_i)(t_{i+1} - t_i)$$

subject to $\forall i \in \{0, 1, ..., N-1\},$
 $x(t_{i+1}) = x(t_i) + f(x(t_i), q_i)(t_{i+1} - t_i)$
 $g(x(t_i), q_i) \ge 0$

- Start from x_0 , initial state; solve optimization
 - q provides control from time steps 0 to $N-1 \leftarrow$ not necessary a long time horizon
 - Apply control only at time step 0
- Now, the state is at $x(t_{i+1})$; re-solve the optimization
 - Obtain control from time steps i + 1 to i + N
 - Apply control at time step i + 1

minimize
$$l(x(t_N), t_N) + \sum_{i=0}^{N-1} c(x(t_i), q_i, t_i)(t_{i+1} - t_i)$$

subject to $\forall i \in \{0, 1, ..., N-1\},$
 $x(t_{i+1}) = x(t_i) + f(x(t_i), q_i)(t_{i+1} - t_i)$
 $g(x(t_i), q_i) \ge 0$

- Start from x_0 , initial state; solve optimization
 - q provides control from time steps 0 to $N-1 \leftarrow$ not necessary a long time horizon
 - Apply control only at time step 0
- Now, the state is at $x(t_{i+1})$; re-solve the optimization
 - Obtain control from time steps i + 1 to i + N
 - Apply control at time step i + 1
 - Repeat

Goal

minimize
$$l(x(t_N), t_N) + \sum_{i=0}^{N-1} c(x(t_i), q_i, t_i)(t_{i+1} - t_i)$$

subject to $\forall i \in \{0, 1, ..., N-1\},$
 $x(t_{i+1}) = x(t_i) + f(x(t_i), q_i)(t_{i+1} - t_i)$
 $g(x(t_i), q_i) \ge 0$

- Start from x_0 , initial state; solve optimization
 - q provides control from time steps 0 to $N-1 \leftarrow$ not necessary a long time horizon
 - Apply control only at time step 0
- Now, the state is at $x(t_{i+1})$; re-solve the optimization
 - Obtain control from time steps i + 1 to i + N
 - Apply control at time step i + 1
 - Repeat

Goal

- Main requirement
 - Computation must be fast enough compared to re-planning frequency
 - Re-planning frequency varies greatly depending on application
 - Agile mobile vehicles: milliseconds to a second
 - Building temperature control: minutes to hours
- Theoretical considerations
 - Recursive feasibility: feasible first optimization problem \Rightarrow feasible kth optimization problem
 - Performance guarantees: eg. goal satisfaction
- Special popular case
 - Model-predictive control: uses a model of the system

Optimal Control

- Open-loop solutions
 - Differential flatness
 - Shooting methods
 - Collocation
- Receding horizon control:
 - Apply first part of the open-loop solution
 - Resolve open-loop optimization
- Relevant software packages
 - Optimization: cvx, Gurobi, SeDuMi, Mosek, Cplex, Matlab (fmincon)
 - Shooting/collocation: casadi, ACADO, Matlab bvp4c (and similar)
 - Receding horizon control: ACADO, Matlab (MPC toolbox)