Optimal Control Part |l

CMPT 882
Feb. 11

Optimal Control

Running cost
| ty : !
minimize §(x(t;), ¢,) + fo c(x(6), u(t),)dt

subject to x(t) = f(x(t), u(t))
g(x(t),u(t)) >0
x(t) € RMu(t) € R™, x(0) = x,

Optimal Control: ~ ypes of Solutions

minimize (x(tr) tr) + Jr c(x(t), u(t), t)dt
0

subject to x(t) = f(x(t), u(t)) N

* Open-loop control W
* Find u(t) fort € [O, tf]

e Scalable, but errors will add up

* Closed-loop control
* Findu(t,x) fort € [O, tf], x € R"
* Not scalable, but robust
e “Special” techniques needed (eg. Reinforcement learning) for large n

* Receding horizon control:
* Findu(t) fort € [0,T], use u(t) fort € [0, h], then find u(t) fort € [h, T + h] and
repeat
* Has features of both open- and closed-loop control

Outline: Open-Loop Control

* Optimal Control Problems
* Differential flatness

* Direct Methods (Numerical Methods)

* Shooting methods
e Collocation
e CasADi Matlab toolbox

Differential Flatness Definition

A nonlinear system x = f(x, u) is differentially flat if there exists a
function a such that

z =a(x,u, .., ul)

and we can write the solutions of the nonlinear system as functions of
z and a finite number of derivatives

X = ,B(Z, Z, ...,Z(Q))
U = y(z, Z, ...,Z(Q))

7 is called the “flat outputs”

Differential Flatness

* How to check if a system is differentially flat:
* Mathematically, find «, 3,y such that
Z = a(x, Uu, ...,u(p))
x=p(z2 ..,2z9)
u = y(z, Z, ...,Z(q))
* Practically, do a search to see if someone else found it for your system
e Simple car models, cars pulling cars (trailers), quadrotor

* If you cannot find a, 5, ¥ in the literature, another option is to be the first one
to find it, and publish a paper

* D. Mellinger and V. Kumar. Minimum snap trajectory generation and control for
quadrotors, ICRA 2011.

Differential Flatness Example

* The following car model is differentially flat:

Z 1 0 O
* Why? 2= a(xu,..u) =@ =)=l 1 o [‘
X]
. (q) X y
x=p(22..,29) H= x\|[ZX= 4
6 arctan (—) arctan <—1>
i y). ! 22/
Zq
y = y(z, 5 Z(q)) X cos (arctan (?))
v cosf ?
l¢] = (lé) U= 121 == d (arctan (Z))
arctan | — dt
_ v/ arctan
cos (arctan (

X =vcoso
y-vsmH
9——tan¢

)

)

Trajectory Generation for Simple Car Model

* Suppose xo = (0,0,0),x = (1,0,0), tr =T.

* Goal: Find x(t) and u(t) such that x(0) = x,, x(T) = xy, and

* Method using differential flatness:

0
* X0 =8 (Z(O),Z'(O), ---,Z(‘”(O)) = H —
0

1
*Xp=p (Z(T),Z(T), ...,Z(Q)(T)) = [0] —
0

* Find z(t) that satisfies the above

arctan (:

z1(0)
z,(0)
21(0))

Zq (7213(0)]

Z,(T)
z1(T)

arctan (

X =vcoso
y =vsinf
.V

9=7tan¢

In x-space, we need to consider dynamics
In z-space, [and y replace dynamics

m)_/\

* Once z(t) is found, then we can obtain x and u: x = ,B(Z, Z, ...,Z(Q)),u = y(z, Z, ...,Z(Q))

Trajectory Generation for Simple Car Model

0 z1(0)] . [z(T)
e Find z(t) that satisfies H - ZZ((;)(O) , M - ZZ(?(T)
+ still difficult... 01 |arctan (z‘i(0)>_ 01 |arctan <Z-lm>_
* New plan:
* Let l/)]_(t) — 1) l)bZ(t) — ti lp3(t) — tz; l/)4(t) — t3 2 3
e Let 7z,(t) = by + byqt + bypt? + byst3 Z3(t) = byo + bagt + bypt® + byst
= 2;(t) = byq + 2by,t + 3by3t? = Z,(t) = byq + 2by,t + 3b,y3t?
1 0 O 0 1[P10] [71(0)] 1 0 O 0 1[P20] [22(0)
10 1 0 0 [|b11| _[2:1(0) [0 1 0 0 ||b21| _|22(0)
1 T T2 T3 ||bia| |2/(T) 1 T T2 T3 ||by| |2,(T)
0 1 2T 3T?1lbisl [z,(D). 0 1 2T 3T?%llby;al |2,(T)]

What to do with b?

[1/{1 (0) l/.Jz (0)
hi0) (0)
(**) 1(Q)(O) ‘pz(o)(q)
'7?1(7") ‘Pz(T)
D) ()
BT PO

1/.JN(0)]
dn(0)

5@ (0)
e
1/JN.(T)

wfv"5 (1)

N N
20 =) bap(0), 20 =) bthi(®),
i=1 =1

X = ﬂ(z,z, ...,z(‘I))

u=y(zz,..,z9)

C z;(0) 7
z;(0)

2 (0)
z;(T)
z;(T)

2(T).

N
2O =) bip P (t)
2

Y;: basis functions

* Your choice!

* You can choose N too!

* E.g.1; =x'"1 -- monomial basis

q is from dynamics
 Determines number of rows

* i.e. number of equations
e Can’t choose this

N is chosen
e Determines number of columns
* j.e. number of variablesin b

N too small: no solutions
N very large: many solutions

Optimal Control Problem

Running cost

A
[t 1

minimize 1(x(t;),t7) + [*cCe(©),u(®), 00

subject to x(t) = f(x(t),u(t))
g(x(t),u(t)) >0
x(t) € R*u(t) e R™,
x(0) = xo,x(tf) = X¢

Optimal Control Problem

Running cost

A
M+ |

minimize 1(x(t7),) + [et u(e), 0t
subject to x(t) = f(x(t),u(t))

g(x(t),u(t)) >0

x(t) € R",u(t) e R™,

x(0) = x¢, x(tf) = x5

t

minimize 1(x(e),) + [e(e(0),u(0), O

0
subject to (xx)

g(x(@®),u®)) =0
u(t) € R™, x(0) = x,

Optimal Control Problem

Running cost

Final cost A
{ A \ | tf |
mir:j(r.r)lize l(x(tf)' tf) + f C(X(t), ll(t), t)dt Cost functional,](x(-),u(-))
0
subject to x(t) = f(x(t),u(t)) Dynamic model
g(x(t), u(t)) >0 Additional constraints

* Eg. actuation limits

x(t) € R",u(t) e R™,
x(0) = x¢, x(tf) = x5

tr
c(x (), u(t),)dt 2= alo ., u)
0

subject to () x=B(z2..,27)
g(x(@®),u®)) =0 u=vy(z2..,27)
u(t) € R™, x(0) = x,

minimize [(x(t,), ;) + f

Differential Flatness: Key Points
t
minibmize l(x(tf), tf) - J[) fc(x(t), u(t), t)dt z=a(xu .., u®)
subject to (xx) x=p(z2,..,2P)
g(x(®),u()) =0 u=v(z2..,29)

u(t) € R™, x(0) = x,

* Trajectory generation via solving algebraic equations (*x)
e Other constraints can be transformed into z space

* Cost/performance index also transformed into z space

» After obtaining b, we can obtain x and u

Direct methods

 Differential flatness
* Algebraic method for special system dynamics

* Direct shooting
* Parametrize control
* Numerical example with CasADi

e Collocation
e Parametrize both state and control

Single shooting

e Discretize:

minimize
u(-)

subject to

where

Ly
c(x(t), u(t), t)dt

1(x(ty),) + |
x = f(x,u)

g(x(@®,u®)) =0, €|ty ty]
x(t) € R u(t) € R™ x(ty) = xq

t0<t1<"’<tN:=tf

u(t) = q; fort € [¢t;, t;44]

Single shooting

mirbi(rglize l(x(tf), tf) + Jto

Ly
c(x(t), u(t), t)dt

subjectto X = f(x,u)

g(x(@®,u®)) =0, €|ty ty]
where x(t) € R™u(t) € R™, x(ty) = x,

* Discretize: to <t; < <ty=tf

u(t) = q; fort € [¢t;, t;44]

* Numerically integrate dynamics and cost:
* Simple example:

Dynamics (Forward Euler): x(t;+1) = x(t;) + f(x(t;), q;)(t;x1 — t;)
N-1

t
Cost: L fC(X(t);u(t); t)dt ~ z c(x(t;), qi ti) iy —)

0 i=0

Single shooting

mirbi(rglize l(x(tf), tf) + Jto

ty
c(x(t), u(t), t)dt
subjectto X = f(x,u)

g(x(@®,u®)) =0, €|ty ty]
where x(t) € R™u(t) € R™, x(ty) = x,

* Discretized problem:
N-1
minimize [(x(ty), ty) + z c(x(t;), qi, ti)(Eiv1 — t1)
u) i=0

subjectto vi e {0,1,.., N —1},
x(Ei41) = x(t) + f(x (&), q;) (41 — t;)
g(x(t;),q;) =0

Introduction to CasADi

* Numerical optimization software
* Tailored towards transcription of optimal control problems into NLPs
* Eg. single shooting, multiple shooting, collocation

* Interfaces
* Matlab, Python, C++, etc.

* Tools:
* NLP solvers (eg. IPOPT, SNOPT, etc.)
* Convex solvers (eg. Gurobi, Cplex, etc.)
* Symbolic integrators

Introduction to CasADi

* Home page
* https://github.com/casadi/casadi/wiki

 |nstallation
 https://github.com/casadi/casadi/wiki/InstallationInstructions

* User guide
* http://casadi.sourceforge.net/v3.4.0/users_guide/casadi-users_guide.pdf

Example

10
mirhi(r_r)lize f (x2 + x2 + u?)dt
0

subjectto x; = (1 —x%)x; —x, +u
X2 = X1
xq = —0.25
—-1<u<l

e Reformulation as nonlinear program (NLP)
e N = 100 with uniform time intervals
* Forward Euler integration for dynamics
* First-order integration

Adapted from example in casADi user manual

Example
10
mirhi(r_r)lize f (x% + x5 + u?)dt
0

subjectto x; = (1 —x%)x; —x, +u
X2 = X1
xq = —0.25
—-1<u<l

Installation
Preliminary setup
Integrating dynamics
NLP formulation

Al S

Solve and plot

Adapted from example in casADi user manual

https://github.com/casadi/casadi/wiki/Installationinstructions

Installing CasADi

Option 1: Binary installation (recommended)

Install CasADi 3.4.3
For Python users: pip install casadi (you must have pip --version >= 8.1!)

Grab a binary from the table (for MATLAB, use the newest compatible version below):

Windows Linux Mac
R2014b or later, R2015a or later,
R2014b or later,
Matlab R2014a, R2014b,
R2014a
R2013a or R2013b R2014a
Octave 4.2.2 (32bit / 64bit) 4.2.2 4.2.2
Py27 (32bit"? / 64bit?), Py27, Py27,
Python Py35 (32bit? / 64bit?), Py35, Py35,

Py36 (32bit? / 64bit?) Py36 Py36

Import and preliminary setup

import casadi.*®

* sym command: symbolic variables o Headblbale sl

10 % Time horizon

100; % number of control interwvals

~lalfle model Variailes

* Symbolic differentiation and : De

integration inside casadi - T SResvmbe)

"
=i
| I

SK.sym("x2");

x = [x1; x2]:
u = SX.zym('u'):;
* Note that xdot and Jt are also e

symbolic xdot = [(1l-x2"2)*xl - =2 + u; x1]:

¥ OCbjective term
Jo = x172 + ®x2°2 + utd;

Integrating Dynamics

* f takes as input X and u,
and outputs xdot and
Jt, as defined previously

e One can replace Forward
Euler with for example
RK4

* Code just shows Forward
Euler for one time step

* F takes as input an initial
condition X0, and a
vector of controls U, and
outputs the final state X
and total cost Q

% Integrate dynamics

—_—

% Forward Euler
dt = T/N;
f = Function('f"', {x, u}, {xdot, Jt}):;

X0 = MX.sym("'X0", 2);
O=MX.3ym("TU");

[Xdot, Jk] = £(X0, TU);
X = X0 + dc*Xdot;
2 = Jk*dt:;

Ty

- R e o ot e

F = Function('F', {¥X0, 0O}, {¥X, Q},

%+ Evaluate at a test point
Fk = F('=x0',[0.2; 0.3],'p",0.4);
disp(Fk.xf)

disp (Fk.gf)

nas twWwo 1ANpucts and TWo OUTputs,

o B = e < ——c
$ £ has two inp

NLP Formulatio

e Start with empty NLP

* Controls w, w9, with
bounds 1bw, ubw

10
mirggglize (xZ + x2 +u?)dt
0
subjectto x; = (1 —x5)x; —x, +u

 Jis the total cost

.72,'2 = X1
—-1<u<l

e Will use loop to add up
(integrate) the cost

* gis constraint function
on x
* 1bg, ubg give bounds

% Formmlate the NLP

= =

S e g

= wt b T L

w={k:

wid
1bw

[1:
[1:
[1:

0;

L =
& r

[1:
[1:

e

=.-
= JdLerace

Xk

[0

with empty HNLE

T ronarth _-II._
e i e | e ' —— Pl —

1]:

for k=0:HN-1

NLP Formulation

e Control bounded

between —1 and 1 -
* Need a constraint at every = m=w t
time step .

 Add up cost at every time o

step

* State constraints at every
time step

10

Rkili};

mirﬁ(ry)ﬁze (x? + x2 + u?)dt
0
subjectto X%, = (1 —x3)x; —x, +u
562 = X1
X1 > —0.25
—-1<u<l
n CONStralnts at every Time STeEfR

T = et T e
e AL e L

" num2str(k)]):

oo -
CWes 1 and 1
S = —e—e
~ONCrol 15 all ZeITos
—F=E] o oo e C —
ded bhetwee 25 and

Solve and Plot

e See comments and
documentation

* Code will be uploaded to CourSys

e [IPOPT is a built-in NLP solver

* Online documentation has
python and Matlab examples

% Solve the NLP

¥ Crea
prob =
TE,
rxt,

'g',

£ use

te an HLP solver

struct(...

Uy aoaoa

vertcat (wi:=}), ...

vertcat (gi:})):

TPCPT solwv

e
er (inte

solver = nlpsol ('solver’

g0l = solver(...

w_opt = full(sol.

', WO, ...
bW, ...
bW, ...
1bg, ...

- - - -

ubg) ;

r

% Proble
1 T T P
= rolem SCTIuCT

R
T | T o e
= LD)ectlive UNCE 10T

% Decision wvariakles

'\-_\..,_q_.\.-_-..__

:h-
T LONSCralncs

S = =S _“.,__.l.l.. E_._-I
N A | LN BN E e LIS =41

'"ipopt', prob):

- - e
= 1lniTtlal Juess
e = - T = = = -
o
5 DOUnc 2 The aAgeClsS10
D o m o e = - g T = — =y -
o
= Dounds 2 The CONSTIalnt

Solve and Plot

e See comments and
documentation

* Code will be uploaded to CourSys

e [IPOPT is a built-in NLP solver

* Online documentation has
python and Matlab examples

-0.4

minimize
u(-)

subject to

10
J (xZ + x2 +u?)dt
0

X =0 —-xx;—x,+u
Xy = Xq

x, = —0.25

—1<u<l

- = =x1
X2

Helll Docs Support Source Publications

Workshops Blog

See also:

PDF version
C++ APl
Python API

Example pack

Contents:

1. Introduction
1.1. What CasADi is and what it
is not
1.2. Help and support
1.3. Citing CasADi

1.4. Reading this document

]

Obtaining and installing

5]

. Symbolic framework
3.1. The SX symbelics
32.DM
3.3. The MX symbolics
3.4. Mixing SX and MX
3.5. The Sparsity class
3.6. Arithmetic operations
3.7. Querying properties
3.8. Linear algebra
3.9. Calculus - algerithmic
differentiation
4. Function objects
4.1. calling function objects
4.2. Converting MX to SX
4.3. Nonlinear root-finding
problems
4.4 Initial-value problems and
sensitivity analysis
4.5 Nonlinear programming
4.6. Quadratic programming
4.7. For-loop equivalents
5. Generating C-code
5.1. Syntax for generating code
5.2. Using the generated code
5.3. AP| of the generated code

6. User-defined function objects

Welcome to CasADi’s documentation!

1. Introduction

CasADi is an apen-source software tool for numerical optimization in general and optimal control (i.e. optimization involving differential equations) in particular.
The project was started by Joel Andersson and Joris Gillis while PhD students at the Optimization in Engineering Center (OPTEC) of the KU Leuven under

supervision of Moritz Diehl.

This document aims at giving a condensed introduction to CasADI. After reading it, you should be able to formulate and manipulate expressions in CasADi's
symbolic framework, generate derivative information efficiently using algorithmic differentiation, to set up, solve and perform forward and adjoint sensitivity
analysis for systems of ordinary differential equations (ODE) or differential-algebraic equations (DAE) as well as to formulate and solve nonlinear programs (NLP)

problems and optimal control problems (OCP).

CasADi is available for C++, Python and MATLAB/Octave with little or no difference in performance. In general, the Python APl is the best documented and is
slightly more stable than the MATLAB API. The C++ API is stable, but is not ideal for getting started with CasADi since there is limited documentation and since it

lacks the interactivity of interpretad languages like MATLAB and Python. The MATLAB module has been tested successfully for Octave (version 4.0.2 or |ater).

1.1. What CasADi is and what it is not

CasADi started out as a tool for algorithmic differentiation (AD) using a syntax borrowed from computer algebra systems (CAS), which explains its name. While
AD still forms one of the core functionalities of the tool, the scope of the tool has since been considerably broadened, with the addition of support for ODE/DAE
integration and sensitivity analysis, nenlinear programming and interfaces to other numerical tools. In its current form, it is a general-purpose tool for gradient-

based numerical optimization — with a strong focus on optimal control — and CasADi is just a name without any particular meaning.

It is important to point cut that CasADi is not a conventional AD tool, that can be used to calculate derivative information from existing user code with little to no

modification. If you have an existing model written in C++, Python or MATLAB/Octave, you need to be prepared to reimplement the model using CasADi syntax.

Secondly, CasADi is not a computer algebra system. While the symbolic core does include an increasing set of tools for manipulate symbolic expressions, these

capabilities are very limited compared to a proper CAS tool.

Finally, CasADi is not an “optimal control problem solver®, that allows the user to enter an OCP and then gives the solution back. Instead, it tries to provide the
user with a set of "building blocks™ that can be used to implement general-purpose or specific-purpose OCP solvers efficiently with @ modest programming effort
1.2. Help and support

If you find simple bugs or lack some feature that you think would be relatively easy for us to add, the simplest thing is simply to write to the forum, located at
http://forum.casadi.org/. We check the forum regularly and try to respond as quickly as possible. The only thing we expect for this kind of support is that you cite

us, cf. Section 1.3, whenever you use CasADi in scientific work.

If you want more help, we are always open for academic or industrial cocperation. An academic cooperation usually take the form of a co-authorship of a peer

reviewed paper, and an industrial cooperation involves a negotiated consulting contract. Please contact us directly if you are interested in this.

1.3. Citing CasADi

If you use CasADi in published scientific work, please cite the following:

@article{Andersson2818,

b T A F R de e 4 o m . s T TS ol o o P M

Single shooting

N—1
miniqmize [(x(ty), ty) + c(x(t;), q;, t)(tivr — ;)
i=0
subjectto vie{0,1,.., N —1},
x(tiv1) = x(t;) + f(x(t;), qi) (€141 — t;)
g(x(t;),q;) =0

* Main disadvantage: integration error

> Xk
Xk =

F(
>> |

Adapted from example in casADi user manual

Multiple shooting

minimize
q

subject to

minimize
S,C[

subject to

N-1
LCeCen),) +) eGr(eD, qi) (tiaa — &)
=0

vie{01,.. N—1)}
x(tiyq) = x(t;) + f(x(ty), q;) (41 — t;)
g(x(ti), ql) =0

!

N-1
h(sw,t) +) (50, u,t) (e — 1)
i=0

vie{0,11,.. N —1},
Siv1 = Si + f(51,q)(tip1 — 1)
g(SiJ CIL) = 0

Shooting Method Disadvantages

* Numerical integration
e Potentially slow
* Numerical errors

