
Optimal Control Part II
CMPT 882

Feb. 11



Optimal Control

minimize 𝑙 𝑥 𝑡𝑓 , 𝑡𝑓 +න
0

𝑡𝑓

𝑐 𝑥 𝑡 , 𝑢 𝑡 , 𝑡 𝑑𝑡

subject to ሶ𝑥 𝑡 = 𝑓 𝑥 𝑡 , 𝑢 𝑡

𝑢 ⋅

Final cost
Running cost

Dynamic model

𝑥 𝑡 ∈ ℝ𝑛, 𝑢 𝑡 ∈ ℝ𝑚, 𝑥 0 = 𝑥0

𝑔 𝑥 𝑡 , 𝑢 𝑡 ≥ 0 Additional constraints 
• Eg. actuation limits

Cost functional, 𝐽 𝑥 ⋅ , 𝑢 ⋅

𝑥0
𝑥 𝑡

𝑥 𝑡𝑓

𝑙 𝑥 𝑡𝑓 , 𝑡𝑓



Optimal Control: Types of Solutions

• Open-loop control
• Find 𝑢 𝑡 for 𝑡 ∈ 0, 𝑡𝑓
• Scalable, but errors will add up

• Closed-loop control
• Find 𝑢 𝑡, 𝑥 for 𝑡 ∈ 0, 𝑡𝑓 , 𝑥 ∈ ℝ𝑛

• Not scalable, but robust
• “Special” techniques needed (eg. Reinforcement learning) for large 𝑛

• Receding horizon control:
• Find 𝑢 𝑡 for 𝑡 ∈ 0, 𝑇 , use 𝑢 𝑡 for 𝑡 ∈ 0, ℎ , then find 𝑢 𝑡 for 𝑡 ∈ ℎ, 𝑇 + ℎ and 

repeat
• Has features of both open- and closed-loop control

minimize 𝑙 𝑥 𝑡𝑓 , 𝑡𝑓 +න
0

𝑡𝑓

𝑐 𝑥 𝑡 , 𝑢 𝑡 , 𝑡 𝑑𝑡

subject to ሶ𝑥 𝑡 = 𝑓 𝑥 𝑡 , 𝑢 𝑡

𝑢 ⋅

𝑢

𝑡



Outline: Open-Loop Control

• Optimal Control Problems

• Differential flatness

• Direct Methods (Numerical Methods)
• Shooting methods

• Collocation

• CasADi Matlab toolbox



Differential Flatness Definition

A nonlinear system ሶ𝑥 = 𝑓 𝑥, 𝑢 is differentially flat if there exists a 
function 𝛼 such that

𝑧 = 𝛼 𝑥, 𝑢, … , 𝑢 𝑝

and we can write the solutions of the nonlinear system as functions of 
𝑧 and a finite number of derivatives

𝑥 = 𝛽 𝑧, ሶ𝑧, … , 𝑧 𝑞

𝑢 = 𝛾 𝑧, ሶ𝑧, … , 𝑧 𝑞

• 𝑧 is called the “flat outputs”



Differential Flatness

• How to check if a system is differentially flat:
• Mathematically, find 𝛼, 𝛽, 𝛾 such that 

𝑧 = 𝛼 𝑥, 𝑢, … , 𝑢 𝑝

𝑥 = 𝛽 𝑧, ሶ𝑧, … , 𝑧 𝑞

𝑢 = 𝛾 𝑧, ሶ𝑧, … , 𝑧 𝑞

• Practically, do a search to see if someone else found it for your system
• Simple car models, cars pulling cars (trailers), quadrotor

• If you cannot find 𝛼, 𝛽, 𝛾 in the literature, another option is to be the first one 
to find it, and publish a paper
• D. Mellinger and V. Kumar. Minimum snap trajectory generation and control for 

quadrotors, ICRA 2011.



Differential Flatness Example

• The following car model is differentially flat:

• Why?

ሶ𝑥 = 𝑣 cos 𝜃

ሶ𝑦 = 𝑣 sin 𝜃

ሶ𝜃 =
𝑣

𝑙
tan𝜙

𝑧 = 𝑥, 𝑦 ⇒
𝑧1
𝑧2

=
1 0 0
0 1 0

𝑥
𝑦
𝜃

𝑥
𝑦
𝜃

=

𝑥
𝑦

arctan
ሶ𝑥

ሶ𝑦

⇒ 𝒙 =

𝑧1
𝑧2

arctan
ሶ𝑧1
ሶ𝑧2

𝑣
𝜙 =

ሶ𝑥

cos 𝜃

arctan
𝑙 ሶ𝜃

𝑣

⇒ 𝑢 =

ሶ𝑧1

cos arctan
ሶ𝑧1
ሶ𝑧2

arctan
𝑙 ሶ𝑧1

𝑑
𝑑𝑡

arctan
ሶ𝑧1
ሶ𝑧2

cos arctan
ሶ𝑧1
ሶ𝑧2

𝑧 = 𝛼 𝒙, 𝑢, … , 𝑢 𝑝

𝒙 = 𝛽 𝑧, ሶ𝑧, … , 𝑧 𝑞

𝑢 = 𝛾 𝑧, ሶ𝑧, … , 𝑧 𝑞



Trajectory Generation for Simple Car Model

• Suppose 𝒙0 = 0,0,0 , 𝒙𝑓 = 1,0,0 , 𝑡𝑓 = 𝑇.
• Goal: Find 𝒙 𝑡 and 𝑢 𝑡 such that 𝒙 0 = 𝑥0, 𝒙 𝑇 = 𝒙𝑓, and

• Method using differential flatness:

• 𝒙0 = 𝛽 𝑧 0 , ሶ𝑧 0 , … , 𝑧 𝑞 0 ⇒
0
0
0

=

𝑧1 0

𝑧2 0

arctan
ሶ𝑧1 0

ሶ𝑧2 0

• 𝒙𝑓 = 𝛽 𝑧 𝑇 , ሶ𝑧 𝑇 , … , 𝑧 𝑞 𝑇 ⇒
1
0
0

=

𝑧1 𝑇

𝑧2 𝑇

arctan
ሶ𝑧1 𝑇

ሶ𝑧2 𝑇

• Find 𝑧 𝑡 that satisfies the above

• Once 𝑧 𝑡 is found, then we can obtain 𝒙 and 𝑢: 𝒙 = 𝛽 𝑧, ሶ𝑧, … , 𝑧 𝑞 , 𝑢 = 𝛾 𝑧, ሶ𝑧, … , 𝑧 𝑞

ሶ𝑥 = 𝑣 cos 𝜃
ሶ𝑦 = 𝑣 sin 𝜃

ሶ𝜃 =
𝑣

𝑙
tan𝜙

In 𝑥-space, we need to consider dynamics
In 𝑧-space, 𝛽 and 𝛾 replace dynamics



Trajectory Generation for Simple Car Model

• Find 𝑧 𝑡 that satisfies
• Still difficult…

• New plan: 
• Let 𝜓1 𝑡 = 1,𝜓2 𝑡 = 𝑡, 𝜓3 𝑡 = 𝑡2, 𝜓4 𝑡 = 𝑡3

• Let

0
0
0

=

𝑧1 0

𝑧2 0

arctan
ሶ𝑧1 0

ሶ𝑧2 0

,
1
0
0

=

𝑧1 𝑇

𝑧2 𝑇

arctan
ሶ𝑧1 𝑇

ሶ𝑧2 𝑇

𝑧1 𝑡 = 𝑏10 + 𝑏11𝑡 + 𝑏12𝑡
2 + 𝑏13𝑡

3 𝑧2 𝑡 = 𝑏20 + 𝑏21𝑡 + 𝑏22𝑡
2 + 𝑏23𝑡

3

⇒ ሶ𝑧1 𝑡 = 𝑏11 + 2𝑏12𝑡 + 3𝑏13𝑡
2 ⇒ ሶ𝑧2 𝑡 = 𝑏21 + 2𝑏22𝑡 + 3𝑏23𝑡

2

⇒

1 0 0 0
0 1 0 0
1 𝑇 𝑇2 𝑇3

0 1 2𝑇 3𝑇2

𝑏10
𝑏11
𝑏12
𝑏13

=

𝑧1 0

ሶ𝑧1 0

𝑧1 𝑇

ሶ𝑧1 𝑇

⇒

1 0 0 0
0 1 0 0
1 𝑇 𝑇2 𝑇3

0 1 2𝑇 3𝑇2

𝑏20
𝑏21
𝑏22
𝑏23

=

𝑧2 0

ሶ𝑧2 0

𝑧2 𝑇

ሶ𝑧2 𝑇



What to do with 𝑏?

𝒖 = 𝜸 𝒛, ሶ𝒛, … , 𝒛 𝒒

𝜓1 0 𝜓2 0 ⋯ 𝜓𝑁 0
ሶ𝜓1 0 ሶ𝜓2 0 ⋯ ሶ𝜓𝑁 0
⋮ ⋮ ⋱ ⋮

𝜓1
𝑞

0 𝜓2 0 𝑞 ⋯ 𝜓𝑁
𝑞

0

𝜓1 𝑇 𝜓2 𝑇 ⋯ 𝜓𝑁 𝑇
ሶ𝜓1 𝑇 ሶ𝜓2 𝑇 ⋯ ሶ𝜓𝑁 𝑇
⋮ ⋮ ⋱ ⋮

𝜓1
𝑞

𝑇 𝜓2
𝑞

𝑇 ⋯ 𝜓𝑁
𝑞

𝑇

𝑏𝑖1
𝑏𝑖2
⋮
𝑏𝑖𝑁

=

𝑧𝑖 0

ሶ𝑧𝑖 0
⋮

𝑧𝑖
𝑞

0

𝑧𝑖 𝑇

ሶ𝑧𝑖 𝑇
⋮

𝑧𝑖
𝑞

𝑇

𝑧 𝑡 =෍

𝑖=1

𝑁

𝑏𝑖𝜓𝑖 𝑡 , ሶ𝑧 𝑡 =෍

𝑖=1

𝑁

𝑏𝑖 ሶ𝜓𝑖 𝑡 , 𝑧 𝑞 𝑡 =෍

𝑖=1

𝑁

𝑏𝑖𝜙𝑖
𝑞

𝑡⋯

𝒙 = 𝜷 𝒛, ሶ𝒛, … , 𝒛 𝒒

𝜓𝑖: basis functions
• Your choice!
• You can choose 𝑁 too!
• E.g. 𝜓𝑖 = 𝑥𝑖−1 -- monomial basis

𝑞 is from dynamics
• Determines number of rows 

• i.e. number of equations
• Can’t choose this

𝑁 is chosen
• Determines number of columns

• i.e. number of variables in 𝑏

• 𝑁 too small: no solutions
• 𝑁 very large: many solutions

(∗∗)



Optimal Control Problem

minimize 𝑙 𝑥 𝑡𝑓 , 𝑡𝑓 +න
0

𝑡𝑓

𝑐 𝑥 𝑡 , 𝑢 𝑡 , 𝑡 𝑑𝑡
𝑢 ⋅

Final cost
Running cost

subject to ሶ𝑥 𝑡 = 𝑓 𝑥 𝑡 , 𝑢 𝑡 Dynamic model

𝑥 𝑡 ∈ ℝ𝑛, 𝑢 𝑡 ∈ ℝ𝑚,

𝑥 0 = 𝑥0, 𝑥 𝑡𝑓 = 𝑥𝑓

𝑔 𝑥 𝑡 , 𝑢 𝑡 ≥ 0 Additional constraints 
• Eg. actuation limits

Cost functional, 𝐽 𝑥 ⋅ , 𝑢 ⋅



Optimal Control Problem

minimize 𝑙 𝑥 𝑡𝑓 , 𝑡𝑓 +න
0

𝑡𝑓

𝑐 𝑥 𝑡 , 𝑢 𝑡 , 𝑡 𝑑𝑡
𝒖 ⋅

Final cost
Running cost

subject to ሶ𝒙 𝒕 = 𝒇 𝒙 𝒕 , 𝒖 𝒕 Dynamic model

𝒙 𝒕 ∈ ℝ𝒏, 𝑢 𝑡 ∈ ℝ𝑚,

𝒙 𝟎 = 𝒙𝟎, 𝒙 𝒕𝒇 = 𝒙𝒇

𝑔 𝑥 𝑡 , 𝑢 𝑡 ≥ 0 Additional constraints 
• Eg. actuation limits

Cost functional, 𝐽 𝑥 ⋅ , 𝑢 ⋅

minimize 𝑙 𝑥 𝑡𝑓 , 𝑡𝑓 +න
0

𝑡𝑓

𝑐 𝑥 𝑡 , 𝑢 𝑡 , 𝑡 𝑑𝑡
𝒃

subject to ∗∗

𝑢 𝑡 ∈ ℝ𝑚, 𝑥 0 = 𝑥0

𝑔 𝑥 𝑡 , 𝑢 𝑡 ≥ 0



Optimal Control Problem

minimize 𝑙 𝑥 𝑡𝑓 , 𝑡𝑓 +න
0

𝑡𝑓

𝑐 𝑥 𝑡 , 𝒖 𝒕 , 𝑡 𝑑𝑡
𝒖 ⋅

Final cost
Running cost

subject to ሶ𝒙 𝒕 = 𝒇 𝒙 𝒕 , 𝒖 𝒕 Dynamic model

𝒙 𝒕 ∈ ℝ𝒏, 𝑢 𝑡 ∈ ℝ𝑚,

𝒙 𝟎 = 𝒙𝟎, 𝒙 𝒕𝒇 = 𝒙𝒇

𝑔 𝑥 𝑡 , 𝑢 𝑡 ≥ 0 Additional constraints 
• Eg. actuation limits

Cost functional, 𝐽 𝑥 ⋅ , 𝑢 ⋅

minimize 𝑙 𝑥 𝑡𝑓 , 𝑡𝑓 +න
0

𝑡𝑓

𝑐 𝑥 𝑡 , 𝑢 𝑡 , 𝑡 𝑑𝑡
𝒃

subject to ∗∗

𝑢 𝑡 ∈ ℝ𝑚, 𝑥 0 = 𝑥0

𝑔 𝑥 𝑡 , 𝑢 𝑡 ≥ 0 𝒖 = 𝜸 𝒛, ሶ𝒛, … , 𝒛 𝒒

𝒙 = 𝜷 𝒛, ሶ𝒛, … , 𝒛 𝒒

𝒛 = 𝜶 𝒙, 𝒖, … , 𝒖 𝒑



Differential Flatness: Key Points

• Trajectory generation via solving algebraic equations (∗∗)

• Other constraints can be transformed into 𝑧 space

• Cost/performance index also transformed into 𝑧 space

• After obtaining 𝑏, we can obtain 𝑥 and 𝑢

minimize 𝑙 𝑥 𝑡𝑓 , 𝑡𝑓 +න
0

𝑡𝑓

𝑐 𝑥 𝑡 , 𝑢 𝑡 , 𝑡 𝑑𝑡
𝒃

subject to ∗∗

𝑢 𝑡 ∈ ℝ𝑚, 𝑥 0 = 𝑥0

𝑔 𝑥 𝑡 , 𝑢 𝑡 ≥ 0 𝒖 = 𝜸 𝒛, ሶ𝒛, … , 𝒛 𝒒

𝒙 = 𝜷 𝒛, ሶ𝒛, … , 𝒛 𝒒

𝒛 = 𝜶 𝒙, 𝒖, … , 𝒖 𝒑



Direct methods

• Differential flatness
• Algebraic method for special system dynamics

• Direct shooting
• Parametrize control

• Numerical example with CasADi

• Collocation
• Parametrize both state and control



Single shooting

• Discretize:

• Numerically integrate dynamics and cost:
• Simple example:

𝑔 𝑥 𝑡 , 𝑢 𝑡 ≥ 0, 𝑡 ∈ 𝑡0, 𝑡𝑓

𝑙 𝑥 𝑡𝑓 , 𝑡𝑓 +න
𝑡0

𝑡𝑓

𝑐 𝑥 𝑡 , 𝑢 𝑡 , 𝑡 𝑑𝑡

ሶ𝑥 = 𝑓 𝑥, 𝑢subject to

where 𝑥 𝑡 ∈ ℝ𝑛, 𝑢 𝑡 ∈ ℝ𝑚, 𝑥 𝑡0 = 𝑥0

minimize
𝑢 ⋅

𝑡0 < 𝑡1 < ⋯ < 𝑡𝑁 ≔ 𝑡𝑓

𝑢 𝑡 = 𝑞𝑖 for 𝑡 ∈ 𝑡𝑖 , 𝑡𝑖+1



Single shooting

• Discretize:

• Numerically integrate dynamics and cost:
• Simple example:

𝑡0 < 𝑡1 < ⋯ < 𝑡𝑁 ≔ 𝑡𝑓

𝑢 𝑡 = 𝑞𝑖 for 𝑡 ∈ 𝑡𝑖 , 𝑡𝑖+1

Dynamics (Forward Euler):

Cost: න
𝑡0

𝑡𝑓

𝑐 𝑥 𝑡 , 𝑢 𝑡 , 𝑡 𝑑𝑡 ≈ ෍

𝑖=0

𝑁−1

𝑐 𝑥 𝑡𝑖 , 𝑞𝑖 , 𝑡𝑖 𝑡𝑖+1 − 𝑡𝑖

𝑥 𝑡𝑖+1 ≈ 𝑥 𝑡𝑖 + 𝑓 𝑥 𝑡𝑖 , 𝑞𝑖 𝑡𝑖+1 − 𝑡𝑖

𝑔 𝑥 𝑡 , 𝑢 𝑡 ≥ 0, 𝑡 ∈ 𝑡0, 𝑡𝑓

𝑙 𝑥 𝑡𝑓 , 𝑡𝑓 +න
𝑡0

𝑡𝑓

𝑐 𝑥 𝑡 , 𝑢 𝑡 , 𝑡 𝑑𝑡

ሶ𝑥 = 𝑓 𝑥, 𝑢subject to

where 𝑥 𝑡 ∈ ℝ𝑛, 𝑢 𝑡 ∈ ℝ𝑚, 𝑥 𝑡0 = 𝑥0

minimize
𝑢 ⋅



Single shooting

• Discretized problem:

𝑔 𝑥 𝑡𝑖 , 𝑞𝑖 ≥ 0

𝑙 𝑥 𝑡𝑁 , 𝑡𝑁 + ෍

𝑖=0

𝑁−1

𝑐 𝑥 𝑡𝑖 , 𝑞𝑖 , 𝑡𝑖 𝑡𝑖+1 − 𝑡𝑖

subject to

𝑥 𝑡𝑖+1 = 𝑥 𝑡𝑖 + 𝑓 𝑥 𝑡𝑖 , 𝑞𝑖 𝑡𝑖+1 − 𝑡𝑖

∀𝑖 ∈ 0,1, … , 𝑁 − 1 ,

𝑔 𝑥 𝑡 , 𝑢 𝑡 ≥ 0, 𝑡 ∈ 𝑡0, 𝑡𝑓

𝑙 𝑥 𝑡𝑓 , 𝑡𝑓 +න
𝑡0

𝑡𝑓

𝑐 𝑥 𝑡 , 𝑢 𝑡 , 𝑡 𝑑𝑡

ሶ𝑥 = 𝑓 𝑥, 𝑢subject to

where 𝑥 𝑡 ∈ ℝ𝑛, 𝑢 𝑡 ∈ ℝ𝑚, 𝑥 𝑡0 = 𝑥0

minimize
𝑢 ⋅

minimize
𝑢 ⋅



Introduction to CasADi

• Numerical optimization software
• Tailored towards transcription of optimal control problems into NLPs
• Eg. single shooting, multiple shooting, collocation

• Interfaces
• Matlab, Python, C++, etc.

• Tools:
• NLP solvers (eg. IPOPT, SNOPT, etc.)
• Convex solvers (eg. Gurobi, Cplex, etc.)
• Symbolic integrators



Introduction to CasADi

• Home page
• https://github.com/casadi/casadi/wiki

• Installation
• https://github.com/casadi/casadi/wiki/InstallationInstructions

• User guide
• http://casadi.sourceforge.net/v3.4.0/users_guide/casadi-users_guide.pdf



Example

• Reformulation as nonlinear program (NLP)
• 𝑁 = 100 with uniform time intervals

• Forward Euler integration for dynamics

• First-order integration

Adapted from example in casADi user manual

න
0

10

𝑥1
2 + 𝑥2

2 + 𝑢2 𝑑𝑡

ሶ𝑥1 = 1 − 𝑥2
2 𝑥1 − 𝑥2 + 𝑢subject to

ሶ𝑥2 = 𝑥1
𝑥1 ≥ −0.25

−1 ≤ 𝑢 ≤ 1

minimize
𝑢 ⋅



Example

1. Installation

2. Preliminary setup

3. Integrating dynamics

4. NLP formulation

5. Solve and plot

Adapted from example in casADi user manual

න
0

10

𝑥1
2 + 𝑥2

2 + 𝑢2 𝑑𝑡

ሶ𝑥1 = 1 − 𝑥2
2 𝑥1 − 𝑥2 + 𝑢subject to

ሶ𝑥2 = 𝑥1
𝑥1 ≥ −0.25

−1 ≤ 𝑢 ≤ 1

minimize
𝑢 ⋅



https://github.com/casadi/casadi/wiki/InstallationInstructions



Import and preliminary setup

• sym command: symbolic variables

• Symbolic differentiation and
integration inside casadi

• Note that xdot and Jt are also 
symbolic



Integrating Dynamics

• f takes as input x and u, 
and outputs xdot and 
Jt, as defined previously

• One can replace Forward
Euler with for example
RK4
• Code just shows Forward 

Euler for one time step

• F takes as input an initial
condition X0, and a 
vector of controls U, and 
outputs the final state X
and total cost Q



NLP Formulation

• Start with empty NLP
• Controls w, w0, with 

bounds lbw, ubw

• J is the total cost
• Will use loop to add up 

(integrate) the cost

• g is constraint function 
on 𝑥
• lbg, ubg give bounds

න
0

10

𝑥1
2 + 𝑥2

2 + 𝑢2 𝑑𝑡

ሶ𝑥1 = 1 − 𝑥2
2 𝑥1 − 𝑥2 + 𝑢subject to

ሶ𝑥2 = 𝑥1
𝑥1 ≥ −0.25

−1 ≤ 𝑢 ≤ 1

minimize
𝑢 ⋅



NLP Formulation

• Control bounded 
between −1 and 1
• Need a constraint at every

time step

• Add up cost at every time
step

• State constraints at every
time step

න
0

10

𝑥1
2 + 𝑥2

2 + 𝑢2 𝑑𝑡

ሶ𝑥1 = 1 − 𝑥2
2 𝑥1 − 𝑥2 + 𝑢subject to

ሶ𝑥2 = 𝑥1
𝑥1 ≥ −0.25

−1 ≤ 𝑢 ≤ 1

minimize
𝑢 ⋅



Solve and Plot

• See comments and 
documentation
• Code will be uploaded to CourSys

• IPOPT is a built-in NLP solver

• Online documentation has 
python and Matlab examples



Solve and Plot

• See comments and 
documentation
• Code will be uploaded to CourSys

• IPOPT is a built-in NLP solver

• Online documentation has 
python and Matlab examples

න
0

10

𝑥1
2 + 𝑥2

2 + 𝑢2 𝑑𝑡

ሶ𝑥1 = 1 − 𝑥2
2 𝑥1 − 𝑥2 + 𝑢subject to

ሶ𝑥2 = 𝑥1
𝑥1 ≥ −0.25

−1 ≤ 𝑢 ≤ 1

minimize
𝑢 ⋅





Single shooting

• Main disadvantage: integration error

𝑔 𝑥 𝑡𝑖 , 𝑞𝑖 ≥ 0

𝑙 𝑥 𝑡𝑁 , 𝑡𝑁 + ෍

𝑖=0

𝑁−1

𝑐 𝑥 𝑡𝑖 , 𝑞𝑖 , 𝑡𝑖 𝑡𝑖+1 − 𝑡𝑖

subject to

𝑥 𝑡𝑖+1 = 𝑥 𝑡𝑖 + 𝑓 𝑥 𝑡𝑖 , 𝑞𝑖 𝑡𝑖+1 − 𝑡𝑖

∀𝑖 ∈ 0,1, … , 𝑁 − 1 ,

Adapted from example in casADi user manual

minimize
𝑞



Multiple shooting

𝑔 𝒙 𝒕𝒊 , 𝑞𝑖 ≥ 0

𝑙 𝒙 𝒕𝑵 , 𝑡𝑁 + ෍

𝑖=0

𝑁−1

𝑐 𝒙 𝒕𝒊 , 𝑞𝑖 , 𝑡𝑖 𝑡𝑖+1 − 𝑡𝑖

subject to

𝒙 𝒕𝒊+𝟏 = 𝒙 𝒕𝒊 + 𝑓 𝒙 𝒕𝒊 , 𝑞𝑖 𝑡𝑖+1 − 𝑡𝑖

∀𝑖 ∈ 0,1, … , 𝑁 − 1 ,

𝑔 𝒔𝒊, 𝑞𝑖 ≥ 0

ℎ 𝒔𝑵, 𝑡𝑁 + ෍

𝑖=0

𝑁−1

𝑐 𝒔𝒊, 𝑞𝑖 , 𝑡𝑖 𝑡𝑖+1 − 𝑡𝑖

subject to

𝒔𝒊+𝟏 = 𝒔𝒊 + 𝑓 𝒔𝒊, 𝑞𝑖 𝑡𝑖+1 − 𝑡𝑖

∀𝑖 ∈ 0,1, … , 𝑁 − 1 ,

minimize
𝑞

minimize
𝒔,𝑞



Shooting Method Disadvantages

• Numerical integration
• Potentially slow

• Numerical errors


