CMPT 882

Feb. 8

Nonlinear Optimization

```
minimize f(x)

subject to g_i(x) \le 0, i = 1, ..., n

h_j(x) = 0, j = 1, ..., m
```

- Nonlinear optimization:
 - Decision variable is $x \in \mathbb{R}^n$

minimize
$$l(x(t_f), t_f) + \int_0^{t_f} c(x(t), u(t), t) dt$$
 Cost functional, $J(x(\cdot), u(\cdot))$ subject to $\dot{x}(t) = f(x(t), u(t))$ $g(x(t), u(t)) \geq 0$ Additional constraints $x(t) \in \mathbb{R}^n, u(t) \in \mathbb{R}^m, x(0) = x_0$

- Nonlinear optimization:
 - Decision variable is $x \in \mathbb{R}^n$

- Optimal control:
 - Decision variable is a **function** $u(\cdot)$

minimize
$$l(x(t_f), t_f) + \int_0^{t_f} c(x(t), u(t), t) dt$$

subject to $\dot{x}(t) = f(x(t), u(t))$

Observation 1: Discretize time → nonlinear optimization problem

• Fact 1: Minimizing "cost" is same as maximizing "reward"

Fact 2: Discretize time + maximizing reward → reinforcement learning problem

minimize
$$l(x(t_f), t_f) + \int_0^{t_f} c(x(t), u(t), t) dt$$

subject to $\dot{x}(t) = f(x(t), u(t))$

Observation 1: Discretize time → nonlinear optimization problem

• Fact 1: Minimizing "cost" is same as maximizing "reward"

Fact 2: Discretize time + maximizing reward → reinforcement learning problem

minimize
$$l(x(t_f), t_f) + \int_0^{t_f} c(x(t), u(t), t) dt$$

subject to $\dot{x}(t) = f(x(t), u(t))$

- Open-loop control
 - Find u(t) for $t \in [0, t_f]$
 - Scalable, but errors will add up
- Closed-loop control
 - Find u(t, x) for $t \in [0, t_f], x \in \mathbb{R}^n$
 - Not scalable, but robust
 - "Special" techniques needed (eg. Reinforcement learning) for large n
- Receding horizon control:
 - Find u(t) for $t \in [0,T]$, use u(t) for $t \in [0,h]$, then find u(t) for $t \in [h,T+h]$ and repeat
 - Has features of both open- and closed-loop control

• For now: Deterministic systems, continuous time, continuous state

- Other variations:
 - Stochastic
 - Discrete time
 - Discrete state

Outline - Open-Loop Control

Optimal Control Problems

Differential flatness

- Direct Methods (Numerical Methods)
 - Shooting methods
 - Collocation
 - CasADi Matlab toolbox

minimize
$$l(x(t_f), t_f) + \int_0^{t_f} c(x(t), u(t), t) dt$$
 Cost functional, $J(x(\cdot), u(\cdot))$ subject to $\dot{x}(t) = f(x(t), u(t))$ $g(x(t), u(t)) \geq 0$ Additional constraints $x(t) \in \mathbb{R}^n, u(t) \in \mathbb{R}^m, x(0) = x_0$

- Optimal control:
 - Decision variable is a function $u(\cdot)$
- Strategy 1: Optimality conditions
- Strategy 2: Discretize first → nonlinear optimization
- Strategy 3: Use differential flatness (if lucky)

Differential Flatness

• Problem: find a $u(\cdot)$ such that

$$\dot{x}(t) = f(x, u)$$

$$x(0) = x_0$$

$$x(T) = x_f$$

Worry about feasibility for now, and ignore cost

• Example: vehicle steering

• State: (x, y, θ)

• Inputs: (v, ϕ)

$$\dot{x} = v \cos \theta$$

$$\dot{y} = v \sin \theta$$

$$\dot{\theta} = \frac{v}{l} \tan \phi$$

Use Special Structure

• First, suppose x(t), y(t) are smooth and given.

1. Obtain heading:

$$\frac{\dot{y}}{\dot{x}} = \frac{\sin \theta}{\cos \theta} \Rightarrow \theta = \arctan\left(\frac{\dot{y}}{\dot{x}}\right)$$

2. Obtain speed

$$\dot{x} = v \cos \theta \Rightarrow v = \frac{\dot{x}}{\cos \theta}$$

3. Obtain steering angle

$$\dot{\theta} = \frac{v}{l} \tan \phi \Rightarrow \phi = \arctan\left(\frac{l\dot{\theta}}{v}\right)$$

All state variables and control inputs can be determined from the given trajectory!

Dynamics:

$$\dot{x} = v \cos \theta$$

$$\dot{y} = v \sin \theta$$

$$\dot{\theta} = \frac{v}{l} \tan \phi$$

Differential Flatness Definition

A nonlinear system $\dot{x} = f(x, u)$ is differentially flat if there exists a function α such that

$$z = \alpha(x, u, \dots, u^{(p)})$$

and we can write the solutions of the nonlinear system as functions of z and a finite number of derivatives

$$x = \beta(z, \dot{z}, \dots, z^{(q)})$$

$$u = \gamma(z, \dot{z}, \dots, z^{(q)})$$

Differential Flatness Definition

Generic system

Kinematic car

x(t), y(t) are smooth and given

$$\dot{x} = f(x, u) \longrightarrow$$

$$\dot{y} = v \sin \theta$$

 $\dot{x} = v \cos \theta$

$$\dot{\theta} = \frac{v}{l} \tan \phi$$

$$z = \alpha(x, u, ..., u^{(p)}) \longrightarrow z = (x, y)$$

$$x = \beta(z, \dot{z}, ..., z^{(q)})$$

$$\begin{bmatrix} x \\ y \\ \theta \end{bmatrix} = \begin{bmatrix} x \\ y \\ \operatorname{arctan}\left(\frac{\dot{x}}{\dot{y}}\right) \end{bmatrix}$$

$$u = \gamma(z, \dot{z}, \dots, z^{(q)}) \qquad \qquad \qquad \left[\begin{matrix} v \\ \phi \end{matrix}\right] = \begin{bmatrix} \frac{\dot{x}}{\cos \theta} \\ \arctan\left(\frac{l\dot{\theta}}{v}\right) \end{bmatrix}$$

Problem: find a feasible solution that satisfies

$$\dot{x}(t) = f(x(t), u(t))$$

$$x(0) = x_0$$

$$x(T) = x_f$$

• Differential flatness: $x = \beta(z, \dot{z}, ..., z^{(q)})$

$$\Rightarrow x(0) = \beta \left(z(0), \dot{z}(0), \dots, z^{(q)}(0) \right) = x_0$$

$$x(T) = \beta \left(z(T), \dot{z}(T), \dots, z^{(q)}(T) \right) = x_f$$

• Let
$$z(t) = \sum_{i=1}^{N} b_i \psi_i(t) \Rightarrow \dot{z}(t) = \sum_{i=1}^{N} b_i \dot{\psi}_i(t)$$

$$\vdots$$

$$z^{(q)}(t) = \sum_{i=1}^{N} b_i \psi_i^{(q)}(t)$$

• Differential flatness:

$$x(0) = \beta \left(z(0), \dot{z}(0), \dots, z^{(q)}(0) \right) = x_0$$

$$x(T) = \beta \left(z(T), \dot{z}(T), \dots, z^{(q)}(T) \right) = x_f$$

$$z(t) = \sum_{i=1}^{N} b_i \psi_i(t), \quad \dot{z}(t) = \sum_{i=1}^{N} b_i \dot{\psi}_i(t), \quad \cdots \quad z^{(q)}(t) = \sum_{i=1}^{N} b_i \phi_i^{(q)}(t)$$

$$\Rightarrow \begin{bmatrix} \psi_1(0) & \psi_2(0) & \cdots & \psi_N(0) \\ b_1 \\ b_2 \\ \vdots \\ b_N \end{bmatrix} = \begin{bmatrix} z_1(0) \\ b_2 \\ \vdots \\ b_N \end{bmatrix}$$

• Differential flatness:

$$\begin{split} x(0) &= \beta \left(z(0), \dot{z}(0), \dots, z^{(q)}(0) \right) = x_0 \\ x(T) &= \beta \left(z(T), \dot{z}(T), \dots, z^{(q)}(T) \right) = x_f \end{split}$$

$$z(t) = \sum_{i=1}^{N} b_i \psi_i(t), \quad \dot{z}(t) = \sum_{i=1}^{N} b_i \dot{\psi}_i(t), \quad \cdots \quad z^{(q)}(t) = \sum_{i=1}^{N} b_i \phi_i^{(q)}(t)$$

$$\Rightarrow \begin{bmatrix} \psi_{1}(0) & \psi_{2}(0) & \cdots & \psi_{N}(0) \\ \dot{\psi}_{1}(0) & \dot{\psi}_{2}(0) & \cdots & \dot{\psi}_{N}(0) \\ \vdots & \vdots & \ddots & \vdots \\ \psi_{1}^{(q)}(0) & \psi_{2}(0)^{(q)} & \cdots & \psi_{N}^{(q)}(0) \end{bmatrix} \begin{bmatrix} b_{1} \\ b_{2} \\ \vdots \\ b_{N} \end{bmatrix} = \begin{bmatrix} z_{1}(0) \\ \dot{z}_{1}(0) \\ \vdots \\ z_{1}^{(q)}(0) \end{bmatrix}$$

• Differential flatness:

$$x(0) = \beta \left(z(0), \dot{z}(0), \dots, z^{(q)}(0) \right) = x_0$$

$$x(T) = \beta \left(z(T), \dot{z}(T), \dots, z^{(q)}(T) \right) = x_f$$

$$z(t) = \sum_{i=1}^{N} b_i \psi_i(t), \quad \dot{z}(t) = \sum_{i=1}^{N} b_i \dot{\psi}_i(t), \quad \cdots \quad z^{(q)}(t) = \sum_{i=1}^{N} b_i \phi_i^{(q)}(t)$$

$$\Rightarrow \begin{bmatrix} \psi_{1}(0) & \psi_{2}(0) & \cdots & \psi_{N}(0) \\ \dot{\psi}_{1}(0) & \dot{\psi}_{2}(0) & \cdots & \dot{\psi}_{N}(0) \\ \vdots & \vdots & \ddots & \vdots \\ \psi_{1}^{(q)}(0) & \psi_{2}(0)^{(q)} & \cdots & \psi_{N}^{(q)}(0) \\ \psi_{1}(T) & \psi_{2}(T) & \cdots & \psi_{N}(T) \\ \dot{\psi}_{1}(T) & \dot{\psi}_{2}(T) & \cdots & \dot{\psi}_{N}(T) \\ \vdots & \vdots & \ddots & \vdots \\ \psi_{1}^{(q)}(T) & \psi_{2}^{(q)}(T) & \cdots & \psi_{N}^{(q)}(T) \end{bmatrix} \begin{bmatrix} b_{1} \\ b_{2} \\ \vdots \\ b_{N} \end{bmatrix} = \begin{bmatrix} z_{1}(0) \\ \dot{z}_{1}(0) \\ \vdots \\ z_{1}^{(q)}(0) \\ \dot{z}_{1}(T) \\ \dot{z}_{1}(T) \\ \vdots \\ z_{1}^{(q)}(T) \end{bmatrix}$$

What to do with b?

$$\begin{bmatrix} \psi_{1}(0) & \psi_{2}(0) & \cdots & \psi_{N}(0) \\ \dot{\psi}_{1}(0) & \dot{\psi}_{2}(0) & \cdots & \dot{\psi}_{N}(0) \\ \vdots & \vdots & \ddots & \vdots \\ \psi_{1}^{(q)}(0) & \psi_{2}(0)^{(q)} & \cdots & \psi_{N}^{(q)}(0) \\ \psi_{1}(T) & \psi_{2}(T) & \cdots & \psi_{N}(T) \\ \dot{\psi}_{1}(T) & \dot{\psi}_{2}(T) & \cdots & \dot{\psi}_{N}(T) \\ \vdots & \vdots & \ddots & \vdots \\ \psi_{1}^{(q)}(T) & \psi_{2}^{(q)}(T) & \cdots & \psi_{N}^{(q)}(T) \end{bmatrix} \begin{bmatrix} b_{1} \\ b_{2} \\ \vdots \\ b_{N} \end{bmatrix} = \begin{bmatrix} z_{1}(0) \\ \dot{z}_{1}(0) \\ \vdots \\ z_{1}^{(q)}(0) \\ \dot{z}_{1}(T) \\ \dot{z}_{1}(T) \\ \vdots \\ z_{1}^{(q)}(T) \end{bmatrix}$$

$$z(t) = \sum_{i=1}^{N} b_i \psi_i(t), \quad \dot{z}(t) = \sum_{i=1}^{N} b_i \dot{\psi}_i(t), \quad \cdots \quad z^{(q)}(t) = \sum_{i=1}^{N} b_i \phi_i^{(q)}(t)$$

What to do with b?

$$\begin{bmatrix} \psi_{1}(0) & \psi_{2}(0) & \cdots & \psi_{N}(0) \\ \dot{\psi}_{1}(0) & \dot{\psi}_{2}(0) & \cdots & \dot{\psi}_{N}(0) \\ \vdots & \vdots & \ddots & \vdots \\ \psi_{1}^{(q)}(0) & \psi_{2}(0)^{(q)} & \cdots & \psi_{N}^{(q)}(0) \\ \psi_{1}(T) & \psi_{2}(T) & \cdots & \psi_{N}(T) \\ \dot{\psi}_{1}(T) & \dot{\psi}_{2}(T) & \cdots & \dot{\psi}_{N}(T) \\ \vdots & \vdots & \ddots & \vdots \\ \psi_{1}^{(q)}(T) & \psi_{2}^{(q)}(T) & \cdots & \psi_{N}^{(q)}(T) \end{bmatrix} \begin{bmatrix} b_{1} \\ b_{2} \\ \vdots \\ b_{N} \end{bmatrix} = \begin{bmatrix} z_{1}(0) \\ \dot{z}_{1}(0) \\ \vdots \\ z_{1}^{(q)}(0) \\ \dot{z}_{1}(T) \\ \dot{z}_{1}(T) \\ \vdots \\ z_{1}^{(q)}(T) \end{bmatrix}$$

$$z(t) = \sum_{i=1}^{N} b_{i} \psi_{i}(t), \quad \dot{z}(t) = \sum_{i=1}^{N} b_{i} \dot{\psi}_{i}(t), \quad \cdots \quad z^{(q)}(t) = \sum_{i=1}^{N} b_{i} \phi_{i}^{(q)}(t)$$

$$x = \beta(z, \dot{z}, \dots, z^{(q)})$$

$$u = \gamma(z, \dot{z}, \dots, z^{(q)})$$

Key points

minimize
$$l(x(t_f), t_f) + \int_0^{t_f} c(x(t), u(t), t) dt$$

subject to $\dot{x}(t) = f(x(t), u(t))$

- Trajectory generation via solving algebraic equations
- Other constraints can be transformed into z space
- Cost/performance index also transformed into z space
- Quadrotors are differentially flat
 - D. Mellinger and V. Kumar. *Minimum snap trajectory generation and control for quadrotors*, ICRA 2011.

Direct methods

- Differential flatness
 - Algebraic method for special system dynamics

- Direct shooting
 - Parametrize control
 - Numerical example with CasADi

- Collocation
 - Parametrize both state and control

$$\min_{u(\cdot)} h\big(x\big(t_f\big), t_f\big) + \int_{t_0}^{t_f} g(x(t), u(t), t) dt$$
 subject to
$$\dot{x}(t) = a\big(x(t), u(t)\big)$$

$$c\big(x(t), u(t)\big) \geq 0, t \in \big[t_0, t_f\big]$$
 where
$$x(t) \in \mathbb{R}^n, u(t) \in \mathbb{R}^m, x(t_0) = x_0$$

• Discretize:

$$t_0 < t_1 < \dots < t_N \coloneqq t_f$$

 $u(t) = q_i \text{ for } t \in [t_i, t_{i+1}]$

$$\min_{u(\cdot)} h\big(x\big(t_f\big), t_f\big) + \int_{t_0}^{t_f} g(x(t), u(t), t) dt$$
 subject to
$$\dot{x}(t) = a\big(x(t), u(t)\big)$$

$$c\big(x(t), u(t)\big) \geq 0, t \in \big[t_0, t_f\big]$$
 where
$$x(t) \in \mathbb{R}^n, u(t) \in \mathbb{R}^m, x(t_0) = x_0$$

• Discretize:

$$t_0 < t_1 < \dots < t_N \coloneqq t_f$$

- $u(t) = q_i \text{ for } t \in [t_i, t_{i+1}]$
- Numerically integrate dynamics and cost:
 - Simple example:

Dynamics:
$$x(t_{i+1}) \approx x(t_i) + a(x(t_i), q_i)(t_{i+1} - t_i)$$

Cost:
$$\int_{t_0}^{t_f} g(x(t), u(t), t) dt \approx \sum_{i=0}^{N-1} g(x(t_i), q_i, t_i)(t_{i+1} - t_i)$$

$$\min_{u(\cdot)} h\big(x\big(t_f\big), t_f\big) + \int_{t_0}^{t_f} g(x(t), u(t), t) dt$$
 subject to
$$\dot{x}(t) = a\big(x(t), u(t)\big)$$

$$c\big(x(t), u(t)\big) \geq 0, t \in \big[t_0, t_f\big]$$

• Discretized problem:

$$\min_{q} h(x(t_N), t_N) + \sum_{i=0}^{N-1} g(x(t_i), q_i, t_i)(t_{i+1} - t_i)$$
 subject to
$$\forall i \in \{0, 1, \dots, N-1\},$$

$$x(t_{i+1}) = x(t_i) + a(x(t_i), q_i)(t_{i+1} - t_i)$$

$$c(x(t_i), q_i) \ge 0$$

Introduction to CasADi

- Numerical optimization software
 - Tailored towards transcription of optimal control problems into NLPs
 - Eg. single shooting, multiple shooting, collocation
- Interfaces
 - MATLAB, Python, C++, etc.
 - We will use MATLAB
- Tools:
 - NLP solvers (eg. IPOPT, SNOPT, etc.)
 - Convex solvers (eg. Gurobi, Cplex, etc.)
 - Symbolic integrators

Introduction to CasADi

- Home page
 - https://github.com/casadi/casadi/wiki

- Installation
 - https://github.com/casadi/casadi/wiki/InstallationInstructions

- User guide
 - http://casadi.sourceforge.net/v3.4.0/users_guide/casadi-users_guide.pdf

Coding example

$$\min_{u(\cdot)} \int_0^{10} (x_1^2 + x_2^2 + u^2) dt$$
 subject to
$$\dot{x}_1 = (1 - x_2^2) x_1 - x_2 + u$$

$$\dot{x}_2 = x_1$$

$$x_1 \ge -0.25$$

$$-1 \le u \le 1$$

- Reformulation as NLP
 - N = 100 with uniform time intervals
 - Forward Euler integration for dynamics
 - First-order integration

Coding example

$$\min_{u(\cdot)} \int_0^{10} (x_1^2 + x_2^2 + u^2) dt$$
 subject to
$$\dot{x}_1 = (1 - x_2^2) x_1 - x_2 + u$$

$$\dot{x}_2 = x_1$$

$$x_1 \ge -0.25$$

$$-1 \le u \le 1$$

- 1. Installation and basic test
- 2. Preliminary setup
- 3. Integrating dynamics
- 4. NLP formulation
- 5. Solve and plot

https://github.com/casadi/casadi/wiki/InstallationInstructions

Installing CasADi

Option 1: Binary installation (recommended)

Install CasADi 3.4.3

For Python users: pip install casadi (you must have pip --version >= 8.1!)

Grab a binary from the table (for MATLAB, use the newest compatible version below):

	Windows	Linux	Mac
Matlab	R2014b or later, R2014a, R2013a or R2013b	R2014b or later, R2014a	R2015a or later, R2014b, R2014a
Octave	4.2.2 (32bit / 64bit)	4.2.2	4.2.2
Python	Py27 (32bit ^{1,2} / 64bit ²), Py35 (32bit ² / 64bit ²), Py36 (32bit ² / 64bit ²)	Py27, Py35, Py36	Py27, Py35, Py36

Coding example

$$\min_{u(\cdot)} \int_0^{10} (x_1^2 + x_2^2 + u^2) dt$$
 subject to
$$\dot{x}_1 = (1 - x_2^2) x_1 - x_2 + u$$

$$\dot{x}_2 = x_1$$

$$x_1 \ge -0.25$$

$$-1 \le u \le 1$$

- 1. Installation and basic test
- 2. Preliminary setup
- 3. Integrating dynamics
- 4. NLP formulation
- 5. Solve and plot

$$\min_{q} h(x(t_N), t_N) + \sum_{i=0}^{N-1} g(x(t_i), q_i, t_i)(t_{i+1} - t_i)$$
 subject to
$$\forall i \in \{0, 1, \dots, N-1\},$$

$$x(t_{i+1}) = x(t_i) + a(x(t_i), q_i)(t_{i+1} - t_i)$$

$$c(x(t_i), q_i) \ge 0$$

Main disadvantage: integration error

Multiple shooting

Shooting method disadvantages

- Numerical integration
 - Potentially slow
 - Numerical errors

Direct methods

- Differential flatness
 - Algebraic method for special system dynamics

- Direct shooting
 - Parametrize control
 - Numerical example with CasADi

- Collocation
 - Parametrize both state and control