Optimal Control

CMPT 882
Feb. 8

Nonlinear Optimization

minimize f(x)

subjectto g;(x) <0,i=1,...,n
h](X) = 0,_] =1,..,m

* Nonlinear optimization:
 Decision variable is x € R™

Optimal Control

Running cost

A
[t 1

mirllli(r.r)lize l(x(tf), tf) + fo fc(x(t),u(t),t)dt

subject to x(t) = f(x(t), u(t))

g(x(t),u(t)) >0
x(t) € RMu(t) € R™ x(0) = x,

* Nonlinear optimization: * Optimal control:
 Decision variable is x € R" Decision variable is a function u(-)

Optimal Control

Running cost
[t : |
minimize |(x(t;), ¢;) + fo c(x(t), u(t),)dt

subject to x(t) = f(x(t), u(t))
g(x(t),u(t)) >0
x(t) € RMu(t) € R™ x(0) = x,

Optimal Control

Ly
c(x(t),u(t), t)dt

mirbi&lize (x(¢r), tr) +j

0
subject to x(t) = f(x(t), u(t))

* Observation 1: Discretize time = nonlinear optimization problem
* Fact 1: Minimizing “cost” is same as maximizing “reward”

 Fact 2: Discretize time + maximizing reward = reinforcement learning
problem

Optimal Control

Ly
c(x(t),u(t), t)dt

mirbi&lize (x(¢r), tr) +j

0
subject to x(t) = f(x(t), u(t))

* Observation 1: Discretize time = nonlinear optimization problem
* Fact 1: Minimizing “cost” is same as maximizing “reward”

 Fact 2: Discretize time + maximizing reward = reinforcement learning
problem

Optimal Control
mig{i&ﬂze l(x(tf), tf) +f

0
subject to x(t) = f(x(t), u(t))

* Open-loop control W
e Find u(t) fort € [O, tf]

e Scalable, but errors will add up

t

fc(x(t), u(t), t)dt

* Closed-loop control
 Findu(t,x) fort € [O, tf], x € R"
* Not scalable, but robust
e “Special” techniques needed (eg. Reinforcement learning) for large n

* Receding horizon control:
* Findu(t) fort € [0,T], use u(t) fort € [0, h], then find u(t) fort € [h, T + h] and
repeat
* Has features of both open- and closed-loop control

Optimal Control

* For now: Deterministic systems, continuous time, continuous state

* Other variations:
e Stochastic
* Discrete time
* Discrete state

Outline — Open-Loop Control

* Optimal Control Problems
* Differential flatness

* Direct Methods (Numerical Methods)

* Shooting methods
e Collocation
e CasADi Matlab toolbox

Optimal Control

Running cost

A
[t 1

minimize 1(x(t;),t7) + [*cCe(©),u(®), 00

subject to x(t) = f(x(t),u(t))
g(x(t),u(t)) >0
x(t) € RMu(t) € R™ x(0) = x,

* Optimal control: Strategy 1: Optimality conditions

* Decision variable is a function u(*) o Strategy 2: Discretize first > nonlinear
optimization

 Strategy 3: Use differential flatness (if lucky)

Differential Flatness

* Problem: find a u(+) such that
x(t) = f(x,u)
x(0) = xq
x(T) = x¢

* Worry about feasibility for now, and ignore cost

* Example: vehicle steering % = vcos 6
* State: (x,y,0) y =vsiné

* Inputs: (v,) 6 =%tanc],’)

140
‘5&
D%

B8 |

Use Special Structure

Dynamics:
X =vcosb
* First, suppose x(t), y(t) are smooth and given. y =vsing
. v
0 = Ttan ¢
1. Obtain heading: y siné (3’)
== = 6 = arctan| =
X cos6@ X
: X
2. Obtain speed = 1cosh = v =
cos 6
3. Obtain steering angle v 10
0 = Ttanq') = ¢ = arctan >

» All state variables and control inputs can be determined from the given trajectory!

Differential Flatness Definition

A nonlinear system x = f(x, u) is differentially flat if there exists a
function a such that

zZ = a(x, u, ...,u(p))

and we can write the solutions of the nonlinear system as functions of
z and a finite number of derivatives

X = ,B(Z, Z, ...,Z(Q))
U = y(z, Z, ...,Z(Q))

Differential Flatness Definition

Generic system

x = f(x,u)

Z = a(x, U, ...,u(p))

X = ,B(Z, Z, ...,Z(q))

u = y(z,z’, ...,Z(Q))

Kinematic car
x(t), y(t) are smooth and given

X =vcosH
y = vsinf
. U
6 =7tanq§
z=(x,y)

X

)

(zé
arctan| —

y

by

cos 6

%

)

Trajectory generation

* Problem: find a feasible solution that satisfies

2(t) = f(x(@®), u(®))
x(0) = x,

x(T) = xf

* Differential flatness: x=p8(zz2, ..,z(?)

= x(0) = §(2(0), 2(0), ..., 2?(0)) = x,
x(T) = B (2(1), 2(T), ..., 2P(T)) = x;

N N
s let z(0) =) (D) = 2(0) =) bi(®)
i=1 i=1

N
z@@) = Y bp P (t)
2

Trajectory generation

« Differential flatness: x(0) = B (2(0), 2(0), ..., 2P (0)) = x,
x(T) = B (2(1), 2(T), .., 2D (T)) = x;

N N N
20 =) ba(0), 2O =) bhi(®), - 29O =) bdP(®)
i=1 i=1 i=1
" 1(0) Po(0) - Py(0)] BAOR
-
= b,z =

Trajectory generation

e Differential flatness:

x(0) = B (2(0),2(0), ..., 2P (0)) = xq
x(T) = B (2(1), 2(T), .., 2D (T)) = x;

N N
26) =) bpi(®), 2(0) =) bpi(0),
i=1 i=1

1(0)
:(0)

$2(0)
2(0)

BD0) P, (0)@

Yn(0)
P (0)

.- ¢§Q5(0)

N
@) = Y bip P (t)
2

EAQOR
#1(0)

2.9 (0)

Trajectory generation

« Differential flatness: x(0) = B (2(0), 2(0), ..., 2P (0)) = x,
x(T) = B (2(1), 2(T), .., 2D (T)) = x;

N N N
20 =) ba(0), 2O =) bhi(®), - 29O =) bdP(®)
i=1 i=1 i=1
0@ (0 @] [2(0)
l/J1.(0) 1/)2.(0) = Py (0) 21(0)
: : : b] :
[¥P@ w.0@ - yPO|(b,| |40
TGO RN RN CoR | IEN bl PGy
Y1) (1) () (o]) 24(T)
pOm wOm - P, 2, (7).

What to do with b?

9. (0) (0)
$1(0) 1 (0)
PO P, (0)@
YT (D)
Yu(T) (1)

WOT) @)

- 1/)1%"5(0)

.- ¢1(Vq5(T)_

Yn(0)]
Y (0)

Yn(T)
1/.11\/'(71)

N N
20 =) bi(0), 20 =) bthi(®),
i=1 i=1

" 21(0) 7
4(0)

2 (0)
z1(T)
AGQ

29(T).

N
2D =) big;”(®)
2

What to do with b?

9. (0) (0)
$1(0) 1 (0)
PO P, (0)@
YT (D)
Yu(T) (1)

WOT) @)

- 1/)1%"5(0)

.- ¢1(Vq5(T)_

Yn(0)]
Y (0)

Yn(T)

1/.11\/'(71)

N N
20 =) bi(0), 20 =) bthi(®),
i=1 i=1

X = ﬁ(z, Z, ...,Z(Q))

u=vy(zz,..,z9)

" 21(0) 7
4(0)

2 (0)
z1(T)
AGQ

29(T).

N
2D =) big;”(®)
2

Key points

t

fc(x(t), u(t), t)dt

mi%ig?ize l(x(tf), tf) +f

0
subject to x(t) = f(x(t), u(t))

* Trajectory generation via solving algebraic equations
e Other constraints can be transformed into z space
» Cost/performance index also transformed into z space

* Quadrotors are differentially flat

* D. Mellinger and V. Kumar. Minimum snap trajectory generation and control for
quadrotors, ICRA 2011.

Direct methods

e Differential flatness
* Algebraic method for special system dynamics

* Direct shooting
* Parametrize control
* Numerical example with CasADi

e Collocation
e Parametrize both state and control

Single shooting

e Discretize:

t
m(igl h(x(tr) tr) + j fg(x(t),u(t), t)dt
u(to

subjectto x(t) = a(x(t),u(t))

c(x(®),u(®)) = 0,t € [to, tf]
where x(t) € R™,u(t) € R™, x(t) = xg

t0<t1<'“<tN::tf

u(t) = q;fort € [t;, t;y1]

Single shooting

t
m(igl h(x(tr) tr) + j fg(x(t),u(t), t)dt
u(to

subjectto x(t) = a(x(t),u(t))

c(x(®),u(®)) = 0,t € [to, tf]
where x(t) € R™,u(t) € R™, x(t) = xg

* Discretize: to <t; < <tyi=t
u(t) = q; fort € [t;, t;44]

* Numerically integrate dynamics and cost:
* Simple example:

Dynamics: x(tiv1) = x(t;) + alx(t;), q;) (i1 — ti)

. N-1
Cost: j fg(x(t),u(t), t)dt =~ z g(x(t), qi, t)(tiz1 — t)
i=0

o

Single shooting

t
m(igl h(x(tr) tr) + j fg(x(t),u(t), t)dt
u(to

subjectto x(t) = a(x(t),u(t))
c(x(®),u(®)) = 0,t € [to, tf]

* Discretized problem:

N—1
min h(x(ty),ty) + Z g(x(t;), qi, t) (Ei41 — t;)
1 i=0

subjectto vie{0,1,.., N —1},
x(tiv1) = x(t) + alx(ty), qi) (s — ti)
c(x(t;),q;) =0

Introduction to CasADi

* Numerical optimization software
» Tailored towards transcription of optimal control problems into NLPs
* Eg. single shooting, multiple shooting, collocation

e Interfaces
 MATLAB, Python, C++, etc.
e We will use MATLAB

* Tools:
* NLP solvers (eg. IPOPT, SNOPT, etc.)
* Convex solvers (eg. Gurobi, Cplex, etc.)
* Symbolic integrators

Introduction to CasADi

* Home page
 https://github.com/casadi/casadi/wiki

* |nstallation
* https://github.com/casadi/casadi/wiki/InstallationInstructions

* User guide
* http://casadi.sourceforge.net/v3.4.0/users_guide/casadi-users_guide.pdf

Coding example
rlrtl(i.l)rl jolo(xlz + x5 + u?)dt

subjectto x; = (1 —xH)x; —x, +u
XZ = x1
—-1<u<l1
e Reformulation as NLP
e N = 100 with uniform time intervals
* Forward Euler integration for dynamics

* First-order integration

Adapted from example in casADi user manual

Coding example

10
minJ (x? + x5 + u?)dt
) Jo

u(-)
subjectto x; = (1 —x)x; —x, +u
X2 = X1
xq = —0.25
-1<u<l

Installation and basic test
Preliminary setup
Integrating dynamics

NLP formulation

Al S

Solve and plot

Adapted from example in casADi user manual

https://github.com/casadi/casadi/wiki/Installationinstructions

Installing CasADi

Option 1: Binary installation (recommended)

Install CasADi 3.4.3
For Python users: pip install casadi (you must have pip --version >= 8.1!)

Grab a binary from the table (for MATLAB, use the newest compatible version below):

Windows Linux Mac
R2014b or later, R2015a or later,
R2014b or later,
Matlab R2014a, R2014b,
R2014a
R2013a or R2013b R2014a
Octave 4.2.2 (32bit / 64bit) 4.2.2 4.2.2
Py27 (32bit"? / 64bit?), Py27, Py27,
Python Py35 (32bit? / 64bit?), Py35, Py35,

Py36 (32bit? / 64bit?) Py36 Py36

Coding example

10
minJ (x? + x5 + u?)dt
) Jo

u(-)
subjectto x; = (1 —x)x; —x, +u
X2 = X1
xq = —0.25
-1<u<l

Installation and basic test
Preliminary setup
Integrating dynamics

NLP formulation

Al S

Solve and plot

Adapted from example in casADi user manual

Single shooting

N—1
min h(e(ty), t) + Z gCe(tD), qu t) (tier — £)
1 i=0

subjectto vie{0,1,.., N —1},
x(tiv1) = x(t;) + alx(t;), ;) (ti41 — t;)
c(x(t;),q) =0

* Main disadvantage: integration error

> Xk
Xk =

F(
>> |

Adapted from example in casADi user manual

Multiple shooting

N-—1
min hGe(ty), ty) + z g(e(t), qi, t) (tigg — t)
q i=0

subjectto v e {0,1,..,N — 1},
x(tivq) = x(t;) + a(x(t;), ;) (41 — t;)
C(x(ti)r ql) = 0

!

N-1
rlsliqn h(sy, ty) + Z 9(si, qi, t)(tiyg — t;)
' i=0
subjectto vi € {0,1,...,N — 1},
Siv1 = Si +a(s;, q) (g — t;)
C(Si, CIl) = 0

Shooting method disadvantages

* Numerical integration
e Potentially slow
* Numerical errors

Direct methods

e Differential flatness
* Algebraic method for special system dynamics

* Direct shooting
* Parametrize control
* Numerical example with CasADi

e Collocation
e Parametrize both state and control

