Assignment 1

- Due Feb. 4
- Online submission via CourSys
- Upload entire assignment in a single pdf (take photos if you wrote your solutions)
- Upload code separately via the code component

Convex Optimization II

CMPT 882

Feb. 1

Outline

- How to check if a function is convex
- Understand properties of optimal solutions

Convex Programs

minimize f(x)subject to $g_i(x) \le 0, i = 1, ..., n$, where $g_i(x)$ are convex $h_i^{\mathsf{T}} x = 0, j = 1, ..., m$

- Local optimum is global!
- Relatively easy to solve using simple algorithms
- When you see an optimization problem, first hope it's convex (although this is almost never true)
 - If an optimization problem is not convex, usually one can only hope for local optimum
- It is useful to recognize convex functions

Common Convex Functions on ${\mathbb R}$

- $f(x) = e^{ax}$ is convex for all $x, a \in \mathbb{R}$
- $f(x) = x^a$ is convex on x > 0 if $a \ge 1$ or $a \le 0$; concave if 0 < a < 1
- $f(x) = \log x$ is concave
- $f(x) = x \log x$ is convex for x > 0 (or $x \ge 0$ if defined to be 0 when x = 0)

Common Convex Functions on \mathbb{R}^n

- f(x) = Ax + b is convex for any A, b
- Every norm on \mathbb{R}^n is convex
- $f(x) = \max(x_1, x_2, \dots, x_n)$ is convex
- $f(x) = \frac{x_1^2}{x_2}$ (for $x_2 > 0$)
- Log-sum-exp softmax: $f(x) = \frac{1}{k} \log(e^{kx_1} + e^{kx_2} + \dots + e^{kx_n})$
- Geometric mean: $f(x) = (\prod_{i=1}^{n} x_i)^{\frac{1}{n}}, x_i > 0$

05

0

0.5

-0.5

 $f(x_1, x_2) = \max(x_1, x_2)$

- 0.8

0.6 0.4

- 0.2

-0.2

-0.4

-0.6

Operations that Preserve Convexity

- Non-negative weighted sum: $\sum_i w_i f_i(x)$ is convex if $f_i(x)$ are convex and $w_i \ge 0$
 - Example: $f(x) = ax^{2} + bx^{4} + cx^{6}$, where *a*, *b*, *c* > 0
- Composition with affine function: g(x) = f(Ax + b) is convex if f(x) is convex
 - Example: $f(\theta) = ||X\theta Y||_2^2$
- Point-wise maximum: $\max(f_1(x), f_2(x))$

Operations that Preserve Convexity

• Minimization over a subset of variables: $g(y) \coloneqq \min_{z} f(y, z)$ is convex if f(y, z) is convex (jointly in (y, z))

-0.5

- Perspective: $g(x,t) \coloneqq tf\left(\frac{x}{t}\right), t > 0$ is convex if f(x) is convex
 - Example: $\frac{x_1^2}{x_2}$ is convex if $x_2 > 0$, because $f(x_1) = x_1^2$ is convex
- If $g_i : \mathbb{R}^n \to \mathbb{R}$ are convex, and $h : \mathbb{R}^k \to \mathbb{R}$ is convex and non-decreasing in each argument, then $h(g_1(x), g_2(x), \dots, g_k(x))$ is convex
 - Example: $\log(e^{x_1} + e^{x_2} + \dots + e^{x_n})$ is convex, because e^x is convex, and $\log x$ is convex and non-decreasing

How to check if a function is convex

• Use definition: $f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$

Example 1:

•
$$f(x) = Ax + b, x \in \mathbb{R}^n$$

$$f(\theta x + (1 - \theta)y) = A(\theta x + (1 - \theta)y) + b$$

= $\theta A x + (1 - \theta)Ay + b$
= $\theta A x + (1 - \theta)Ay + \theta b + (1 - \theta)b$
= $\theta f(x) + (1 - \theta)f(y)$

- Equality!
- This means f is also concave (i.e. -f is convex)
- Linear functions are both convex and concave

How to check if a function is convex

- Use definition: $f(\theta x + (1 \theta)y) \le \theta f(x) + (1 \theta)f(y)$
- Show $f(y) \ge f(x) + \nabla f(x) \cdot (y x)$ for differentiable functions
- Show $\nabla^2 f(x) \ge 0$ for twice differentiable functions

120

$$(y) = f(x) + f(x)(y - x) = y + y - 0 - [x + x - 0 + (2x + 1)(y - x)]$$

= $y^{2} + y - [x^{2} + x + 2xy - 2x^{2} + y - x]$
= $y^{2} + y - [-x^{2} + 2xy + y]$
= $y^{2} + x^{2} - 2xy$
= $(x - y)^{2} \ge 0$

• Method 2: show $\nabla^2 f(x) \ge 0$

$$\nabla^2 f(x) = f''(x) = 2 \ge 0$$

How to check if a function is convex

- Use definition: $f(\theta x + (1 \theta)y) \le \theta f(x) + (1 \theta)f(y)$
- Show $f(y) \ge f(x) + \nabla f(x) \cdot (y x)$ for differentiable functions
- Show $\nabla^2 f(x) \ge 0$ for twice differentiable functions
- Show *f* is obtained from simple convex functions and operations that preserve convexity

Example 3:

- $f(x) = ||Ax + b||_2 + \lambda ||x||_1$, A is a constant matrix, b is a constant vector, and $\lambda \ge 0$ is a constant scalar.
 - We know $||x||_1$ are $||x||_2$ are convex
 - All norms are convex
 - So, $||Ax + b||_2$ is convex, by the rule of affine composition
 - g(x) = f(Ax + b) is convex if f(x) is convex
 - Finally, $||Ax + b||_2 + \lambda ||x||_1$ is convex, by the rule of non-negative weighted sum
 - $\sum_{i} w_i f_i(x)$ is convex if $f_i(x)$ are convex and $w_i \ge 0$

How to check if a function is convex

- Use definition: $f(\theta x + (1 \theta)y) \le \theta f(x) + (1 \theta)f(y)$
- Show $f(y) \ge f(x) + \nabla f(x) \cdot (y x)$ for differentiable functions
- Show $\nabla^2 f(x) \ge 0$ for twice differentiable functions
- Show *f* is obtained from simple convex functions and operations that preserve convexity

• Unconstrained case: minimize f(x)

• $\nabla f(x) = 0$

• Inequality constraints only:

minimize f(x)subject to $g_i(x) \le 0, i = 1, ..., n$

- Penalty view point: penalize constraint violation
 - Lagrangian: $L(x, \lambda) = f(x) + \sum_{i=1}^{n} \lambda_i g_i(x)$, $\lambda_i \ge 0$
- Optimality conditions
 - Stationarity: $\nabla_{x}L(x^{*},\lambda^{*})=0$
 - Primal feasibility: $g_i(x^*) \leq 0$
 - Dual feasibility: $\lambda^* \ge 0$
 - Complementary slackness: $\lambda_i^* g_i(x^*) = 0$, i = 1, ..., n

- Stationarity: $\nabla_{\chi} L(x^*, \lambda^*) = 0$
 - Lagrangian:

$$L(x,\lambda) = f(x) + \sum_{i=1}^{n} \lambda_i g_i(x), \qquad \lambda_i \ge 0$$

• Take gradient and set to zero: $0 = \nabla f(x) + \sum_{i=1}^{n} \lambda_i \nabla g_i(x)$

$$\nabla f(x) = -\sum_{i=1}^{n} \lambda_i \nabla g_i(x)$$

• Since $\lambda_i \ge 0$, gradient of f(x) must point "away" from gradients of active constraint functions

- Stationarity: $\nabla_{x} L(x^*, \lambda^*) = 0$
 - Lagrangian:

$$L(x,\lambda) = f(x) + \sum_{i=1}^{n} \lambda_i g_i(x), \qquad \lambda_i \ge 0$$

• Take gradient and set to zero: $0 = \nabla f(x) + \sum_{i=1}^{n} \lambda_i \nabla g_i(x)$

$$\nabla f(x) = -\sum_{i=1}^{n} \lambda_i \nabla g_i(x)$$

• Since $\lambda_i \ge 0$, gradient of f(x) must point "away" from gradients of active constraint functions

- Stationarity: $\nabla_{x} L(x^*, \lambda^*) = 0$
 - Lagrangian:

$$L(x,\lambda) = f(x) + \sum_{i=1}^{n} \lambda_i g_i(x), \qquad \lambda_i \ge 0$$

• Take gradient and set to zero: $0 = \nabla f(x) + \sum_{i=1}^{n} \lambda_i \nabla g_i(x)$

$$\nabla f(x) = -\sum_{i=1}^{n} \lambda_i \nabla g_i(x)$$

• Since $\lambda_i \ge 0$, gradient of f(x) must point "away" from gradients of **active** constraint functions

- Primal feasibility: $g_i(x^*) \leq 0$
 - Constraints must be satisfied
- Dual feasibility: $\lambda^* \ge 0$
 - Penalty view point

- Complementary slackness: $\lambda_i^* g_i(x^*) = 0, i = 1, ..., n$
 - Lagrangian:

$$L(x,\lambda) = f(x) + \sum_{i=1}^{n} \lambda_i g_i(x), \qquad \lambda_i \ge 0$$

- If $g_i(x^*) < 0$, then the constraint is not active, so λ_i^* is set to 0 to not decrease the Lagrangian
- If $g_i(x^*) = 0$, then the constraint is active, so λ_i^* is free to be positive

• Full optimization problem: minimize f(x)

subject to
$$g_i(x) \le 0, i = 1, ..., n$$

 $a_j^{\mathsf{T}} x = b_j, j = 1, ..., m$

- Penalty view point:
 - Lagrangian: $L(x,\lambda) = f(x) + \sum_{i=1}^{n} \lambda_i g_i(x) + \sum_{j=1}^{m} \mu_j (a_j^\top x b_j), \ \lambda_i \ge 0$
- Karush-Kuhn-Tucker (KKT) Conditions:
 - Stationarity $\nabla_{x}L(x^{*},\lambda^{*},\mu^{*})=0$
 - Primal feasibility: $g_i(x^*) \leq 0$, $a_i^{\top} x^* b_i = 0$
 - Dual feasibility: $\lambda^* \ge 0$
 - Complementary slackness: $\lambda_i^* g_i(x^*) = 0$, i = 1, ..., n
- Solve above systems of equations to obtain optimum