Assignment 1

e Due Feb. 4

* Online submission via CourSys

e Upload entire assignment in a single pdf (take photos if you wrote
your solutions)

* Upload code separately via the code component



Convex Optimization Il

CMPT 882
Feb. 1



Outline

* How to check if a function is convex

* Understand properties of optimal solutions



Convex Programs

minimize f(x)

subjectto g;(x) <0,i=1,..,n,
where g;(x) are convex
thx =0,j=1,..,m

* Local optimum is globall
* Relatively easy to solve using simple algorithms

* When you see an optimization problem, first hope
it’s convex (although this is almost never true)

* |f an optimization problem is not convex, usually one can
only hope for local optimum

* It is useful to recognize convex functions




Common Convex Functions on R

e f(x) =e*isconvexforallx,a € R

e f(x) =x%isconvexonx >0ifa>1ora <0;concaveif 0 <a <1

* f(x) = logx is concave

* f(x) = xlogx is convex for x > 0 (or x = 0 if defined to be 0 when x = 0)
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f(x1,%2) = max(xy, x,)
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Common Convex Functions on R™

* f(x) = Ax + b is convex forany 4, b "
 Every norm on R" is convex
e f(x) = max(xq, X5, ..., X,,) iS convex

e f(x) =§—%(forx2 > 0)
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* Log-sum-exp softmax: f(x) = %log(ekxl + ef*2 4 ... 4 gl¥n)

1
* Geometric mean: f(x) = (IIi2{ x))n, x; >0 ]
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F(x) = glog(e™ 1 + e5%2)
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Operations that Preserve Convexity

* Non-negative weighted sum: },; w; f; (x) is convex if f;(x) are convex
and w; = 0
« Example: f(x) = ax? + bx* + cx®, where a,b,c > 0

« Composition with affine function: g(x) = f(Ax + b) is convex if f(x)
IS convex

« Example: f(0) = ||1X8 — Y||35

* Point-wise maximum: max(f1 (x), f> (x))
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Operations that Preserve Convexity

» Minimization over a subset of variables: g(y) := min f(y, z) is convex if -
f(y, z) is convex (jointly in (y, z)) ‘

* Perspective: g(x,t) = tf (%), t > 0is convex if f(x) is convex

* Example: x—l is convex if x, > 0, because f(x;) = x# is convex
2

* If g;: R® - R are convex, and h: R¥ — R is convex and non-decreasing in

each argument, then h(gl (x),g,(x), ..., gk(x)) is convex

* Example: log(e*t + e*2 + --- + e*n) is convex, because e* is convex, and log x is
convex and non-decreasing



How to check if a function is convex

 Use definition: f(Ox + (1 —0)y) <0f(x)+ (1 —-6)f(y)



Example 1:

e f(x) =Ax+b,x € R"

fOx+(1-0)y)=A@x+(1-6)y)+b
=0Ax+ (1 —-60)Ay + b
=0Ax+ (1 —-0)Ay+6b+ (1 —0)b
=0f(x)+(1-0)f(y)

* Equality!
* This means f is also concave (i.e. —f is convex)
* Linear functions are both convex and concave



How to check if a function is convex
 Use definition: f(Ox + (1 —0)y) <0f(x)+ (1 —-6)f(y)
* Show f(y) = f(x) + Vf(x) - (y — x) for differentiable functions

* Show V2f(x) > 0 for twice differentiable functions
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Example 2: ) -\
FO) + VF(x) - (y — %) 40

'f(x):X2+X—6 20
* Method 1: show f(y) = f(x) + Vf(x) - (y — x) fe
Vfx)=f'(x) =2x+1 20—+

fO)—fO+f Oy —x)=y*+y—6—[x*+x—-6
=y2+y—[x?+x+2xy—
=y’ +y—[—x*+ 2xy +y]
= y2 4+ x? — 2xy
=(x—y)*=0

* Method 2: show V4f(x) = 0

Vif(x) =f"(x) =220

y : x :
+ 2x+ 1)(y —x)]
2x% +y — x]



How to check it a function is convex

 Use definition: f(Ox + (1 —0)y) <0f(x)+ (1 —-6)f(y)

* Show f(y) = f(x) + Vf(x) - (y — x) for differentiable functions
* Show V2f(x) > 0 for twice differentiable functions

* Show f is obtained from simple convex functions and operations that
preserve convexity



Example 3:

* f(x) = ||Ax + b||, + Al|x]|{, A is a constant matrix, b is a constant
vector, and A = 0 is a constant scalar.

* We know |[|x||; are ||x||, are convex
e All norms are convex

* So, ||Ax + b||, is convex, by the rule of affine composition
« g(x) = f(Ax + b) is convex if f(x) is convex

* Finally, [|[Ax + b||, + A||x||; is convex, by the rule of non-negative weighted
sum

« Y w;fi(x)is convexif f;(x) are convex and w; = 0



How to check it a function is convex

 Use definition: f(Ox + (1 —0)y) <0f(x)+ (1 —-6)f(y)

* Show f(y) = f(x) + Vf(x) - (y — x) for differentiable functions
* Show V2f(x) > 0 for twice differentiable functions

* Show f is obtained from simple convex functions and operations that
preserve convexity



Optimality Conditions for Convex Programs
* Unconstrained case: minimize f(x)

* VF(x) =0




Optimality Conditions for Convex Programs

 Inequality constraints only: minimize f(x) _
subjectto g;(x) <0,i=1,..,n

* Penalty view point: penalize constraint violation
e Lagrangian: L(x, A1) = f(x) + X1 Aigi(x), 4, =0

* Optimality conditions
e Stationarity: V,.L(x*,1*) = 0
* Primal feasibility: g;(x*) < 0
* Dual feasibility: A* = 0
* Complementary slackness: 4;g;(x*) =0, i =1,...,n



Optimality Conditions for Convex Programs

e Stationarity: V,.L(x*,A*) =0
* Lagrangian: ,
Lx,2) =f(x)+ ) Aigi(x), 24,=0
2.

1=
* Take gradient ar}ld set to zero:

0=Vf(x)+ Z AiVgi(x)
i=1

Vi(x) = —Zlngi(x)

=1
* Since A; = 0, gradient of f(x) must
point “away” from gradients of active
constraint functions
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Optimality Conditions for Convex Programs

e Stationarity: V,.L(x*,A*) =0

* Lagrangian: ,

L(x,2) = f(x) +z/1igi(x), 2,0
i=1

* Take gradient ar}ld set to zero:

0=Vf(x)+ Z AiVgi(x)
i=1

Vi(x) = —Zlngi(x)

=1
* Since A; = 0, gradient of f(x) must

point “away” from gradients of active |

constraint functions
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Optimality Conditions for Convex Programs

* Primal feasibility: g;(x*) < 0
e Constraints must be satisfied

* Dual feasibility: A* > 0
* Penalty view point
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Optimality Conditions for Convex Programs

 Complementary slackness:
Agix*)=0,i=1,..,n

* Lagrangian:

LoD = fC)+ ) Hgi(®), 420
=1

* If g;(x™) < 0, then the constraint

is not active, so A; is set to 0 to not |

decrease the Lagrangian
* If g;(x™) = 0, then the constraint

is active, so A; is free to be positive |
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Optimality Conditions for Convex Programs

* Full optimization problem: minimize f(x)

subjectto  g;(x) <0,i=1,..,n
aij = bj,j =1,..,m

* Penalty view point:

e Lagrangian: L(x,A) = f(x) + Y-, 4;9;(x) + Z;’Ll,uj(aij — bj), A; =0
* Karush-Kuhn-Tucker (KKT) Conditions:

e Stationarity V,.L(x*, A", u*) =0

* Primal feasibility: g;(x*) < 0, al-Tx* —b; =0

e Dual feasibility: A" = 0

* Complementary slackness: 4;g;(x*) =0, i =1,...,n

* Solve above systems of equations to obtain optimum



