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Outline

• How to check if a function is convex

• Understand properties of optimal solutions



Convex Programs

• Local optimum is global!

• Relatively easy to solve using simple algorithms

• When you see an optimization problem, first hope 
it’s convex (although this is almost never true)
• If an optimization problem is not convex, usually one can 

only hope for local optimum

• It is useful to recognize convex functions

minimize 𝑓 𝑥

subject to 𝑔𝑖 𝑥 ≤ 0, 𝑖 = 1,… , 𝑛, 
where 𝑔𝑖 𝑥 are convex

ℎ𝑗
⊤𝑥 = 0, 𝑗 = 1,… ,𝑚



Common Convex Functions on ℝ

• 𝑓 𝑥 = 𝑒𝑎𝑥 is convex for all 𝑥, 𝑎 ∈ ℝ

• 𝑓 𝑥 = 𝑥𝑎 is convex on 𝑥 > 0 if 𝑎 ≥ 1 or 𝑎 ≤ 0; concave if 0 < 𝑎 < 1

• 𝑓 𝑥 = log 𝑥 is concave

• 𝑓 𝑥 = 𝑥 log 𝑥 is convex for 𝑥 > 0 (or 𝑥 ≥ 0 if defined to be 0 when 𝑥 = 0)

𝑓 𝑥 = 𝑒𝑎𝑥 𝑓 𝑥 = 𝑥𝑎



Common Convex Functions on ℝ𝑛

• 𝑓 𝑥 = 𝐴𝑥 + 𝑏 is convex for any 𝐴, 𝑏

• Every norm on ℝ𝑛 is convex

• 𝑓 𝑥 = max 𝑥1, 𝑥2, … , 𝑥𝑛 is convex

• 𝑓 𝑥 =
𝑥1
2

𝑥2
(for 𝑥2 > 0)

• Log-sum-exp softmax: 𝑓 𝑥 =
1

𝑘
log 𝑒𝑘𝑥1 + 𝑒𝑘𝑥2 +⋯+ 𝑒𝑘𝑥𝑛

• Geometric mean: 𝑓 𝑥 = ς𝑖=1
𝑛 𝑥𝑖

1

𝑛, 𝑥𝑖 > 0

𝑓 𝑥1, 𝑥2 = max 𝑥1, 𝑥2

𝑓 𝑥 =
𝑥1
2

𝑥2
𝑓 𝑥 =

1

5
log 𝑒5𝑥1 + 𝑒5𝑥2



Operations that Preserve Convexity

• Non-negative weighted sum: σ𝑖𝑤𝑖𝑓𝑖 𝑥 is convex if 𝑓𝑖 𝑥 are convex 
and 𝑤𝑖 ≥ 0
• Example: 𝑓 𝑥 = 𝑎𝑥2 + 𝑏𝑥4 + 𝑐𝑥6, where 𝑎, 𝑏, 𝑐 > 0

• Composition with affine function: 𝑔 𝑥 = 𝑓 𝐴𝑥 + 𝑏 is convex if 𝑓(𝑥)
is convex
• Example: 𝑓 𝜃 = 𝑋𝜃 − 𝑌 2

2

• Point-wise maximum: max 𝑓1 𝑥 , 𝑓2 𝑥



Operations that Preserve Convexity

• Minimization over a subset of variables: 𝑔 𝑦 ≔ min
𝑧

𝑓 𝑦, 𝑧 is convex if 
𝑓 𝑦, 𝑧 is convex (jointly in 𝑦, 𝑧 )

• Perspective: 𝑔 𝑥, 𝑡 ≔ 𝑡𝑓
𝑥

𝑡
, 𝑡 > 0 is convex if 𝑓 𝑥 is convex

• Example: 
𝑥1
2

𝑥2
is convex if 𝑥2 > 0, because 𝑓 𝑥1 = 𝑥1

2 is convex

• If 𝑔𝑖: ℝ
𝑛 → ℝ are convex, and ℎ:ℝ𝑘 → ℝ is convex and non-decreasing in 

each argument, then ℎ 𝑔1 𝑥 , 𝑔2 𝑥 ,… , 𝑔𝑘 𝑥 is convex
• Example: log 𝑒𝑥1 + 𝑒𝑥2 +⋯+ 𝑒𝑥𝑛 is convex, because 𝑒𝑥 is convex, and log 𝑥 is 

convex and non-decreasing



How to check if a function is convex

• Use definition: 𝑓 𝜃𝑥 + 1 − 𝜃 𝑦 ≤ 𝜃𝑓 𝑥 + 1 − 𝜃 𝑓 𝑦



Example 1:

• 𝑓 𝑥 = 𝐴𝑥 + 𝑏, 𝑥 ∈ ℝ𝑛

• Equality!

• This means 𝑓 is also concave (i.e. −𝑓 is convex)

• Linear functions are both convex and concave

𝑓 𝜃𝑥 + 1 − 𝜃 𝑦 = 𝐴 𝜃𝑥 + 1 − 𝜃 𝑦 + 𝑏
= 𝜃𝐴𝑥 + 1 − 𝜃 𝐴𝑦 + 𝑏
= 𝜃𝐴𝑥 + 1 − 𝜃 𝐴𝑦 + 𝜃𝑏 + 1 − 𝜃 𝑏
= 𝜃𝑓 𝑥 + 1 − 𝜃 𝑓 𝑦



How to check if a function is convex

• Use definition: 𝑓 𝜃𝑥 + 1 − 𝜃 𝑦 ≤ 𝜃𝑓 𝑥 + 1 − 𝜃 𝑓 𝑦

• Show 𝑓 𝑦 ≥ 𝑓 𝑥 + ∇𝑓 𝑥 ⋅ 𝑦 − 𝑥 for differentiable functions

• Show ∇2𝑓 𝑥 ≽ 0 for twice differentiable functions



Example 2:

• 𝑓 𝑥 = 𝑥2 + 𝑥 − 6

• Method 1: show 𝑓 𝑦 ≥ 𝑓 𝑥 + ∇𝑓 𝑥 ⋅ 𝑦 − 𝑥
• ∇𝑓 𝑥 = 𝑓′ 𝑥 = 2𝑥 + 1

• Method 2: show ∇2𝑓 𝑥 ≥ 0

𝑓 𝑦 − 𝑓 𝑥 + 𝑓′ 𝑥 𝑦 − 𝑥 = 𝑦2 + 𝑦 − 6 − 𝑥2 + 𝑥 − 6 + 2𝑥 + 1 𝑦 − 𝑥

= 𝑦2 + 𝑦 − 𝑥2 + 𝑥 + 2𝑥𝑦 − 2𝑥2 + 𝑦 − 𝑥

= 𝑦2 + 𝑦 − −𝑥2 + 2𝑥𝑦 + 𝑦

= 𝑦2 + 𝑥2 − 2𝑥𝑦

= 𝑥 − 𝑦 2 ≥ 0

∇2𝑓 𝑥 = 𝑓′′ 𝑥 = 2 ≥ 0

𝑥𝑦

𝑓 𝑥

𝑓 𝑦

𝑓 𝑥 + ∇𝑓 𝑥 ⋅ 𝑦 − 𝑥



How to check if a function is convex

• Use definition: 𝑓 𝜃𝑥 + 1 − 𝜃 𝑦 ≤ 𝜃𝑓 𝑥 + 1 − 𝜃 𝑓 𝑦

• Show 𝑓 𝑦 ≥ 𝑓 𝑥 + ∇𝑓 𝑥 ⋅ 𝑦 − 𝑥 for differentiable functions

• Show ∇2𝑓 𝑥 ≽ 0 for twice differentiable functions

• Show 𝑓 is obtained from simple convex functions and operations that 
preserve convexity



Example 3:

• 𝑓 𝑥 = 𝐴𝑥 + 𝑏 2 + 𝜆 𝑥 1, 𝐴 is a constant matrix, 𝑏 is a constant 
vector, and 𝜆 ≥ 0 is a constant scalar.
• We know 𝑥 1 are 𝑥 2 are convex

• All norms are convex

• So, 𝐴𝑥 + 𝑏 2 is convex, by the rule of affine composition
• 𝑔 𝑥 = 𝑓 𝐴𝑥 + 𝑏 is convex if 𝑓(𝑥) is convex

• Finally, 𝐴𝑥 + 𝑏 2 + 𝜆 𝑥 1 is convex, by the rule of non-negative weighted 
sum
• σ𝑖𝑤𝑖𝑓𝑖 𝑥 is convex if 𝑓𝑖 𝑥 are convex and 𝑤𝑖 ≥ 0



How to check if a function is convex

• Use definition: 𝑓 𝜃𝑥 + 1 − 𝜃 𝑦 ≤ 𝜃𝑓 𝑥 + 1 − 𝜃 𝑓 𝑦

• Show 𝑓 𝑦 ≥ 𝑓 𝑥 + ∇𝑓 𝑥 ⋅ 𝑦 − 𝑥 for differentiable functions

• Show ∇2𝑓 𝑥 ≽ 0 for twice differentiable functions

• Show 𝑓 is obtained from simple convex functions and operations that 
preserve convexity



Optimality Conditions for Convex Programs

• Unconstrained case: 

• ∇𝑓 𝑥 = 0

minimize 𝑓 𝑥



Optimality Conditions for Convex Programs

• Inequality constraints only: 

• Penalty view point: penalize constraint violation
• Lagrangian: 𝐿 𝑥, 𝜆 = 𝑓 𝑥 + σ𝑖=1

𝑛 𝜆𝑖𝑔𝑖 𝑥 , 𝜆𝑖 ≥ 0

• Optimality conditions
• Stationarity: ∇𝑥𝐿 𝑥∗, 𝜆∗ = 0
• Primal feasibility: 𝑔𝑖 𝑥

∗ ≤ 0
• Dual feasibility: 𝜆∗ ≥ 0
• Complementary slackness: 𝜆𝑖

∗𝑔𝑖 𝑥
∗ = 0, 𝑖 = 1,… , 𝑛

minimize 𝑓 𝑥
subject to 𝑔𝑖 𝑥 ≤ 0, 𝑖 = 1,… , 𝑛



Optimality Conditions for Convex Programs

• Stationarity: ∇𝑥𝐿 𝑥∗, 𝜆∗ = 0
• Lagrangian:

𝐿 𝑥, 𝜆 = 𝑓 𝑥 +

𝑖=1

𝑛

𝜆𝑖𝑔𝑖 𝑥 , 𝜆𝑖 ≥ 0

• Take gradient and set to zero:

0 = ∇𝑓 𝑥 +

𝑖=1

𝑛

𝜆𝑖∇𝑔𝑖 𝑥

∇𝑓 𝑥 = −

𝑖=1

𝑛

𝜆𝑖∇𝑔𝑖 𝑥

• Since 𝜆𝑖 ≥ 0, gradient of 𝑓 𝑥 must 
point “away” from gradients of active 
constraint functions



Optimality Conditions for Convex Programs

• Stationarity: ∇𝑥𝐿 𝑥∗, 𝜆∗ = 0
• Lagrangian:

𝐿 𝑥, 𝜆 = 𝑓 𝑥 +

𝑖=1

𝑛

𝜆𝑖𝑔𝑖 𝑥 , 𝜆𝑖 ≥ 0

• Take gradient and set to zero:

0 = ∇𝑓 𝑥 +

𝑖=1

𝑛

𝜆𝑖∇𝑔𝑖 𝑥

∇𝑓 𝑥 = −

𝑖=1

𝑛

𝜆𝑖∇𝑔𝑖 𝑥

• Since 𝜆𝑖 ≥ 0, gradient of 𝑓 𝑥 must 
point “away” from gradients of active 
constraint functions



Optimality Conditions for Convex Programs

• Stationarity: ∇𝑥𝐿 𝑥∗, 𝜆∗ = 0
• Lagrangian:

𝐿 𝑥, 𝜆 = 𝑓 𝑥 +

𝑖=1

𝑛

𝜆𝑖𝑔𝑖 𝑥 , 𝜆𝑖 ≥ 0

• Take gradient and set to zero:

0 = ∇𝑓 𝑥 +

𝑖=1

𝑛

𝜆𝑖∇𝑔𝑖 𝑥

∇𝑓 𝑥 = −

𝑖=1

𝑛

𝜆𝑖∇𝑔𝑖 𝑥

• Since 𝜆𝑖 ≥ 0, gradient of 𝑓 𝑥 must 
point “away” from gradients of active
constraint functions



Optimality Conditions for Convex Programs

• Primal feasibility: 𝑔𝑖 𝑥
∗ ≤ 0

• Constraints must be satisfied

• Dual feasibility: 𝜆∗ ≥ 0
• Penalty view point



Optimality Conditions for Convex Programs

• Complementary slackness: 
𝜆𝑖
∗𝑔𝑖 𝑥

∗ = 0, 𝑖 = 1,… , 𝑛
• Lagrangian:

𝐿 𝑥, 𝜆 = 𝑓 𝑥 +

𝑖=1

𝑛

𝜆𝑖𝑔𝑖 𝑥 , 𝜆𝑖 ≥ 0

• If 𝑔𝑖 𝑥
∗ < 0, then the constraint 

is not active, so 𝜆𝑖
∗ is set to 0 to not 

decrease the Lagrangian

• If 𝑔𝑖 𝑥
∗ = 0, then the constraint 

is active, so 𝜆𝑖
∗ is free to be positive



Optimality Conditions for Convex Programs

• Full optimization problem:

• Penalty view point:
• Lagrangian: 𝐿 𝑥, 𝜆 = 𝑓 𝑥 + σ𝑖=1

𝑛 𝜆𝑖𝑔𝑖 𝑥 + σ𝑗=1
𝑚 𝜇𝑗 𝑎𝑗

⊤𝑥 − 𝑏𝑗 , 𝜆𝑖 ≥ 0

• Karush-Kuhn-Tucker (KKT) Conditions:
• Stationarity ∇𝑥𝐿 𝑥∗, 𝜆∗, 𝜇∗ = 0
• Primal feasibility: 𝑔𝑖 𝑥

∗ ≤ 0, 𝑎𝑖
⊤𝑥∗ − 𝑏𝑖 = 0

• Dual feasibility: 𝜆∗ ≥ 0
• Complementary slackness: 𝜆𝑖

∗𝑔𝑖 𝑥
∗ = 0, 𝑖 = 1,… , 𝑛

• Solve above systems of equations to obtain optimum

minimize 𝑓 𝑥

subject to 𝑔𝑖 𝑥 ≤ 0, 𝑖 = 1,… , 𝑛

𝑎𝑗
⊤𝑥 = 𝑏𝑗 , 𝑗 = 1, … ,𝑚


