Assignment 1

- Due Feb. 4
- Online submission via CourSys
- Upload entire assignment in a single pdf (take photos if you wrote your solutions)
- Upload code separately via the code component

Convex Optimization II

CMPT 882
Feb. 1

Outline

- How to check if a function is convex
- Understand properties of optimal solutions

Convex Programs

$$
\begin{array}{cl}
\operatorname{minimize} & f(x) \\
\text { subject to } & g_{i}(x) \leq 0, i=1, \ldots, n \\
\quad \text { where } g_{i}(x) \text { are convex } \\
& h_{j}^{\top} x=0, j=1, \ldots, m
\end{array}
$$

- Local optimum is global!
- Relatively easy to solve using simple algorithms
- When you see an optimization problem, first hope it's convex (although this is almost never true)
- If an optimization problem is not convex, usually one can only hope for local optimum
- It is useful to recognize convex functions

Common Convex Functions on \mathbb{R}

- $f(x)=e^{a x}$ is convex for all $x, a \in \mathbb{R}$
- $f(x)=x^{a}$ is convex on $x>0$ if $a \geq 1$ or $a \leq 0$; concave if $0<a<1$
- $f(x)=\log x$ is concave
- $f(x)=x \log x$ is convex for $x>0$ (or $x \geq 0$ if defined to be 0 when $x=0$)

$$
f(x)=e^{a x}
$$

$$
f(x)=x^{a}
$$

$$
f\left(x_{1}, x_{2}\right)=\max \left(x_{1}, x_{2}\right)
$$

Common Convex Functions on \mathbb{R}^{n}

- $f(x)=A x+b$ is convex for any A, b
- Every norm on \mathbb{R}^{n} is convex
- $f(x)=\max \left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is convex
- $f(x)=\frac{x_{1}^{2}}{x_{2}}\left(\right.$ for $\left.x_{2}>0\right)$
- Log-sum-exp softmax: $f(x)=\frac{1}{k} \log \left(e^{k x_{1}}+e^{k x_{2}}+\cdots+e^{k x_{n}}\right)$
- Geometric mean: $f(x)=\left(\prod_{i=1}^{n} x_{i}\right)^{\frac{1}{n}}, x_{i}>0$

Operations that Preserve Convexity

- Non-negative weighted sum: $\sum_{i} w_{i} f_{i}(x)$ is convex if $f_{i}(x)$ are convex and $w_{i} \geq 0$
- Example: $f(x)=a x^{2}+b x^{4}+c x^{6}$, where $a, b, c>0$
- Composition with affine function: $g(x)=f(A x+b)$ is convex if $f(x)$ is convex
- Example: $f(\theta)=\|X \theta-Y\|_{2}^{2}$
- Point-wise maximum: $\max \left(f_{1}(x), f_{2}(x)\right)$

Operations that Preserve Convexity

- Minimization over a subset of variables: $g(y):=\min _{z} f(y, z)$ is convex if $f(y, z)$ is convex (jointly in (y, z))
- Perspective: $g(x, t):=t f\left(\frac{x}{t}\right), t>0$ is convex if $f(x)$ is convex
- Example: $\frac{x_{1}^{2}}{x_{2}}$ is convex if $x_{2}>0$, because $f\left(x_{1}\right)=x_{1}^{2}$ is convex
- If $g_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ are convex, and $h: \mathbb{R}^{k} \rightarrow \mathbb{R}$ is convex and non-decreasing in each argument, then $h\left(g_{1}(x), g_{2}(x), \ldots, g_{k}(x)\right)$ is convex
- Example: $\log \left(e^{x_{1}}+e^{x_{2}}+\cdots+e^{x_{n}}\right)$ is convex, because e^{x} is convex, and $\log x$ is convex and non-decreasing

How to check if a function is convex

- Use definition: $f(\theta x+(1-\theta) y) \leq \theta f(x)+(1-\theta) f(y)$

Example 1:

- $f(x)=A x+b, x \in \mathbb{R}^{n}$

$$
\begin{aligned}
f(\theta x+(1-\theta) y) & =A(\theta x+(1-\theta) y)+b \\
& =\theta A x+(1-\theta) A y+b \\
& =\theta A x+(1-\theta) A y+\theta b+(1-\theta) b \\
& =\theta f(x)+(1-\theta) f(y)
\end{aligned}
$$

- Equality!
- This means f is also concave (i.e. $-f$ is convex)
- Linear functions are both convex and concave

How to check if a function is convex

- Use definition: $f(\theta x+(1-\theta) y) \leq \theta f(x)+(1-\theta) f(y)$
- Show $f(y) \geq f(x)+\nabla f(x) \cdot(y-x)$ for differentiable functions
- Show $\nabla^{2} f(x) \succcurlyeq 0$ for twice differentiable functions

Example 2:

- $f(x)=x^{2}+x-6$
- Method 1: show $f(y) \geq f(x)+\nabla f(x) \cdot(y-x)$
- $\nabla f(x)=f^{\prime}(x)=2 x+1$

$$
f(x)+\nabla f(x) \cdot(y-x)
$$

$$
\begin{aligned}
f(y)-f(x)+f^{\prime}(x)(y-x) & =y^{2}+y-6-\left[x^{2}+x-6+(2 x+1)(y-x)\right] \\
& =y^{2}+y-\left[x^{2}+x+2 x y-2 x^{2}+y-x\right] \\
& =y^{2}+y-\left[-x^{2}+2 x y+y\right] \\
& =y^{2}+x^{2}-2 x y \\
& =(x-y)^{2} \geq 0
\end{aligned}
$$

- Method 2: show $\nabla^{2} f(x) \geq 0$

$$
\nabla^{2} f(x)=f^{\prime \prime}(x)=2 \geq 0
$$

How to check if a function is convex

- Use definition: $f(\theta x+(1-\theta) y) \leq \theta f(x)+(1-\theta) f(y)$
- Show $f(y) \geq f(x)+\nabla f(x) \cdot(y-x)$ for differentiable functions
- Show $\nabla^{2} f(x) \succcurlyeq 0$ for twice differentiable functions
- Show f is obtained from simple convex functions and operations that preserve convexity

Example 3:

- $f(x)=\|A x+b\|_{2}+\lambda\|x\|_{1}, A$ is a constant matrix, b is a constant vector, and $\lambda \geq 0$ is a constant scalar.
- We know $\|x\|_{1}$ are $\|x\|_{2}$ are convex
- All norms are convex
- So, $\|A x+b\|_{2}$ is convex, by the rule of affine composition
- $g(x)=f(A x+b)$ is convex if $f(x)$ is convex
- Finally, $\|A x+b\|_{2}+\lambda\|x\|_{1}$ is convex, by the rule of non-negative weighted sum
- $\sum_{i} w_{i} f_{i}(x)$ is convex if $f_{i}(x)$ are convex and $w_{i} \geq 0$

How to check if a function is convex

- Use definition: $f(\theta x+(1-\theta) y) \leq \theta f(x)+(1-\theta) f(y)$
- Show $f(y) \geq f(x)+\nabla f(x) \cdot(y-x)$ for differentiable functions
- Show $\nabla^{2} f(x) \succcurlyeq 0$ for twice differentiable functions
- Show f is obtained from simple convex functions and operations that preserve convexity

Optimality Conditions for Convex Programs

- Unconstrained case: minimize $f(x)$
- $\nabla f(x)=0$

Optimality Conditions for Convex Programs

- Inequality constraints only: minimize $f(x)$ subject to $g_{i}(x) \leq 0, i=1, \ldots, n$
- Penalty view point: penalize constraint violation
- Lagrangian: $L(x, \lambda)=f(x)+\sum_{i=1}^{n} \lambda_{i} g_{i}(x), \lambda_{i} \geq 0$
- Optimality conditions
- Stationarity: $\nabla_{x} L\left(x^{*}, \lambda^{*}\right)=0$
- Primal feasibility: $g_{i}\left(x^{*}\right) \leq 0$
- Dual feasibility: $\lambda^{*} \geq 0$
- Complementary slackness: $\lambda_{i}^{*} g_{i}\left(x^{*}\right)=0, i=1, \ldots, n$

Optimality Conditions for Convex Programs

- Stationarity: $\nabla_{x} L\left(x^{*}, \lambda^{*}\right)=0$
- Lagrangian:
$L(x, \lambda)=f(x)+\sum_{i=1}^{n} \lambda_{i} g_{i}(x), \quad \lambda_{i} \geq 0$
- Take gradient and set to zero:

$$
\begin{aligned}
& 0=\nabla f(x)+\sum_{i=1}^{n} \lambda_{i} \nabla g_{i}(x) \\
& \nabla f(x)=-\sum_{i=1}^{n} \lambda_{i} \nabla g_{i}(x)
\end{aligned}
$$

- Since $\lambda_{i} \geq 0$, gradient of $f(x)$ must point "away" from gradients of active constraint functions

Optimality Conditions for Convex Programs

- Stationarity: $\nabla_{x} L\left(x^{*}, \lambda^{*}\right)=0$
- Lagrangian:
$L(x, \lambda)=f(x)+\sum_{i=1}^{n} \lambda_{i} g_{i}(x), \quad \lambda_{i} \geq 0$
- Take gradient and set to zero:

$$
\begin{aligned}
& 0=\nabla f(x)+\sum_{i=1}^{n} \lambda_{i} \nabla g_{i}(x) \\
& \nabla f(x)=-\sum_{i=1}^{n} \lambda_{i} \nabla g_{i}(x)
\end{aligned}
$$

- Since $\lambda_{i} \geq 0$, gradient of $f(x)$ must point "away" from gradients of active constraint functions

Optimality Conditions for Convex Programs

- Stationarity: $\nabla_{x} L\left(x^{*}, \lambda^{*}\right)=0$
- Lagrangian:
$L(x, \lambda)=f(x)+\sum_{i=1}^{n} \lambda_{i} g_{i}(x), \quad \lambda_{i} \geq 0$
- Take gradient and set to zero:

$$
\begin{aligned}
& 0=\nabla f(x)+\sum_{i=1}^{n} \lambda_{i} \nabla g_{i}(x) \\
& \nabla f(x)=-\sum_{i=1}^{n} \lambda_{i} \nabla g_{i}(x)
\end{aligned}
$$

- Since $\lambda_{i} \geq 0$, gradient of $f(x)$ must point "away" from gradients of active constraint functions

Optimality Conditions for Convex Programs

- Primal feasibility: $g_{i}\left(x^{*}\right) \leq 0$
- Constraints must be satisfied
- Dual feasibility: $\lambda^{*} \geq 0$
- Penalty view point

Optimality Conditions for Convex Programs

- Complementary slackness:
$\lambda_{i}^{*} g_{i}\left(x^{*}\right)=0, i=1, \ldots, n$
- Lagrangian:

$$
L(x, \lambda)=f(x)+\sum_{i=1}^{n} \lambda_{i} g_{i}(x), \quad \lambda_{i} \geq 0
$$

- If $g_{i}\left(x^{*}\right)<0$, then the constraint is not active, so λ_{i}^{*} is set to 0 to not decrease the Lagrangian
- If $g_{i}\left(x^{*}\right)=0$, then the constraint is active, so λ_{i}^{*} is free to be positive

Optimality Conditions for Convex Programs

- Full optimization problem: minimize $f(x)$

$$
\begin{array}{ll}
\text { subject to } & g_{i}(x) \leq 0, i=1, \ldots, n \\
& a_{j}^{\top} x=b_{j}, j=1, \ldots, m
\end{array}
$$

- Penalty view point:
- Lagrangian: $L(x, \lambda)=f(x)+\sum_{i=1}^{n} \lambda_{i} g_{i}(x)+\sum_{j=1}^{m} \mu_{j}\left(a_{j}^{\top} x-b_{j}\right), \lambda_{i} \geq 0$
- Karush-Kuhn-Tucker (KKT) Conditions:
- Stationarity $\nabla_{x} L\left(x^{*}, \lambda^{*}, \mu^{*}\right)=0$
- Primal feasibility: $g_{i}\left(x^{*}\right) \leq 0, a_{i}^{\top} x^{*}-b_{i}=0$
- Dual feasibility: $\lambda^{*} \geq 0$
- Complementary slackness: $\lambda_{i}^{*} g_{i}\left(x^{*}\right)=0, i=1, \ldots, n$
- Solve above systems of equations to obtain optimum

