Convex Optimization: Part I

CMPT 882

Jan. 30

Outline

- Optimization program
 - Examples and classes
- Convex optimization
 - Convex functions
 - Optimality conditions
- Numerical solutions
- cvx software

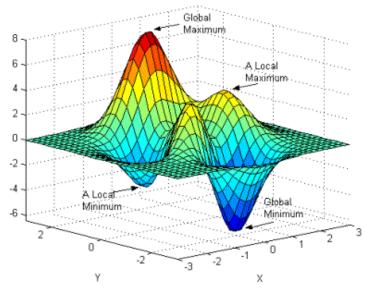
Optimization Program: Terminology

minimize
$$f(x)$$

subject to $g_i(x) \le 0, i = 1, ..., n$
 $h_j(x) = 0, j = 1, ..., m$

Objective function
Inequality constraints
Equality constraints

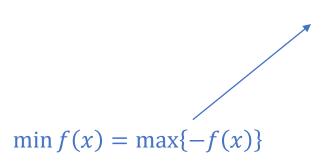
- ullet In this class, assume f , g_i , h_j are twice differentiable
- Look for an **optimal solution**, the vector x^*
 - Locally optimal: x^* is a local minimum of f(x)
 - Globally optimal: x^* is a global minimum of f(x)



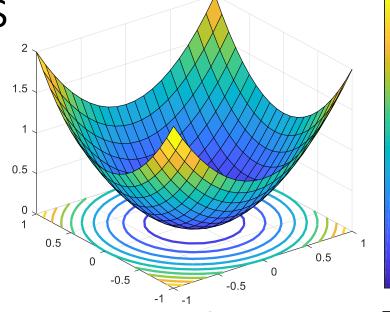
minimize
$$f(x)$$

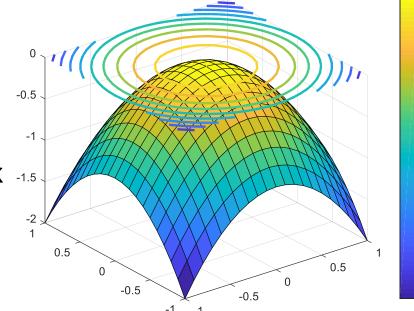
subject to $g_i(x) \le 0, i = 1, ..., n$
 $h_j(x) = 0, j = 1, ..., m$

• Applications: Portfolio management



maximize Expected profit
subject to Maximum budget
Maximum acceptable risk -1.5





minimize
$$f(x)$$

subject to $g_i(x) \le 0, i = 1, ..., n$
 $h_j(x) = 0, j = 1, ..., m$

Applications: Portfolio management

minimize Overall risk

subject to Maximum budget

Minimum acceptable expected profit

Constraints vs. objectives

Sometimes constraints can be "moved" to the objective as a "penalty"

minimize
$$f(x)$$

subject to $g_i(x) \le 0, i = 1, ..., n$
 $h_j(x) = 0, j = 1, ..., m$

Applications: Building heating, ventilation, and air conditioning

minimize Energy consumption

subject to Acceptable temperature range by location Acceptable noise level

Internal and external heat transfer

minimize
$$f(x)$$

subject to $g_i(x) \le 0, i = 1, ..., n$
 $h_i(x) = 0, j = 1, ..., m$

Applications: Robotic trajectory planning

minimize Fuel consumption

subject to Goal reaching

System dynamics

Collision avoidance

minimize
$$f(x)$$

subject to $g_i(x) \le 0, i = 1, ..., n$
 $h_i(x) = 0, j = 1, ..., m$

Applications: Robotic trajectory planning

minimize Distance to goal

subject to Fuel limitations

System dynamics

Collision avoidance

minimize
$$f(x)$$

subject to $g_i(x) \le 0, i = 1, ..., n$
 $h_j(x) = 0, j = 1, ..., m$

Applications: Machine learning

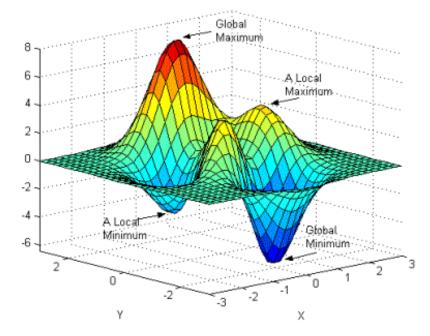
maximize Performance (eg. Accuracy of object recognition)

subject to Problem constraints

Optimization Program

minimize
$$f(x)$$

subject to $g_i(x) \le 0, i = 1, ..., n$
 $h_j(x) = 0, j = 1, ..., m$



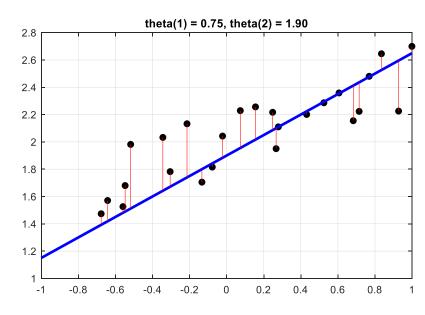
- Very difficult to solve in general
 - Trade-offs to consider: computation time, solution optimality
- Easy cases:
 - Find global optimum for **linear program**: f, g_i , h_j are linear
 - Find global optimum for **convex program**: f, g_i are convex, h_i is linear
 - Find local optimum for **nonlinear program**: f, g_i , h_j are differentiable

Example: Least Squares

$$\underset{\theta}{\text{minimize}} \|X\theta - Y\|_2^2$$

- Scalar example:
 - Data: $\{x_i, y_i\}_{i=1}^n, x_i, y_i \in \mathbb{R}$
 - Model: $y = mx + b, m, b \in \mathbb{R}$
 - Sum of error of model: $\sum_{i=1}^{n} (y_i mx_i b)^2$
 - No constraints: allow *any m*, *b*
- Error in matrix form: $e_i = y_i \begin{bmatrix} x_i \\ b \end{bmatrix}$

• Stacking the data points:
$$E_i = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} - \begin{bmatrix} x_1 & 1 \\ x_2 & 1 \\ \vdots & \vdots \\ x_n & 1 \end{bmatrix} \begin{bmatrix} m \\ b \end{bmatrix}$$



Example: Least Squares

$$\underset{\theta}{\text{minimize}} \|X\theta - Y\|_2^2$$

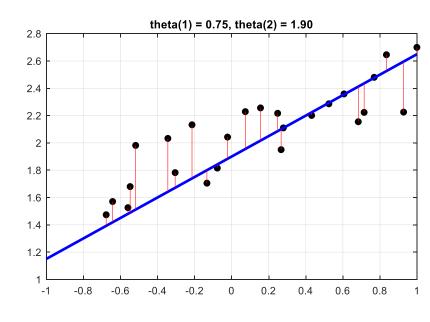
- Analytic solution available!
 - Objective: $f(\theta) = ||X\theta Y||_2^2$, set derivative to zero
 - $f(\theta) = (X\theta Y)^{\mathsf{T}}(X\theta Y)$
 - $f(\theta) = \theta^{\mathsf{T}} X^{\mathsf{T}} X \theta 2 Y^{\mathsf{T}} X \theta + Y^{\mathsf{T}} Y$

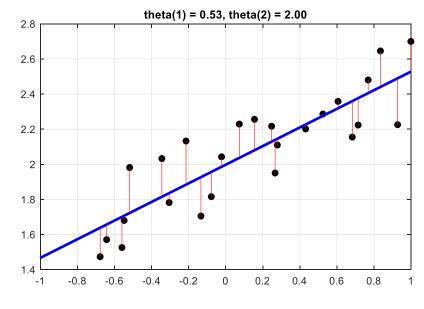
$$\frac{\partial f}{\partial \theta} = 2X^{\mathsf{T}}X\theta - 2X^{\mathsf{T}}Y$$

$$0 = 2X^{\mathsf{T}}X\theta - 2X^{\mathsf{T}}Y$$

$$X^{\mathsf{T}}Y = X^{\mathsf{T}}X\theta$$

$$x^* = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}Y$$

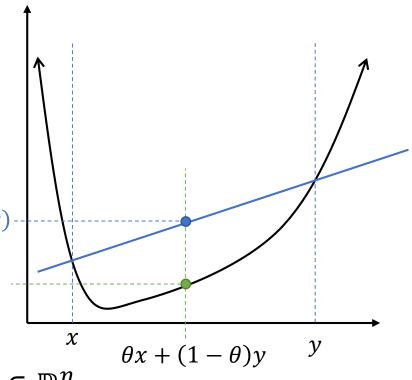




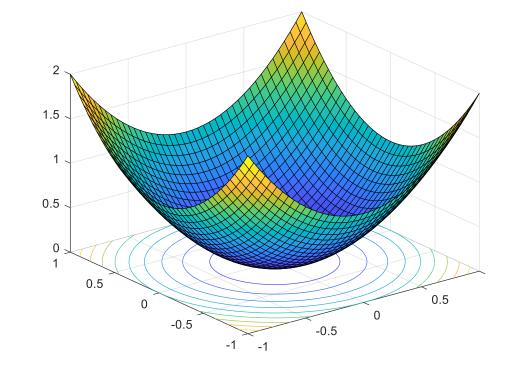
```
minimize f(x) subject to g_i(x) \leq 0, i = 1, ..., n, \theta f(x) + (1 - \theta) f(y) where g_i(x) are convex h_j^\mathsf{T} x = 0, j = 1, ..., m
```

Convex function

 $f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$ for all $x, y \in \mathbb{R}^n$, for all $\theta \in [0,1]$



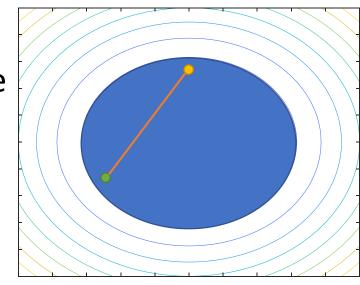
minimize f(x)subject to $g_i(x) \le 0, i = 1, ..., n$, where $g_i(x)$ are convex $h_j^\mathsf{T} x = 0, j = 1, ..., m$



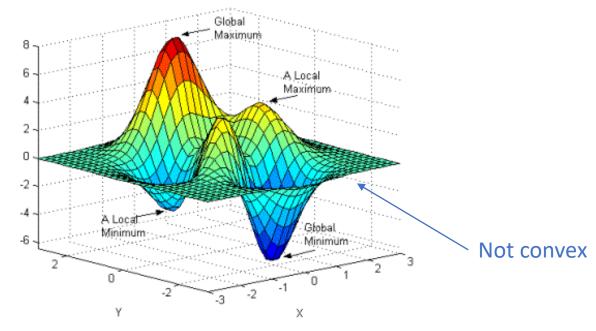
Convex function

 $f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$ for all $x, y \in \mathbb{R}^n$, for all $\theta \in [0,1]$

- Sublevel sets of convex functions, $\{x: f(x) \le C\}$, are convex
 - Convex shape C: $x_1, x_2 \in C, \theta \in [0,1] \Rightarrow \theta x_1 + (1-\theta)x_2 \in C$
 - Superlevel sets of convex functions are not convex!



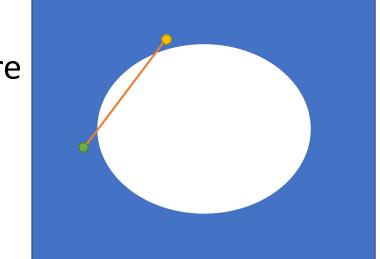
minimize f(x)subject to $g_i(x) \leq 0, i = 1, ..., n$, where $g_i(x)$ are convex $h_j^\mathsf{T} x = 0, j = 1, ..., m$



Convex function

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$
 for all $x, y \in \mathbb{R}^n$, for all $\theta \in [0,1]$

- Sublevel sets of convex functions, $\{x: f(x) \le C\}$, are convex
 - Convex shape C: $x_1, x_2 \in C, \theta \in [0,1] \Rightarrow \theta x_1 + (1-\theta)x_2 \in C$
 - Superlevel sets of convex functions are not convex!



```
minimize f(x)

subject to g_i(x) \le 0, i = 1, ..., n,

where g_i(x) are convex

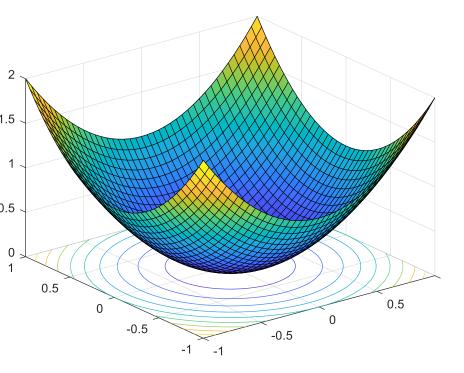
h_j^\mathsf{T} x = 0, j = 1, ..., m
```

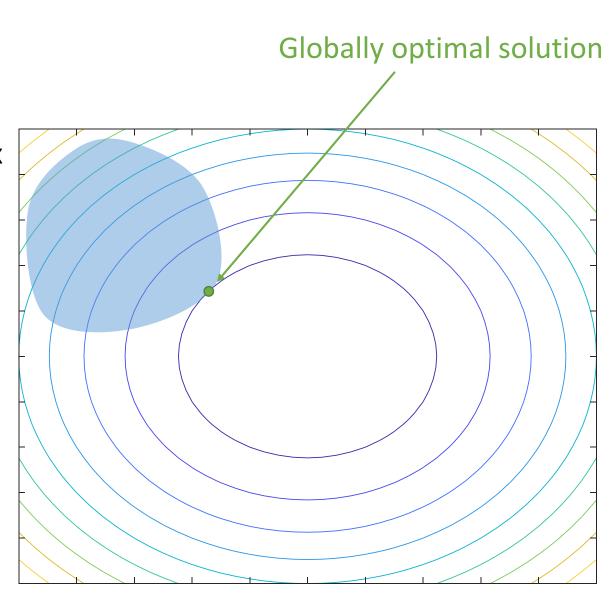
minimize A convex objective function subject to Convex inequality constraints Linear equality constraints

Detailed observations:

- Linear functions are convex
- Any equality constraints must be linear
 - $h(x) = 0 \Leftrightarrow h(x) \ge 0 \text{ AND } h(x) \le 0$

minimize f(x)subject to $g_i(x) \le 0, i = 1, ..., n$, where $g_i(x)$ are convex $h_j^\mathsf{T} x = 0, j = 1, ..., m$



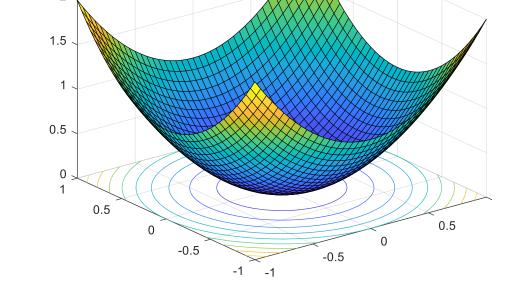


```
minimize f(x)

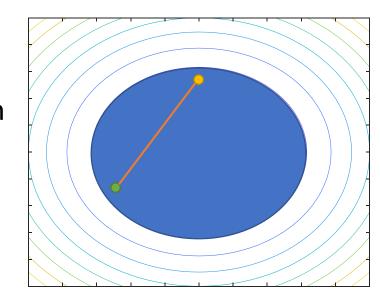
subject to g_i(x) \le 0, i = 1, ..., n,

where g_i(x) are convex

h_j^\mathsf{T} x = 0, j = 1, ..., m
```

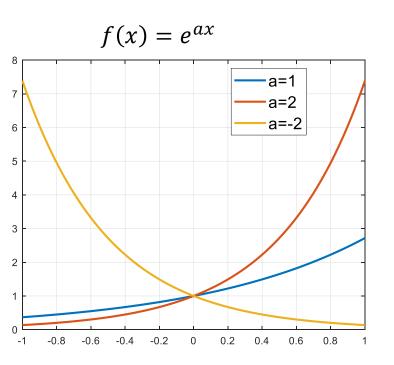


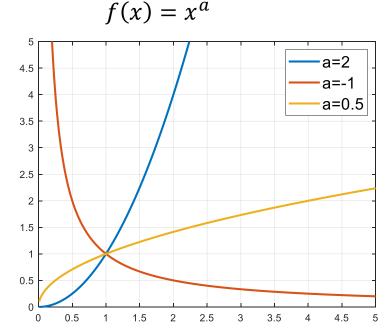
- Local optimum is global!
- Relatively easy to solve using simple algorithms
- When you see an optimization problem, first hope it's convex (although this is almost never true)
 - If an optimization problem is not convex, usually one can only hope for local optimum
- It is useful to recognize convex functions

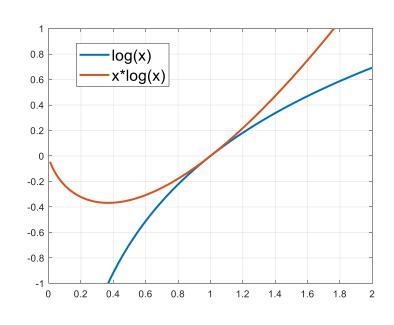


Common Convex Functions on R

- $f(x) = e^{ax}$ is convex for all $x, a \in \mathbb{R}$
- $f(x) = x^a$ is convex on x > 0 if $a \ge 1$ or $a \le 0$; concave if 0 < a < 1
- $f(x) = \log x$ is concave
- $f(x) = x \log x$ is convex for x > 0 (or $x \ge 0$ if defined to be 0 when x = 0)



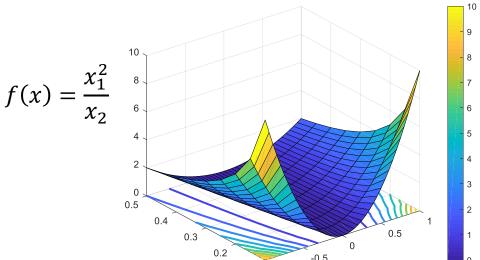


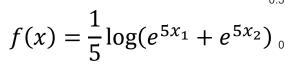


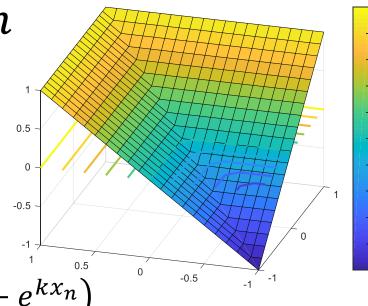
Common Convex Functions on \mathbb{R}^n

- f(x) = Ax + b is convex for any A, b
- Every norm on \mathbb{R}^n is convex
- $f(x) = \max(x_1, x_2, ..., x_n)$ is convex
- $f(x) = \frac{x_1^2}{x_2}$ (for $x_2 > 0$)
- Log-sum-exp softmax: $f(x) = \frac{1}{k} \log(e^{kx_1} + e^{kx_2} + \dots + e^{kx_n})$

• Geometric mean: $f(x) = (\prod_{i=1}^n x_i)^{\frac{1}{n}}, \ x_i > 0$







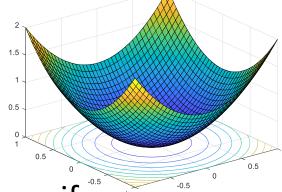
 $f(x_1, x_2) = \max(x_1, x_2)$



Operations that Preserve Convexity

- Non-negative weighted sum: $\sum_i w_i f_i(x)$ is convex if $f_i(x)$ are convex and $w_i \geq 0$
 - Example: $f(x) = ax^2 + bx^4 + cx^6$, where a, b, c > 0
- Composition with affine function: g(x) = f(Ax + b) is convex if f(x) is convex
 - Example: $f(\theta) = ||X\theta Y||_2^2$
- Point-wise maximum: $\max(f_1(x), f_2(x))$

Operations that Preserve Convexity



- Point-wise minimum of a function: $g(y) \coloneqq \min_z f(y, z)$ is convex if f(y, z) is convex (jointly in (y, z))
- Perspective: $g(x,t) \coloneqq tf\left(\frac{x}{t}\right), t > 0$ is convex if f(x) is convex
 - Example: $\frac{x_1^2}{x_2}$ is convex if $x_2 > 0$, because $f(x_1) = x_1^2$ is convex
- If $g_i: \mathbb{R}^n \to \mathbb{R}$ are convex, and $h: \mathbb{R}^k \to \mathbb{R}$ is convex and non-decreasing in each argument, then $h(g_1(x), g_2(x), ..., g_k(x))$ is convex
 - Example: $\log(e^{x_1} + e^{x_2} + \dots + e^{x_n})$ is convex, because e^x is convex, and $\log x$ is convex and non-decreasing

How to check if a function is convex

• Use definition: $f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$

• Show $f(y) \ge f(x) + \nabla f(x) \cdot (y - x)$ for differentiable functions

• Show $\nabla^2 f(x) \ge 0$ for twice differentiable functions

 Show f is obtained from simple convex functions and operations that preserve convexity

Example 1:

• $f(x) = Ax + b, x \in \mathbb{R}^n$ $f(\theta x + (1 - \theta)y) = A(\theta x + (1 - \theta)y) + b$ $= \theta Ax + (1 - \theta)Ay + b$ $= \theta Ax + (1 - \theta)Ay + \theta b + (1 - \theta)b$

 $= \theta f(x) + (1 - \theta) f(y)$

- Equality!
- This means f is also concave (i.e. -f is convex)
- Linear functions are both convex and concave

Example 2:

•
$$f(x) = x^2 + x - 6$$

• Method 1: show
$$f(y) \ge f(x) + \nabla f(x) \cdot (y - x)^{-f(x)}$$

•
$$\nabla f(x) = f'(x) = 2x + 1$$

$$f(y) = \begin{cases} f(y) & f(x) \\ f(x) + \nabla f(x) \cdot (y - x) \end{cases}$$

$$f(x) \cdot (y - x) = \begin{cases} f(x) & f(x) \\ f(x) & f(x) \end{cases}$$

$$f(x) \cdot (y - x) = \begin{cases} f(x) & f(x) \\ f(x) & f(x) \end{cases}$$

$$f(x) \cdot (y - x) = \begin{cases} f(x) & f(x) \\ f(x) & f(x) \end{cases}$$

$$f(x) + \nabla f(x) \cdot (y - x) = \begin{cases} f(x) & f(x) \\ f(x) & f(x) \end{cases}$$

$$f(x) \cdot (y - x) = \begin{cases} f(x) & f(x) \\ f(x) & f(x) \end{cases}$$

$$f(x) \cdot (y - x) = \begin{cases} f(x) & f(x) \\ f(x) & f(x) \end{cases}$$

$$f(x) \cdot (y - x) = \begin{cases} f(x) & f(x) \\ f(x) & f(x) \end{cases}$$

$$f(x) \cdot (y - x) = \begin{cases} f(x) & f(x) \\ f(x) & f(x) \end{cases}$$

$$f(x) \cdot (y - x) = \begin{cases} f(x) & f(x) \\ f(x) & f(x) \end{cases}$$

$$f(x) \cdot (y - x) = \begin{cases} f(x) & f(x) \\ f(x) & f(x) \end{cases}$$

$$f(x) \cdot (y - x) = \begin{cases} f(x) & f(x) \\ f(x) & f(x) \end{cases}$$

$$f(x) \cdot (y - x) = \begin{cases} f(x) & f(x) \\ f(x) & f(x) \end{cases}$$

$$f(x) \cdot (y - x) = \begin{cases} f(x) & f(x) \\ f(x) & f(x) \end{cases}$$

$$f(x) \cdot (y - x) = \begin{cases} f(x) & f(x) \\ f(x) & f(x) \end{cases}$$

$$f(x) \cdot (y - x) = \begin{cases} f(x) & f(x) \\ f(x) & f(x) \end{cases}$$

$$f(x) \cdot (y - x) = \begin{cases} f(x) & f(x) \\ f(x) & f(x) \end{cases}$$

$$f(x) \cdot (y - x) = \begin{cases} f(x) & f(x) \\ f(x) & f(x) \end{cases}$$

$$f(x) \cdot (y - x) = \begin{cases} f(x) & f(x) \\ f(x) & f(x) \end{cases}$$

$$f(x) \cdot (y - x) = \begin{cases} f(x) & f(x) \\ f(x) & f(x) \end{cases}$$

$$f(x) \cdot (y - x) = \begin{cases} f(x) & f(x) \\ f(x) & f(x) \end{cases}$$

$$f(x) \cdot (y - x) = \begin{cases} f(x) & f(x) \\ f(x) & f(x) \end{cases}$$

$$f(x) \cdot (y - x) = \begin{cases} f(x) & f(x) \\ f(x) & f(x) \end{cases}$$

$$f(x) \cdot (y - x) = \begin{cases} f(x) & f(x) \\ f(x) & f(x) \end{cases}$$

$$f(x) \cdot (y - x) = \begin{cases} f(x) & f(x) \\ f(x) & f(x) \end{cases}$$

$$f(x) \cdot (y - x) = \begin{cases} f(x) & f(x) \\ f(x) & f(x) \end{cases}$$

$$f(x) \cdot (y - x) = \begin{cases} f(x) & f(x) \\ f(x) & f(x) \end{cases}$$

$$f(x) \cdot (y - x) = \begin{cases} f(x) & f(x) \\ f(x) & f(x) \end{cases}$$

$$f(x) \cdot (y - x) = \begin{cases} f(x) & f(x) \\ f(x) & f(x) \end{cases}$$

$$f(x) \cdot (y - x) = \begin{cases} f(x) & f(x) \\ f(x) & f(x) \end{cases}$$

$$f(x) \cdot (y - x) = \begin{cases} f(x) & f(x) \\ f(x) & f(x) \end{cases}$$

$$f(x) \cdot (y - x) = \begin{cases} f(x) & f(x) \\ f(x) & f(x) \end{cases}$$

$$f(x) \cdot (y - x) = \begin{cases} f(x) & f(x) \\ f(x) & f(x) \end{cases}$$

$$f(x) \cdot (y - x) = \begin{cases} f(x) & f(x) \\ f(x) & f(x) \end{cases}$$

$$f(x) \cdot (y - x) = \begin{cases} f(x) & f(x) \\ f(x) & f(x) \end{cases}$$

$$f(x) \cdot (y - x) = \begin{cases} f(x) & f(x) \\ f(x) & f(x) \end{cases}$$

$$f(x) \cdot (y - x) = \begin{cases} f(x) & f(x) \\ f(x) & f(x) \end{cases}$$

$$f(x) \cdot (y - x) = \begin{cases} f(x) & f(x) \\ f(x) & f(x) \end{cases}$$

$$f(x) \cdot (y - x) = \begin{cases} f(x) & f(x) \\ f(x) & f(x) \end{cases}$$

$$f(x) \cdot (y - x) = \begin{cases} f(x) & f(x) \\ f(x) & f(x) \end{cases}$$

$$f(x) \cdot (y - x) = \begin{cases} f(x) & f(x) \\ f(x) & f(x) \end{cases}$$

$$f(x) \cdot (y - x) = \begin{cases} f(x)$$

$$f(y) - f(x) + f'(x)(y - x) = y^{2} + y - 6 - [x^{2} + x - 6 + (2x + 1)(y - x)]$$

$$= y^{2} + y - [x^{2} + x + 2xy - 2x^{2} + y - x]$$

$$= y^{2} + y - [-x^{2} + 2xy + y]$$

$$= y^{2} + x^{2} - 2xy$$

$$= (x - y)^{2} \ge 0$$

• Method 2: show $\nabla^2 f(x) \ge 0$

$$\nabla^2 f(x) = f''(x) = 2 \ge 0$$

Example 3:

- $f(x) = ||Ax + b||_2 + \lambda ||x||_1$, A is a constant matrix, b is a constant vector, and $\lambda \ge 0$ is a constant scalar.
 - We know $||x||_1$ are $||x||_2$ are convex
 - All norms are convex
 - So, $||Ax + b||_2$ is convex, by the rule of affine composition
 - g(x) = f(Ax + b) is convex if f(x) is convex
 - Finally, $||Ax + b||_2 + \lambda ||x||_1$ is convex, by the rule of non-negative weighted sum
 - $\sum_{i} w_{i} f_{i}(x)$ is convex if $f_{i}(x)$ are convex and $w_{i} \geq 0$