Numerical Solutions to ODEs
Part II
CMPT 882
Jan. 28
Stiff equations

• ODEs with components that have very fast rates of change
 • Usually requires very small step sizes for stability

• Example: \(\dot{x}_1 = ax_1 \) with forward Euler
 • Stability requires \(|1 + ha| \leq 1\)
 • For \(a = -100 \), we have \(|1 - 100h| \leq 1 \iff h \leq 0.02\)

• Small step size is required even if there are other slower changing components like \(\dot{x}_2 = x_1 - x_2 \)
 • Implicit methods (eg. backward Euler) are useful here
 \[
 \begin{bmatrix}
 \dot{x}_1 \\
 \dot{x}_2
 \end{bmatrix} =
 \begin{bmatrix}
 -100 & 0 \\
 1 & -1
 \end{bmatrix}
 \begin{bmatrix}
 x_1 \\
 x_2
 \end{bmatrix}
 \]
Stiff Equations

- Example:
 \[
 \begin{align*}
 \dot{x}_1 &= -100x_1 \\
 \dot{x}_2 &= x_1 - x_2 \\
 \dot{x} &= Ax = \begin{bmatrix}
 -100 & 0 \\
 1 & -1
 \end{bmatrix}x
 \end{align*}
 \]

- Forward Euler:
 \[
 y^{k+1} = y^k + hf(y^k) = y^k + hAy^k = (I + hA)y^k
 \]

- Eigenvalues of hA: $-h, -100h$
- Eigenvalues of $I + hA$ are $\{1 + h\sigma(A)\}$: $1 - h$ and $-100h$
- So, we need $|1 - h| < 1$ and $|1 - 100h| < 100 \Rightarrow h < 0.02$
Forward Euler, $h = 0.01$
Forward Euler, $h = 0.025$
Matlab’s ode45 Solver (Explicit Method)

- Automatically chosen variable time steps: $h \approx 0.002$ to $h \approx 0.008$
Backward Euler, $h = 0.01$

• Our system: $\dot{x} = Ax$

• Backward Euler:
 • $y^{k+1} = y^k + hf(y^{k+1})$
 • $y^{k+1} = y^k + hAy^{k+1}$
 • $(I - hA)y^{k+1} = y^k$
 • $y^{k+1} = (I - hA)^{-1}y^k$

 • Eigenvalues of $(I - hA)^{-1}$ are $(1 - h\sigma(A))^{-1}$
 • No restrictions on h if eigenvalues of A have negative real part
Backward Euler, $h = 0.1$

- Not super accurate, but stable
- Relatively slow for the same h due to inverse: $y^{k+1} = (I - hA)^{-1}y^k$
Numerical Solutions of ODEs

• In general, $\dot{x} = f(x, u)$ does not have a closed-form solution
 • Instead, we usually compute numerical approximations to simulate system behaviour
 • Done through discretization: $t^k = kh$, $u^k := u(t^k)$
 • h represents size of time step
 • Goal: compute $y^k \approx x(t^k)$

• Key considerations
 • Consistency: Does the approximation satisfy the ODE as $h \to 0$?
 • Accuracy: How fast does the solution converge?
 • Stability: Do approximation error remain bounded over time?
 • Convergence: Does the solution converge the true solution as $h \to 0$?
Classical Runge-Kutta Method (RK4)

• Main consideration: what slope to use?
 • Forward Euler: slope at beginning
 \[y^{k+1} = y^k + hf(y^k, u^k) \]
 • Backward Euler: slope at the end
 \[y^{k+1} = y^k + hf(y^{k+1}, u^k) \]
 • In general, we can use anything between \(t^k \) and \(t^{k+1} \)
 • Classical Runge-Kutta: weighted average
Classical Runge-Kutta Method (RK4)

- Main consideration: what slope to use?
 - Weighted average

\[y^{k+1} = y^k + \left(\begin{array}{c}
\end{array} \right) \]

\[\begin{align*}
 k_1 &= h f(t^k, y^k), \\
 k_2 &= h f(t^k + \frac{h}{2}, y^k + \frac{k_1}{2}), \\
 k_3 &= h f(t^k + \frac{h}{2}, y^k + \frac{k_2}{2}), \\
 k_4 &= h f(t^k + h, y^k + k_3).
\end{align*} \]

- Properties
 - Equivalent to Simpson's rule
 - 4th order accuracy

\[\frac{\text{Error}}{h^4} = O(1) \]

\[\dot{y} = y, \quad y(t) = 0.5e^t \]
Classical Runge-Kutta Method (RK4)

- Main consideration: what slope to use?
 - Weighted average

\[
y^{k+1} = y^k + \left(k_1 \right)
\]

- \(k_1 = hf(t^k, y^k) \)

- Properties
 - Equivalent to Simpson's rule
 - 4th order accuracy
Classical Runge-Kutta Method (RK4)

• Main consideration: what slope to use?
 • Weighted average

\[y^{k+1} = y^k + (k_1 \quad k_2) \]

• \(k_1 = hf(t^k, y^k) \)
• \(k_2 = hf\left(t^k + \frac{h}{2}, y^k + \frac{k_1}{2}\right) \)

\[\dot{y} = y, \quad y(t) = 0.5e^t \]
Classical Runge-Kutta Method (RK4)

- Main consideration: what slope to use?
 - Weighted average

\[y^{k+1} = y^k + \left(k_1 \quad k_2 \right) \]

- \(k_1 = hf(t^k, y^k) \)
- \(k_2 = hf(t^k + \frac{h}{2}, y^k + \frac{k_1}{2}) \)

\[\dot{y} = y, \quad y(t) = 0.5e^t \]
Classical Runge-Kutta Method (RK4)

- Main consideration: what slope to use?
 - Weighted average

- \(y^{k+1} = y^k + (k_1 \quad k_2) \)
 - \(k_1 = hf(t^k, y^k) \)
 - \(k_2 = hf\left(t^k + \frac{h}{2}, y^k + \frac{k_1}{2}\right) \)

\[
\begin{align*}
y_{k+1} &= y_k + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4) \quad (1) \\
k_1 &= hf(t_k, y_k) \quad (2) \\
k_2 &= hf(t_k + \frac{h}{2}, y_k + \frac{k_1}{2}) \quad (3) \\
k_3 &= hf(t_k + \frac{h}{2}, y_k + \frac{k_2}{2}) \quad (4) \\
k_4 &= hf(t_k + h, y_k + k_3) \quad (5)
\end{align*}
\]

- Properties
 - Equivalent to Simpson's rule
 - 4th order accuracy

\[
\dot{y} = y, \quad y(t) = 0.5e^t
\]
Classical Runge-Kutta Method (RK4)

- Main consideration: what slope to use?
 - Weighted average

\[y^{k+1} = y^k + (k_1 \quad k_2 \quad k_3) \]

- \(k_1 = hf(t^k, y^k) \)
- \(k_2 = hf(t^k + \frac{h}{2}, y^k + \frac{k_1}{2}) \)
- \(k_3 = hf(t^k + \frac{h}{2}, y^k + \frac{k_2}{2}) \)

\[\dot{y} = y, \quad y(t) = 0.5e^t \]
Classical Runge-Kutta Method (RK4)

- Main consideration: what slope to use?
 - Weighted average

\[y^{k+1} = y^k + \begin{pmatrix} k_1 & k_2 & k_3 \end{pmatrix} \]

- \(k_1 = hf(t^k, y^k) \)
- \(k_2 = hf\left(t^k + \frac{h}{2}, y^k + \frac{k_1}{2}\right) \)
- \(k_3 = hf\left(t^k + \frac{h}{2}, y^k + \frac{k_2}{2}\right) \)

Properties

- Equivalent to Simpson's rule
- 4th order accuracy
Classical Runge-Kutta Method (RK4)

- Main consideration: what slope to use?
 - Weighted average

- $y^{k+1} = y^k + (k_1 \ k_2 \ k_3)$
 - $k_1 = hf(t^k, y^k)$
 - $k_2 = hf(t^k + \frac{h}{2}, y^k + \frac{k_1}{2})$
 - $k_3 = hf(t^k + \frac{h}{2}, y^k + \frac{k_2}{2})$
Classical Runge-Kutta Method (RK4)

• Main consideration: what slope to use?
 • Weighted average

\[y^{k+1} = y^k + (k_1 \quad k_2 \quad k_3 \quad k_4) \]

• \(k_1 = hf(t^k, y^k) \)
• \(k_2 = hf(t^k + \frac{h}{2}, y^k + \frac{k_1}{2}) \)
• \(k_3 = hf(t^k + \frac{h}{2}, y^k + \frac{k_2}{2}) \)
• \(k_4 = hf(t^k + h, y^k + k_3) \)

\[\dot{y} = y, \quad y(t) = 0.5e^t \]
Classical Runge-Kutta Method (RK4)

- Main consideration: what slope to use?
 - Weighted average

- \(y^{k+1} = y^k + (k_1 \quad k_2 \quad k_3 \quad k_4) \)
 - \(k_1 = h f(t^k, y^k) \)
 - \(k_2 = h f(t^k + \frac{h}{2}, y^k + \frac{k_1}{2}) \)
 - \(k_3 = h f(t^k + \frac{h}{2}, y^k + \frac{k_2}{2}) \)
 - \(k_4 = h f(t^k + h, y^k + k_3) \)

- Properties
 - Equivalent to Simpson’s rule
 - 4th order accuracy

\[\dot{y} = y, \quad y(t) = 0.5e^t \]
Classical Runge-Kutta Method (RK4)

- Main consideration: what slope to use?
 - Weighted average

\[y^{k+1} = y^k + \left(k_1 \quad k_2 \quad k_3 \quad k_4 \right) \]

- \(k_1 = hf(t^k, y^k) \)
- \(k_2 = hf\left(t^k + \frac{h}{2}, y^k + \frac{k_1}{2}\right) \)
- \(k_3 = hf\left(t^k + \frac{h}{2}, y^k + \frac{k_2}{2}\right) \)
- \(k_4 = hf(t^k + h, y^k + k_3) \)

\[\dot{y} = y, \quad y(t) = 0.5e^t \]
Classical Runge-Kutta Method (RK4)

- Main consideration: what slope to use?
 - Weighted average

- \(y^{k+1} = y^k + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4) \)
 - \(k_1 = hf(t^k, y^k) \)
 - \(k_2 = hf(t^k + \frac{h}{2}, y^k + \frac{k_1}{2}) \)
 - \(k_3 = hf(t^k + \frac{h}{2}, y^k + \frac{k_2}{2}) \)
 - \(k_4 = hf(t^k + h, y^k + k_3) \)

\[
\dot{y} = y, \quad y(t) = 0.5e^t
\]
Classical Runge-Kutta Method (RK4)

- **Main consideration**: what slope to use?
 - Weighted average

- \(y^{k+1} = y^k + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4) \)
 - \(k_1 = hf(t^k, y^k) \)
 - \(k_2 = hf(t^k + \frac{h}{2}, y^k + \frac{k_1}{2}) \)
 - \(k_3 = hf(t^k + \frac{h}{2}, y^k + \frac{k_2}{2}) \)
 - \(k_4 = hf(t^k + h, y^k + k_3) \)

- **Properties**
 - Equivalent to Simpson’s rule
 - 4th order accuracy

\[\dot{y} = y, \quad y(t) = 0.5e^t \]
Classical Runge-Kutta Method (RK4)

• One of the most widely used methods
 • $y^{k+1} = y^k + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$
 • $k_1 = hf(t^k, y^k)$
 • $k_2 = hf \left(t^k + \frac{h}{2}, y^k + \frac{k_1}{2}\right)$
 • $k_3 = hf \left(t^k + \frac{h}{2}, y^k + \frac{k_2}{2}\right)$
 • $k_4 = hf \left(t^k + h, y^k + k_3\right)$

• Intuitively: estimate y^{k+1} using weighted average of slopes
• Mathematically: can show
 • Consistency: $\frac{\|e^k\|}{h} \to 0$ as $h \to 0$
 • Stability for small enough h
 • Consistency + stability \iff convergence (4th order)
Numerical Solutions: Discussion

• Stiff equations

• Approximation errors
 • Typically cannot be used to prove system properties

• Simulations cannot capture all system behaviours

• Libraries:
 • Matlab: ode__ → ode45, ode113, etc. (ode__s for stiff equations)
 • Python: scipy.integrate.odeint
 • C++: odeint