
"""

 This tutorial introduces stacked denoising auto-encoders (SdA) using Theano.

 Denoising autoencoders are the building blocks for SdA.

 They are based on auto-encoders as the ones used in Bengio et al. 2007.

 An autoencoder takes an input x and first maps it to a hidden representation

 y = f_{\theta}(x) = s(Wx+b), parameterized by \theta={W,b}. The resulting

 latent representation y is then mapped back to a "reconstructed" vector

 z \in [0,1]^d in input space z = g_{\theta'}(y) = s(W'y + b'). The weight

 matrix W' can optionally be constrained such that W' = W^T, in which case

 the autoencoder is said to have tied weights. The network is trained such

 that to minimize the reconstruction error (the error between x and z).

 For the denosing autoencoder, during training, first x is corrupted into

 \tilde{x}, where \tilde{x} is a partially destroyed version of x by means

 of a stochastic mapping. Afterwards y is computed as before (using

 \tilde{x}), y = s(W\tilde{x} + b) and z as s(W'y + b'). The reconstruction

 error is now measured between z and the uncorrupted input x, which is

 computed as the cross-entropy :

 - \sum_{k=1}^d[x_k \log z_k + (1-x_k) \log(1-z_k)]

 References :

 - P. Vincent, H. Larochelle, Y. Bengio, P.A. Manzagol: Extracting and

 Composing Robust Features with Denoising Autoencoders, ICML'08, 1096-1103,

 2008

 - Y. Bengio, P. Lamblin, D. Popovici, H. Larochelle: Greedy Layer-Wise

 Training of Deep Networks, Advances in Neural Information Processing

 Systems 19, 2007

"""

import cPickle

import gzip

import os

import sys

import time

import numpy

import theano

import theano.tensor as T

from theano.tensor.shared_randomstreams import RandomStreams

from logistic_sgd import LogisticRegression, load_data

from mlp import HiddenLayer

from dA import dA

class SdA(object):

 """Stacked denoising auto-encoder class (SdA)

 A stacked denoising autoencoder model is obtained by stacking several

 dAs. The hidden layer of the dA at layer `i` becomes the input of

 the dA at layer `i+1`. The first layer dA gets as input the input of

 the SdA, and the hidden layer of the last dA represents the output.

 Note that after pretraining, the SdA is dealt with as a normal MLP,

 the dAs are only used to initialize the weights.

 """

 def __init__(self, numpy_rng, theano_rng=None, n_ins=784,

 hidden_layers_sizes=[500, 500], n_outs=10,

 corruption_levels=[0.1, 0.1]):

1

jkawahar
Text Box
Look at what we are importing! Everything we've learned so far

jkawahar
Line

jkawahar
Text Box
Construct the SdA

 """ This class is made to support a variable number of layers.

 :type numpy_rng: numpy.random.RandomState

 :param numpy_rng: numpy random number generator used to draw initial

 weights

 :type theano_rng: theano.tensor.shared_randomstreams.RandomStreams

 :param theano_rng: Theano random generator; if None is given one is

 generated based on a seed drawn from `rng`

 :type n_ins: int

 :param n_ins: dimension of the input to the sdA

 :type n_layers_sizes: list of ints

 :param n_layers_sizes: intermediate layers size, must contain

 at least one value

 :type n_outs: int

 :param n_outs: dimension of the output of the network

 :type corruption_levels: list of float

 :param corruption_levels: amount of corruption to use for each

 layer

 """

 self.sigmoid_layers = []

 self.dA_layers = []

 self.params = []

 self.n_layers = len(hidden_layers_sizes)

 assert self.n_layers > 0

 if not theano_rng:

 theano_rng = RandomStreams(numpy_rng.randint(2 ** 30))

 # allocate symbolic variables for the data

 self.x = T.matrix('x') # the data is presented as rasterized images

 self.y = T.ivector('y') # the labels are presented as 1D vector of

 # [int] labels

 # The SdA is an MLP, for which all weights of intermediate layers

 # are shared with a different denoising autoencoders

 # We will first construct the SdA as a deep multilayer perceptron,

 # and when constructing each sigmoidal layer we also construct a

 # denoising autoencoder that shares weights with that layer

 # During pretraining we will train these autoencoders (which will

 # lead to chainging the weights of the MLP as well)

 # During finetunining we will finish training the SdA by doing

 # stochastich gradient descent on the MLP

 for i in xrange(self.n_layers):

 # construct the sigmoidal layer

 # the size of the input is either the number of hidden units of

 # the layer below or the input size if we are on the first layer

 if i == 0:

 input_size = n_ins

 else:

 input_size = hidden_layers_sizes[i - 1]

 # the input to this layer is either the activation of the hidden

 # layer below or the input of the SdA if you are on the first

 # layer

2

jkawahar
Text Box
stores the sigmoid layers

jkawahar
Text Box
stores the denoising autoencoder layers

jkawahar
Line

jkawahar
Line

jkawahar
Text Box
Loop over the hidden layers

jkawahar
Text Box
e.g. number of input pixels

jkawahar
Text Box
size of previous hidden layer

jkawahar
Pencil

 if i == 0:

 layer_input = self.x

 else:

 layer_input = self.sigmoid_layers[-1].output

 sigmoid_layer = HiddenLayer(rng=numpy_rng,

 input=layer_input,

 n_in=input_size,

 n_out=hidden_layers_sizes[i],

 activation=T.nnet.sigmoid)

 # add the layer to our list of layers

 self.sigmoid_layers.append(sigmoid_layer)

 # its arguably a philosophical question...

 # but we are going to only declare that the parameters of the

 # sigmoid_layers are parameters of the StackedDAA

 # the visible biases in the dA are parameters of those

 # dA, but not the SdA

 self.params.extend(sigmoid_layer.params)

 # Construct a denoising autoencoder that shared weights with this

 # layer

 dA_layer = dA(numpy_rng=numpy_rng,

 theano_rng=theano_rng,

 input=layer_input,

 n_visible=input_size,

 n_hidden=hidden_layers_sizes[i],

 W=sigmoid_layer.W,

 bhid=sigmoid_layer.b)

 self.dA_layers.append(dA_layer)

 # We now need to add a logistic layer on top of the MLP

 self.logLayer = LogisticRegression(

 input=self.sigmoid_layers[-1].output,

 n_in=hidden_layers_sizes[-1], n_out=n_outs)

 self.params.extend(self.logLayer.params)

 # construct a function that implements one step of finetunining

 # compute the cost for second phase of training,

 # defined as the negative log likelihood

 self.finetune_cost = self.logLayer.negative_log_likelihood(self.y)

 # compute the gradients with respect to the model parameters

 # symbolic variable that points to the number of errors made on the

 # minibatch given by self.x and self.y

 self.errors = self.logLayer.errors(self.y)

 def pretraining_functions(self, train_set_x, batch_size):

 ''' Generates a list of functions, each of them implementing one

 step in trainnig the dA corresponding to the layer with same index.

 The function will require as input the minibatch index, and to train

 a dA you just need to iterate, calling the corresponding function on

 all minibatch indexes.

 :type train_set_x: theano.tensor.TensorType

 :param train_set_x: Shared variable that contains all datapoints used

 for training the dA

 :type batch_size: int

 :param batch_size: size of a [mini]batch

 :type learning_rate: float

 :param learning_rate: learning rate used during training for any of

3

jkawahar
Text Box
e.g. the raw input pixels

jkawahar
Text Box
output from previous hidden layer

jkawahar
Text Box
Create a denoising autoencoder layer

jkawahar
Text Box
e.g. first time, we pass in the pixels, second time we pass in the outputs from the previous layer

jkawahar
Text Box
Not exactly sure why it is a philosophical question?

jkawahar
Pencil

jkawahar
Pencil

jkawahar
Text Box
Input is the output from the previous SIGMOID layer

jkawahar
Pencil

jkawahar
Text Box
Weights and bias' are the same as the SIGMOID layer

jkawahar
Text Box
We are out of the for loop over the layers

jkawahar
Line

jkawahar
Pencil

jkawahar
Text Box
Create the Logistic Regression layer

jkawahar
Text Box
input is the output of the last SIGMOID layer,output is the class labels

jkawahar
Text Box
like in the MLP

jkawahar
Line

jkawahar
Text Box
For each layer, get a list of functions that updates the weights

jkawahar
Line

jkawahar
Line

jkawahar
Line

jkawahar
Line

jkawahar
Line

jkawahar
Text Box
this is the architecture, skip down to look at the creating the SdA

 the dA layers

 '''

 # index to a [mini]batch

 index = T.lscalar('index') # index to a minibatch

 corruption_level = T.scalar('corruption') # % of corruption to use

 learning_rate = T.scalar('lr') # learning rate to use

 # number of batches

 n_batches = train_set_x.get_value(borrow=True).shape[0] / batch_size

 # begining of a batch, given `index`

 batch_begin = index * batch_size

 # ending of a batch given `index`

 batch_end = batch_begin + batch_size

 pretrain_fns = []

 for dA in self.dA_layers:

 # get the cost and the updates list

 cost, updates = dA.get_cost_updates(corruption_level,

 learning_rate)

 # compile the theano function

 fn = theano.function(inputs=[index,

 theano.Param(corruption_level, default=0.2),

 theano.Param(learning_rate, default=0.1)],

 outputs=cost,

 updates=updates,

 givens={self.x: train_set_x[batch_begin:

 batch_end]})

 # append `fn` to the list of functions

 pretrain_fns.append(fn)

 return pretrain_fns

 def build_finetune_functions(self, datasets, batch_size, learning_rate):

 '''Generates a function `train` that implements one step of

 finetuning, a function `validate` that computes the error on

 a batch from the validation set, and a function `test` that

 computes the error on a batch from the testing set

 :type datasets: list of pairs of theano.tensor.TensorType

 :param datasets: It is a list that contain all the datasets;

 the has to contain three pairs, `train`,

 `valid`, `test` in this order, where each pair

 is formed of two Theano variables, one for the

 datapoints, the other for the labels

 :type batch_size: int

 :param batch_size: size of a minibatch

 :type learning_rate: float

 :param learning_rate: learning rate used during finetune stage

 '''

 (train_set_x, train_set_y) = datasets[0]

 (valid_set_x, valid_set_y) = datasets[1]

 (test_set_x, test_set_y) = datasets[2]

 # compute number of minibatches for training, validation and testing

 n_valid_batches = valid_set_x.get_value(borrow=True).shape[0]

 n_valid_batches /= batch_size

 n_test_batches = test_set_x.get_value(borrow=True).shape[0]

 n_test_batches /= batch_size

4

jkawahar
Text Box
these are parameters to the function...

jkawahar
Text Box
mini-batch stuff

jkawahar
Text Box
for each layer in the dA

jkawahar
Text Box
get the cost to reconstruct the input, and update the weights

jkawahar
Text Box
list of compiled pre-training functions used to train each layer, where we can index the layer by i

jkawahar
Text Box
a function that will compute the cost and the weight updates

jkawahar
Text Box
Supervised fine-tuning

 index = T.lscalar('index') # index to a [mini]batch

 # compute the gradients with respect to the model parameters

 gparams = T.grad(self.finetune_cost, self.params)

 # compute list of fine-tuning updates

 updates = []

 for param, gparam in zip(self.params, gparams):

 updates.append((param, param - gparam * learning_rate))

 train_fn = theano.function(inputs=[index],

 outputs=self.finetune_cost,

 updates=updates,

 givens={

 self.x: train_set_x[index * batch_size:

 (index + 1) * batch_size],

 self.y: train_set_y[index * batch_size:

 (index + 1) * batch_size]},

 name='train')

 test_score_i = theano.function([index], self.errors,

 givens={

 self.x: test_set_x[index * batch_size:

 (index + 1) * batch_size],

 self.y: test_set_y[index * batch_size:

 (index + 1) * batch_size]},

 name='test')

 valid_score_i = theano.function([index], self.errors,

 givens={

 self.x: valid_set_x[index * batch_size:

 (index + 1) * batch_size],

 self.y: valid_set_y[index * batch_size:

 (index + 1) * batch_size]},

 name='valid')

 # Create a function that scans the entire validation set

 def valid_score():

 return [valid_score_i(i) for i in xrange(n_valid_batches)]

 # Create a function that scans the entire test set

 def test_score():

 return [test_score_i(i) for i in xrange(n_test_batches)]

 return train_fn, valid_score, test_score

def test_SdA(finetune_lr=0.1, pretraining_epochs=15,

 pretrain_lr=0.001, training_epochs=1000,

 dataset='mnist.pkl.gz', batch_size=1):

 """

 Demonstrates how to train and test a stochastic denoising autoencoder.

 This is demonstrated on MNIST.

 :type learning_rate: float

 :param learning_rate: learning rate used in the finetune stage

 (factor for the stochastic gradient)

 :type pretraining_epochs: int

 :param pretraining_epochs: number of epoch to do pretraining

5

jkawahar
Text Box
Here's the test code for the SdA

jkawahar
Line

jkawahar
Text Box
Gradients computed like in MLP

jkawahar
Text Box
Updates to the weights

jkawahar
Text Box
Divide data into train, validate and test with the features and corresponding labels

jkawahar
Text Box
Get the validation and test scores, returns the error

jkawahar
Pencil

jkawahar
Pencil

jkawahar
Line

 :type pretrain_lr: float

 :param pretrain_lr: learning rate to be used during pre-training

 :type n_iter: int

 :param n_iter: maximal number of iterations ot run the optimizer

 :type dataset: string

 :param dataset: path the the pickled dataset

 """

 datasets = load_data(dataset)

 train_set_x, train_set_y = datasets[0]

 valid_set_x, valid_set_y = datasets[1]

 test_set_x, test_set_y = datasets[2]

 # compute number of minibatches for training, validation and testing

 n_train_batches = train_set_x.get_value(borrow=True).shape[0]

 n_train_batches /= batch_size

 # numpy random generator

 numpy_rng = numpy.random.RandomState(89677)

 print '... building the model'

 # construct the stacked denoising autoencoder class

 sda = SdA(numpy_rng=numpy_rng, n_ins=28 * 28,

 hidden_layers_sizes=[1000, 1000, 1000],

 n_outs=10)

 #########################

 # PRETRAINING THE MODEL #

 #########################

 print '... getting the pretraining functions'

 pretraining_fns = sda.pretraining_functions(train_set_x=train_set_x,

 batch_size=batch_size)

 print '... pre-training the model'

 start_time = time.clock()

 ## Pre-train layer-wise

 corruption_levels = [.1, .2, .3]

 for i in xrange(sda.n_layers):

 # go through pretraining epochs

 for epoch in xrange(pretraining_epochs):

 # go through the training set

 c = []

 for batch_index in xrange(n_train_batches):

 c.append(pretraining_fns[i](index=batch_index,

 corruption=corruption_levels[i],

 lr=pretrain_lr))

 print 'Pre-training layer %i, epoch %d, cost ' % (i, epoch),

 print numpy.mean(c)

 end_time = time.clock()

 print >> sys.stderr, ('The pretraining code for file ' +

 os.path.split(__file__)[1] +

 ' ran for %.2fm' % ((end_time - start_time) / 60.))

 ########################

 # FINETUNING THE MODEL #

 ########################

6

jkawahar
Text Box
Load the data, split into train, validate and test set

jkawahar
Text Box
Here we actually construct the stacked autoencoder

jkawahar
Text Box
Pretraining functions for the autoencoder layers to learn to reconstruct the input

jkawahar
Text Box
Corrupt it more over the 3 layers

jkawahar
Text Box
For each of the layers...

jkawahar
Text Box
For 1000 epochs...

jkawahar
Text Box
For all the mini-batches...

jkawahar
Line

jkawahar
Line

jkawahar
Line

jkawahar
Text Box
average error for the epoch over the layer

jkawahar
Text Box
user-specified learning rate

jkawahar
Line

jkawahar
Line

jkawahar
Text Box
update the weights in layer i

jkawahar
Line

jkawahar
Line

 # get the training, validation and testing function for the model

 print '... getting the finetuning functions'

 train_fn, validate_model, test_model = sda.build_finetune_functions(

 datasets=datasets, batch_size=batch_size,

 learning_rate=finetune_lr)

 print '... finetunning the model'

 # early-stopping parameters

 patience = 10 * n_train_batches # look as this many examples regardless

 patience_increase = 2. # wait this much longer when a new best is

 # found

 improvement_threshold = 0.995 # a relative improvement of this much is

 # considered significant

 validation_frequency = min(n_train_batches, patience / 2)

 # go through this many

 # minibatche before checking the network

 # on the validation set; in this case we

 # check every epoch

 best_params = None

 best_validation_loss = numpy.inf

 test_score = 0.

 start_time = time.clock()

 done_looping = False

 epoch = 0

 while (epoch < training_epochs) and (not done_looping):

 epoch = epoch + 1

 for minibatch_index in xrange(n_train_batches):

 minibatch_avg_cost = train_fn(minibatch_index)

 iter = (epoch - 1) * n_train_batches + minibatch_index

 if (iter + 1) % validation_frequency == 0:

 validation_losses = validate_model()

 this_validation_loss = numpy.mean(validation_losses)

 print('epoch %i, minibatch %i/%i, validation error %f %%' %

 (epoch, minibatch_index + 1, n_train_batches,

 this_validation_loss * 100.))

 # if we got the best validation score until now

 if this_validation_loss < best_validation_loss:

 #improve patience if loss improvement is good enough

 if (this_validation_loss < best_validation_loss *

 improvement_threshold):

 patience = max(patience, iter * patience_increase)

 # save best validation score and iteration number

 best_validation_loss = this_validation_loss

 best_iter = iter

 # test it on the test set

 test_losses = test_model()

 test_score = numpy.mean(test_losses)

 print((' epoch %i, minibatch %i/%i, test error of '

 'best model %f %%') %

 (epoch, minibatch_index + 1, n_train_batches,

 test_score * 100.))

 if patience <= iter:

 done_looping = True

7

jkawahar
Text Box
Functions to do the supervised fine-tuning treating this like a MLP

jkawahar
Text Box
Can terminate earlier

jkawahar
Text Box
Loop over the mini-batches

jkawahar
Text Box
Call the supervised training function and get the error

jkawahar
Text Box
Get the errors over the validation set

jkawahar
Line

jkawahar
Line

jkawahar
Line

jkawahar
Line

jkawahar
Text Box
Think this means we keep training if the results are somewhat improving

jkawahar
Text Box
where is this used?

jkawahar
Line

jkawahar
Text Box
keep track of the best scores

jkawahar
Line

 break

 end_time = time.clock()

 print(('Optimization complete with best validation score of %f %%,'

 'with test performance %f %%') %

 (best_validation_loss * 100., test_score * 100.))

 print >> sys.stderr, ('The training code for file ' +

 os.path.split(__file__)[1] +

 ' ran for %.2fm' % ((end_time - start_time) / 60.))

if __name__ == '__main__':

 test_SdA()

8

