Informed search algorithms

Chapter 4, Sections 1-2

Outline
\diamond Best-first search
$\diamond A^{*}$ search
\diamond Heuristics

Review: Tree search

function TREE-SEARCH(problem, fringe) returns a solution, or failure
fringe $\leftarrow \operatorname{Insert}($ Make-Node(Initial-State[problem]), fringe)
loop do
if fringe is empty then return failure
node \leftarrow REmove-Front(fringe)
if Goal-TESt[problem] applied to State(node) succeeds return node
fringe $\leftarrow \operatorname{InsertAlL}(E X P A N D($ node, problem), fringe)

A strategy is defined by picking the order of node expansion

Best-first search

Idea: use an evaluation function for each node

- estimate of "desirability"
\Rightarrow Expand most desirable unexpanded node
Implementation:
fringe is a queue sorted in decreasing order of desirability
Special cases:
greedy search
A* search

Romania with step costs in km

Greedy search

Evaluation function $h(n)$ (heuristic)
$=$ estimate of cost from n to the closest goal
E.g., $h_{\text {SLD }}(n)=$ straight-line distance from n to Bucharest

Greedy search expands the node that appears to be closest to goal

Greedy search example

Greedy search example

Timisoara
329
$\frac{\text { Zerind }}{374}$

Greedy search example

Sibiu

Greedy search example

Sibiu

$\frac{\text { Zerind }}{374}$

Properties of greedy search
Complete??

Properties of greedy search

Complete?? No-can get stuck in loops, e.g., with Oradea as goal, lasi \rightarrow Neamt \rightarrow lasi \rightarrow Neamt \rightarrow
Complete in finite space with repeated-state checking
Time??

Properties of greedy search

Complete?? No-can get stuck in loops, e.g.,
lasi \rightarrow Neamt \rightarrow lasi \rightarrow Neamt \rightarrow
Complete in finite space with repeated-state checking
Time?? $O\left(b^{m}\right)$, but a good heuristic can give dramatic improvement Space??

Properties of greedy search

Complete?? No-can get stuck in loops, e.g.,
lasi \rightarrow Neamt \rightarrow lasi \rightarrow Neamt \rightarrow
Complete in finite space with repeated-state checking
Time?? $O\left(b^{m}\right)$, but a good heuristic can give dramatic improvement
Space?? $O\left(b^{m}\right)$-keeps all nodes in memory
Optimal??

Properties of greedy search

Complete?? No-can get stuck in loops, e.g.,
lasi \rightarrow Neamt \rightarrow lasi \rightarrow Neamt \rightarrow
Complete in finite space with repeated-state checking
Time?? $O\left(b^{m}\right)$, but a good heuristic can give dramatic improvement
Space?? $O\left(b^{m}\right)$-keeps all nodes in memory
Optimal?? No

A* search

Idea: avoid expanding paths that are already expensive
Evaluation function $f(n)=g(n)+h(n)$
$g(n)=$ cost so far to reach n
$h(n)=$ estimated cost to goal from n
$f(n)=$ estimated total cost of path through n to goal
A* search uses an admissible heuristic
i.e., $h(n) \leq h^{*}(n)$ where $h^{*}(n)$ is the true cost from n.
(Also require $h(n) \geq 0$, so $h(G)=0$ for any goal G.)
E.g., $h_{\text {SLD }}(n)$ never overestimates the actual road distance

Theorem: A^{*} search is optimal

\mathbf{A}^{*} search example

$>\underset{366=0+366}{\text { Arad }}$

A* search example

A* search example

A* search example

Arad

Sibiu

Arad $>$ Fagaras Oradea

$646=280+366 \quad 415=239+176 \quad 671=291+380$

A* search example

A* search example

Optimality of A* (standard proof)

Suppose some suboptimal goal G_{2} has been generated and is in the queue. Let n be an unexpanded node on a shortest path to an optimal goal G_{1}.

$$
\begin{array}{rlr}
f\left(G_{2}\right) & =g\left(G_{2}\right) \quad \text { since } h\left(G_{2}\right)=0 \\
& >g\left(G_{1}\right) \quad \text { since } G_{2} \text { is suboptimal } \\
& \geq f(n) \quad \text { since } h \text { is admissible }
\end{array}
$$

Since $f\left(G_{2}\right)>f(n), \mathrm{A}^{*}$ will never select G_{2} for expansion

Optimality of A* (more useful)

Lemma: A^{*} expands nodes in order of increasing f value*
Gradually adds " f-contours" of nodes (cf. breadth-first adds layers)
Contour i has all nodes with $f=f_{i}$, where $f_{i}<f_{i+1}$

Properties of A*
Complete??

Properties of \mathbf{A}^{*}
Complete?? Yes, unless there are infinitely many nodes with $f \leq f(G)$
Time??

Properties of \mathbf{A}^{*}

Complete?? Yes, unless there are infinitely many nodes with $f \leq f(G)$
Time?? Exponential in [relative error in $h \times$ length of soln.]
Space??

Properties of \mathbf{A}^{*}

Complete?? Yes, unless there are infinitely many nodes with $f \leq f(G)$
Time?? Exponential in [relative error in $h \times$ length of soln.]
Space?? Keeps all nodes in memory
Optimal??

Properties of \mathbf{A}^{*}

Complete?? Yes, unless there are infinitely many nodes with $f \leq f(G)$
Time?? Exponential in [relative error in $h \times$ length of soln.]
Space?? Keeps all nodes in memory
Optimal?? Yes-cannot expand f_{i+1} until f_{i} is finished
A* expands all nodes with $f(n)<C^{*}$
A* expands some nodes with $f(n)=C^{*}$
A* expands no nodes with $f(n)>C^{*}$

Proof of lemma: Consistency

A heuristic is consistent if

$$
h(n) \leq c\left(n, a, n^{\prime}\right)+h\left(n^{\prime}\right)
$$

If h is consistent, we have

$$
\begin{aligned}
f\left(n^{\prime}\right) & =g\left(n^{\prime}\right)+h\left(n^{\prime}\right) \\
& =g(n)+c\left(n, a, n^{\prime}\right)+h\left(n^{\prime}\right) \\
& \geq g(n)+h(n) \\
& =f(n)
\end{aligned}
$$

l.e., $f(n)$ is nondecreasing along any path.

Admissible heuristics

E.g., for the 8-puzzle:
$h_{1}(n)=$ number of misplaced tiles
$h_{2}(n)=$ total Manhattan distance
(i.e., no. of squares from desired location of each tile)

7	2	4
5		6
8	3	1

Start State

1	2	3
4	5	6
7	8	

Goal State
$h_{1}(S)=? ?$
$h_{2}(S)=? ?$

Admissible heuristics

E.g., for the 8-puzzle:
$h_{1}(n)=$ number of misplaced tiles
$h_{2}(n)=$ total Manhattan distance
(i.e., no. of squares from desired location of each tile)

7	2	4
5		6
8	3	1

Start State

1	2	3
4	5	6
7	8	
7		

Goal State
$h_{1}(S)=? ? 6$
$h_{2}(S)=? ? 4+0+3+3+1+0+2+1=14$

Dominance

If $h_{2}(n) \geq h_{1}(n)$ for all n (both admissible) then h_{2} dominates h_{1} and is better for search

Typical search costs:

$$
\begin{array}{rl}
d=14 & \text { IDS }=3,473,941 \text { nodes } \\
& \mathrm{A}^{*}\left(h_{1}\right)=539 \text { nodes } \\
& \mathrm{A}^{*}\left(h_{2}\right)=113 \text { nodes } \\
d=24 & \mathrm{IDS} \approx 54,000,000,000 \text { nodes } \\
& \mathrm{A}^{*}\left(h_{1}\right)=39,135 \text { nodes } \\
& \mathrm{A}^{*}\left(h_{2}\right)=1,641 \text { nodes }
\end{array}
$$

Given any admissible heuristics h_{a}, h_{b},

$$
h(n)=\max \left(h_{a}(n), h_{b}(n)\right)
$$

is also admissible and dominates h_{a}, h_{b}

Relaxed problems

Admissible heuristics can be derived from the exact solution cost of a relaxed version of the problem

If the rules of the 8 -puzzle are relaxed so that a tile can move anywhere, then $h_{1}(n)$ gives the shortest solution

If the rules are relaxed so that a tile can move to any adjacent square, then $h_{2}(n)$ gives the shortest solution

Key point: the optimal solution cost of a relaxed problem is no greater than the optimal solution cost of the real problem

Relaxed problems contd.

Well-known example: travelling salesperson problem (TSP) Find the shortest tour visiting all cities exactly once

Minimum spanning tree can be computed in $O\left(n^{2}\right)$ and is a lower bound on the shortest (open) tour

Summary

Heuristic functions estimate costs of shortest paths
Good heuristics can dramatically reduce search cost
Greedy best-first search expands lowest h

- incomplete and not always optimal

A* search expands lowest $g+h$

- complete and optimal
- also optimally efficient (up to tie-breaks, for forward search)

Admissible heuristics can be derived from exact solution of relaxed problems

