CMPT 125 Assignment 2

- Due Jan. 23 at 3:20pm; please hand in hard copy in assignment box in CSIL
- You may write or type your answers

Question 1
(20 marks total)

a) Let’s consider an integer array of size 10. (10 marks, each part is 2 marks)

 int a[10];

I. How would you assign a pointer, called pA, to store the address of element 0 of this array? Write the C code for your answer.
II. Using pA, how would you obtain the value of the next element (element 1) of the array?
III. Explain in 2-3 sentences what the statement `pA = a[1];` would do.
IV. Is the statement `a = pA;` valid (would it cause compilation errors)? How about `a++;`? Explain briefly in 3-4 sentences.
V. Write a C code to print all the elements from this array.

b) Consider the two variables below. (5 marks)

 char amessage[] = "now is the time";
 char *pmessage = "now is the time";

I. What is the difference between the two variables amessage and pmessage? (1 mark)
II. Write a C code to change the character ‘t’ from ‘time’ to uppercase ‘T’ in the variable amessage. (5 marks)

c) Consider the following code. (5 marks)

 void strcopy(char s1[], char s2[])
 {
 int len = strlen(s2);
 for (int i = 0; i<len; i++) {
 s1[i] = s2[i];
 }
 }

 int main () {
 char s2[10] = "copy this";
 char s1[10];
 strcopy(s1, s2);
 }
The above code copies the character from s2 to s1 using the concept of array, in the `strcpy` function. Implement another function `strcopy2` that achieves the same result, but that takes as input pointers to character arrays – that is, complete the `strcopy2` function in the following code so that the code copies the content of s2 into s1.

```c
void strcopy2(char *s1, char *s2) {
}

int main () {
    char s2[10] = "copy this";
    char s1[10];

    strcopy2(s1, s2);
}
```
Question 2
(10 marks, each part is 2 marks)

Assume that each of the expressions below gives the processing time $T(n)$ spent by an algorithm for solving a problem of size n. Find the dominant term(s) having the steepest increase in n and specify the lowest Big-O complexity of each algorithm.

<table>
<thead>
<tr>
<th>Expression</th>
<th>Dominant term(s)</th>
<th>$O(...)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0.001 \log_4 n + \log_2 (\log_2 n)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$n^3 \log_2 n + n(\log_2 n)^2$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$0.01n + 100n^3$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$0.1n + 4n^{1.5} + 2.5n^{1.5}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$3 \log_8 n + \log_2 (\log_2 (\log_2 n))$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Question 3
(8 marks, each part is 2 marks)

For the following parts, try to get the best Big-O estimate that you can and briefly justify your answers.

Part a)

```c
int i, j;
int n = 100;

for (i = 1; i <= n; i++) {
    for (j = 3*i; j <= n; j++) {
        printf("programming is fun\n");
    }
}
```

Part b)

```c
int i, j;
int n = 1000000;

for (i = 1; i <= n; i++) {
    for (j = 1; j <= 10000; j++) {
        printf("%d %d\n", i, j);
    }
}
```

Part c)

```c
int i = 0;
int n = 10;
int j;

while (i < n) {
    i++;
    j = i;
    while (i < n) {
        printf("hello %d\n", i);
        i++;
    }
    i = j;
}
```

Part d)

```c
int i = 0;
int n = 10;
int j;
```
while (i < n) {
 i++;
 j = i;
 while (i < n) {
 printf("hello %d\n", i);
 i++;
 break;
 }
 i = j;
}
Question 4
(15 marks)

Write a program in C that prompts a user to select any five beverages of your choice (e.g. Coke, Lemon Tea, etc.). User should be able to select one of these options using only integers from 0 to 4 as inputs. Once a user has made the choice, print the chosen drink along with its calorie information. You may look up the calorie information online.

Example input: 3

Example output:
Selected drink: Coca Cola
Calorie count: 140 Calories

Notes:
- You can assume that the user will input integers. You do not need to handle invalid inputs of other types (such as strings, floats, etc.).
- Your program should gracefully terminate if a user enters wrong input three times. In addition, after every invalid attempt, your program should tell the user how many tries he/she has remaining. For example, the prompt should work something like this:
 o Prompt 1: User enters 6. Your program should tell that input is invalid and enter again. Also print the remaining tries (2).
 o Prompt 2: User enters -1. Your program should tell that input is invalid and enter again. Also print the remaining tries (1).
 o Prompt 3: User enters 200. Your program should tell that input is invalid and terminate. Also print the remaining tries (0).
 o If the user enters a correct input on or before the last try, the program should behave normally, and output should be like the provided example.