Intractability

CMPT 125
Apr. 3
Lecture 34

Today:

- Finite Tile Puzzles
- Exponential-Time Algorithms
- NP-Complete Problems
Decidability (Review)

Decision Problem:
- Answers a “Yes” / “No” question.

Some problems don’t have a solution
- called undecidable
- E.g., Tiling the plane
- E.g., Does program P have an infinite loop?
- E.g., Is program P correct?

Some undecidable problems are “harder” than others
- Can write algorithms that:
 - are successful on restricted classes of inputs
 - work 99% of the time
- E.g., Lab grading server

These problems might not be that easy!
Finite Tiling Puzzles

Problem: Given $N = M^2$ tiles, can you tile an $M \times M$ grid?

- harder version: allow to rotate / mirror

A brute force approach:

- Since there are a finitely many ways of arranging the tiles, and each arrangement can easily be tested for legality, try and test all arrangements
- decidable!

What’s the running time?

- $N!$ arrangements means $O(N!)$ time
- By the way, $9! = 362880$
Human Solution to Finite Tile Puzzle

You would also use brute-force, but add one tile at a time.

- If tile doesn’t fit, then try another.
- If all tries lead to failure, then remove the previous tile.

Algorithm is called *backtracking*.

- recursive
- generates partial solutions
- we didn’t do 8! steps, because we rejected many permutations early

What makes a “hard” puzzle?

- many partial solutions, but . . .
- few correct solutions (usually one)
Exponential vs Polynomial Time

$N!$ is the fastest growing function yet

- faster than any polynomial

Fastest known algorithm to solve every bug puzzle is 2^N, which also grows very fast

- but remember: many puzzles can be solved quickly in practice!

Rule of Thumb: A typical computer will do 1 billion operations in around 1 second.

Q. What’s the maximum practical N?

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>$N \log N$</th>
<th>N^2</th>
<th>N^3</th>
<th>2^N</th>
<th>$N!$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 second</td>
<td>10^9</td>
<td>4.0×10^7</td>
<td>3.1×10^4</td>
<td>10^3</td>
<td>30</td>
<td>12</td>
</tr>
<tr>
<td>10 years</td>
<td>3.2×10^{17}</td>
<td>6.0×10^{15}</td>
<td>5.6×10^8</td>
<td>6.8×10^5</td>
<td>58</td>
<td>19</td>
</tr>
</tbody>
</table>
Reasonable vs Unreasonable Time

The functions 2^N and $N!$ easily dwarf the growth of all functions of the form N^k, for any fixed k.

Two provisos:

- N^{1000} also grows really stinkingly fast
- There are some linear algorithms with massive leading constants

But for the most part, the distinction is valid:

- “good” is polynomial — tractable
- “bad” is super-polynomial — intractable
The World of All Problems

- Unsolvable problems (undecidable)
- Solvable problems (decidable)
- Intractable problems
- Tractable problems

Problems not admitting a reasonable algorithm
Problems admitting a reasonable (poly-time) algorithm
Intractability and NPC

Q. Is the finite tile puzzle intractable or tractable? Mathematically speaking, it is in no man’s land.

- no one has proven that exponential time is required
 - exponential lower bounds have been proved for some problems (but not this one)
- no polynomial-time algorithm has yet been found
 - backtracking is one algorithm that works well on most bug puzzles, but not all of them.

The finite tile puzzle belongs to a class called *NPC* — the *NP*-Complete problems.
Other Problems in \textit{NPC}

There are many natural problems which are similar to the finite tile puzzle. They come from a variety of domains.

- \textbf{The Travelling Salesman Problem (TSP)}

 Given a road network connecting \(N \) cities, plan the fastest route that passes through all \(N \) of them.

- \textbf{Subset-sum}.

 Given a list of \(N \) numbers and a target number \(t \), find a subset of those numbers that sums to \(t \).
More Examples

- **Knapsacking**
 Given a list of N items of weight w_1, w_2, \ldots, w_N and value v_1, v_2, \ldots, v_N, pack a car whose maximum load is W such that value is maximized.

- **Scheduling**
 Given a list of N students each of which has up to 5 final exams, devise the minimum schedule so that no exams overlap for any students.

- **Satisfiability**
 Given a logical expression of length N, find a true/false substitution that will yield “true”
There are several hundred problems sharing remarkable properties:

- best known algorithm is exponential
- best lower bound is polynomial
- if one is intractable, then they all are, but . . .
- if one is tractable, then they all are!

$P \neq NP$ (Cook-Levin 1971)

- The most important open problem in CS
- Also considered a major open problem in Mathematics
A Use for Intractability

Sometimes the bad news can be used constructively:

- in cryptography and security

General Strategy: Devise a cryptosystem so that unauthorized decryption is expensive.

Most public-key crypto relies on large primes

- you can eavesdrop only if you can factor extremely large numbers efficiently
- integer factorization is believed to be intractable
CMPT 125 — Topics Covered

Algorithms:
- measuring performance
- the worst case → big-O
- software engineering principles
- brute-force paradigm
- sorting and searching
- assertions, pre/post-conditions, invariants, invariant proofs
- divide & conquer paradigm
- recursion & recursive invariants
- ADTs: stacks, queues
- linked lists, rooted trees
- binary search trees
- regular expressions & FSMs
- floating point encoding
- undecidability, intractability

Coding:
- declare all variables
- pass-by-value
- arrays are fixed length
- strings
- pointers
- coding style
- recursion
- struct
- interfaces
- ADTs
- linked data structures
- struct → class
- templates & the STL
Final Exam

2 hours (shorter exam)

Bring your ID!!! We will check everyone’s ID

Tips:
● Read every question first
● Don’t rush into answering; take time to think
● To do well on the (and any) exam, you need to
 ○ Understand the material
 ○ Be comfortable with the thought process used to solve lecture examples and homework problems
 ○ Come up with solutions to easier problems quickly