
Binary Trees
CMPT 125

Mar. 18

Lecture 27

Today:
● Binary Trees
● Recursive Definitions of Trees
● Binary Tree Implementation
● Expression Trees
● Traversals
● Grammars

A rooted tree is a tree where all but
one vertex has exactly one inbound
edge (from its parent).

● usually drawn by level, top down

● leaf vertex has no outbound edge

Rooted Trees (Review)

● root vertex has no inbound edge

● parents point to children
● ancestors point to descendants via a

downward path

A binary tree is a rooted tree in
which no vertex has more than 2
children.

root

leaves

— parent

— child

— ancestor

— descendant

There are many subtrees within a binary tree:
● the two most important are the left and right subtrees
● rooted at the left and right children of the root
● to visualize, remove the root!

Subtrees and Recursive Definitions

left subtree right subtree

Leads to a recursive definition:
T is a binary tree when:

● T is an empty tree (i.e., no vertices)

OR . . .

● T has a root vertex whose left and
right subtrees are binary trees

T :

There are many subtrees within a binary tree:
● the two most important are the left and right subtrees
● rooted at the left and right children of the root
● to visualize, remove the root!

Subtrees and Recursive Definitions

left subtree right subtree

Leads to a recursive definition:
T is a binary tree when:

● T is an empty tree (i.e., no vertices)

OR . . .

● T has a root vertex whose left and
right subtrees are binary trees

T :

TL TR

Trees and Recursion

Recursive definitions benefit you in
two ways:

● allow you to write recursive algorithms
● allow you to reason about the

structure by recursion (or induction)

How to build a binary tree in C++?
● use the recursive definition
● adopt similar strategy to a linked list

left subtree right subtree

TL TR
struct LLnode {

int data;
struct LLnode * next;

};

T is a binary tree when either:
● T is an empty tree
● T has a root vertex whose left and

right subtrees are binary trees

struct BTnode {
int data;
struct BTnode * next;

};

Trees and Recursion

Recursive definitions benefit you in
two ways:

● allow you to write recursive algorithms
● allow you to reason about the

structure by recursion (or induction)

How to build a binary tree in C++?
● use the recursive definition
● adopt similar strategy to a linked list

left subtree right subtree

TL TR

T is a binary tree when either:
● T is an empty tree
● T has a root vertex whose left and

right subtrees are binary trees

struct BTnode {
int data;
struct BTnode * left;
struct BTnode * right;

};

Trees and Recursion

Recursive definitions benefit you in
two ways:

● allow you to write recursive algorithms
● allow you to reason about the

structure by recursion (or induction)

How to build a binary tree in C++?
● use the recursive definition
● adopt similar strategy to a linked list

left subtree right subtree

TL TR

T is a binary tree when either:
● T is an empty tree
● T has a root vertex whose left and

right subtrees are binary trees

struct BTnode {
int data;
struct BTnode * left;
struct BTnode * right;
struct BTnode * parent;

};

Trees and Recursion

Recursive definitions benefit you in
two ways:

● allow you to write recursive algorithms
● allow you to reason about the

structure by recursion (or induction)

How to build a binary tree in C++?
● use the recursive definition
● adopt similar strategy to a linked list

left subtree right subtree

TL TR

T is a binary tree when either:
● T is an empty tree
● T has a root vertex whose left and

right subtrees are binary trees

Reasoning about Trees

A full binary tree is a non-empty binary tree, where each
vertex has exactly 0 or 2 children.

left subtree (full) right subtree (full)

Theorem: A full binary tree always
has an odd number of vertices.
Proof by induction:
● If the root has 0 children, then the tree has

only one vertex, which is odd.
● If the root has 2 children, then their subtrees

must also be full, and by induction, odd.

Expression trees are full.

odd odd1 ++

The total number of vertices is the sum of 3
odd numbers, which is odd.

Expression Trees

An expression tree is a full binary tree that represents an
arithmetic calculation:

● internal nodes are binary operators
● leaves are numbers

+

4

y 37x

x/

-

/

*

left exp’n tree right exp’n tree+

4 x 7 / * x y 3 / - +

An expression tree is a full binary tree that represents an
arithmetic calculation:

● internal nodes are binary operators
● leaves are numbers

Expression Trees and Postfix

+

4

y 37x

x

Thus, postfix expressions can be
defined recursively, too.
E is a postfix expression when:

● E is a number, OR . . .
● E is two postfix expressions followed by a

binary operator (+, -, *, /)

Algorithm to evaluate expression tree:
● bottom up

/

-

/

*

left exp’n tree right exp’n tree +

1st operand 2nd operand

Tree Evaluation: Traversals

Algorithm to evaluate a tree rooted at vertex x: recursion
● If x has a number, then return that number
● If x has an operator, then:

○ evaluate the left subtree
○ evaluate the right subtree
○ return (left op right)

+

4

37

-

/

*

left exp’n tree right exp’n tree

Known as a post-order traversal
● evaluate the children first, then yourself
● follows the order: left → right → self

+

4

37

/

-

/

/

*

+

4

37

-

//

-

/

*

+Evaluated:

14

4

4

30

16

30

30 7 / * 30 14 3

4

26

42

Q. What is this sequence?

Other common traversals:
● self → left → right:
● left → self → right:

pre-order
in-order

Q. What’s the in-order traversal?

Use a Stack ADT to evaluate postfix.
Algorithm:

Create an empty stack S
while there is still input {

if next input token is a number
push the number to S

if next input token is an operator {
pop from S → b
pop from S → a
push (a op b) to S

}
}
pop from S → result

Stack-Based Postfix Calculator

Use a Stack ADT to evaluate postfix.
Algorithm:

Create an empty stack S
while there is still input {

if next input token is a number
push the number to S

if next input token is an operator {
pop from S → b
pop from S → a
push (a op b) to S

}
}
pop from S → result

Stack-Based Postfix Calculator

If any pop fails, then it’s
invalid postfix.

If S ends nonempty
then it’s invalid postfix.

Use a Stack ADT to evaluate postfix.
Algorithm:

Create an empty stack S
while there is still input {

if next input token is a number
push the number to S

if next input token is an operator {
pop from S → b
pop from S → a
push (a op b) to S

}
}
pop from S → result

Stack-Based Postfix CalculatorBuilding Expression Trees from Postfix

Adapt postfix calculator algorithm to build trees from postfix.

to S#

b

a

a b

op

9

S:

6

5

Example:
9 6 5 + 6 9 - * -

Use a Stack ADT to evaluate postfix.
Algorithm:

Create an empty stack S
while there is still input {

if next input token is a number
push the number to S

if next input token is an operator {
pop from S → b
pop from S → a
push (a op b) to S

}
}
pop from S → result

Stack-Based Postfix CalculatorBuilding Expression Trees from Postfix

Adapt postfix calculator algorithm to build trees from postfix.

to S#

b

a

a b

op

9

S:

6

5

Example:
9 6 5 + 6 9 - * -

Use a Stack ADT to evaluate postfix.
Algorithm:

Create an empty stack S
while there is still input {

if next input token is a number
push the number to S

if next input token is an operator {
pop from S → b
pop from S → a
push (a op b) to S

}
}
pop from S → result

Stack-Based Postfix CalculatorBuilding Expression Trees from Postfix

Adapt postfix calculator algorithm to build trees from postfix.

to S#

b

a

a b

op

9

S:

6 5

+

-

Example:
9 6 5 + 6 9 - * -

6 9

Use a Stack ADT to evaluate postfix.
Algorithm:

Create an empty stack S
while there is still input {

if next input token is a number
push the number to S

if next input token is an operator {
pop from S → b
pop from S → a
push (a op b) to S

}
}
pop from S → result

Stack-Based Postfix CalculatorBuilding Expression Trees from Postfix

Adapt postfix calculator algorithm to build trees from postfix.

to S#

b

a

a b

op

9

S:
-

Example:
9 6 5 + 6 9 - * -

6 9

6 5

+

Use a Stack ADT to evaluate postfix.
Algorithm:

Create an empty stack S
while there is still input {

if next input token is a number
push the number to S

if next input token is an operator {
pop from S → b
pop from S → a
push (a op b) to S

}
}
pop from S → result

Stack-Based Postfix CalculatorBuilding Expression Trees from Postfix

Adapt postfix calculator algorithm to build trees from postfix.

to S#

b

a

a b

op

9

S:

Example:
9 6 5 + 6 9 - * -

6 5

+ -

6 9

*

Use a Stack ADT to evaluate postfix.
Algorithm:

Create an empty stack S
while there is still input {

if next input token is a number
push the number to S

if next input token is an operator {
pop from S → b
pop from S → a
push (a op b) to S

}
}
pop from S → result

Stack-Based Postfix CalculatorBuilding Expression Trees from Postfix

Adapt postfix calculator algorithm to build trees from postfix.

to S#

b

a

a b

op

S:

Example:
9 6 5 + 6 9 - * -

6 5

+ -

6 9

*9

-

You can express the recursion
using a grammar

Expression Grammars

Grammar for E:
● E → number
● E → E E operator

Production rules should be able
to derive any valid expression,
by stepwise substitution until no
E’s remain.

E is a postfix expression when:
● E is a number, OR . . .
● E is two postfix expressions

followed by a binary operator

Q. What’s the grammar for infix?

E.g. Derive: 7 4 - 8 * 2 9 * +

E⇒ E E+
⇒ E E* E+
⇒ E E- E* E+
⇒ 7 E - E* E+
⇒ 7 4 - E* E+
⇒ 7 4 - 8 * E +
⇒ 7 4 - 8 * E E * +
⇒ 7 4 - 8 * 2 E* +
⇒ 7 4 - 8 * 2 9 * +

	Binary Trees
	Lecture 27
	Rooted Trees (Review)
	Subtrees and Recursive Definitions
	Subtrees and Recursive Definitions
	Trees and Recursion
	Trees and Recursion
	Trees and Recursion
	Trees and Recursion
	Reasoning about Trees
	Expression Trees
	Expression Trees and Postfix
	Tree Evaluation: Traversals
	Stack-Based Postfix Calculator
	Stack-Based Postfix Calculator
	Stack-Based Postfix Calculator
	Stack-Based Postfix Calculator
	Stack-Based Postfix Calculator
	Stack-Based Postfix Calculator
	Stack-Based Postfix Calculator
	Stack-Based Postfix Calculator
	Expression Grammars

