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Lecture 27

Today:
● Binary Trees
● Recursive Definitions of Trees
● Binary Tree Implementation
● Expression Trees
● Traversals
● Grammars



A rooted tree is a tree where all but 
one vertex has exactly one inbound 
edge (from its parent).

● usually drawn by level, top down

● leaf vertex has no outbound edge

Rooted Trees (Review)

● root vertex has no inbound edge

● parents point to children
● ancestors point to descendants via a 

downward path

A binary tree is a rooted tree in 
which no vertex has more than 2 
children.

root

leaves

— parent

— child

— ancestor 

— descendant



There are many subtrees within a binary tree:
● the two most important are the left and right subtrees
● rooted at the left and right children of the root
● to visualize, remove the root!

Subtrees and Recursive Definitions

left subtree right subtree

Leads to a recursive definition:
T is a binary tree when:

● T is an empty tree (i.e., no vertices)

OR . . .

● T has a root vertex whose left and 
right subtrees are binary trees

T :



There are many subtrees within a binary tree:
● the two most important are the left and right subtrees
● rooted at the left and right children of the root
● to visualize, remove the root!

Subtrees and Recursive Definitions

left subtree right subtree

Leads to a recursive definition:
T is a binary tree when:

● T is an empty tree (i.e., no vertices)

OR . . .

● T has a root vertex whose left and 
right subtrees are binary trees

T :

TL TR



Trees and Recursion

Recursive definitions benefit you in 
two ways:

● allow you to write recursive algorithms
● allow you to reason about the 

structure by recursion (or induction)

How to build a binary tree in C++?
● use the recursive definition
● adopt similar strategy to a linked list

left subtree right subtree

TL TR
struct LLnode {

int data;
struct LLnode * next;

};

T is a binary tree when either:
● T is an empty tree
● T has a root vertex whose left and 

right subtrees are binary trees



struct BTnode {
int data;
struct BTnode * next;

};

Trees and Recursion
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● allow you to write recursive algorithms
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right subtrees are binary trees



struct BTnode {
int data;
struct BTnode * left;
struct BTnode * right;

};

Trees and Recursion

Recursive definitions benefit you in 
two ways:

● allow you to write recursive algorithms
● allow you to reason about the 

structure by recursion (or induction)

How to build a binary tree in C++?
● use the recursive definition
● adopt similar strategy to a linked list

left subtree right subtree

TL TR
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● T is an empty tree
● T has a root vertex whose left and 

right subtrees are binary trees



struct BTnode {
int data;
struct BTnode * left;
struct BTnode * right;
struct BTnode * parent;

};

Trees and Recursion

Recursive definitions benefit you in 
two ways:

● allow you to write recursive algorithms
● allow you to reason about the 

structure by recursion (or induction)

How to build a binary tree in C++?
● use the recursive definition
● adopt similar strategy to a linked list

left subtree right subtree

TL TR

T is a binary tree when either:
● T is an empty tree
● T has a root vertex whose left and 

right subtrees are binary trees



Reasoning about Trees

A full binary tree is a non-empty binary tree, where each 
vertex has exactly 0 or 2 children.

left subtree (full) right subtree (full)

Theorem: A full binary tree always 
has an odd number of vertices.
Proof by induction:
● If the root has 0 children, then the tree has 

only one vertex, which is odd.
● If the root has 2 children, then their subtrees 

must also be full, and by induction, odd. 

Expression trees are full.

odd odd1 ++

The total number of vertices is the sum of 3 
odd numbers, which is odd.



Expression Trees

An expression tree is a full binary tree that represents an 
arithmetic calculation:

● internal nodes are binary operators
● leaves are numbers
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4 x 7 / * x y 3 / - +

An expression tree is a full binary tree that represents an 
arithmetic calculation:

● internal nodes are binary operators
● leaves are numbers

Expression Trees and Postfix
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Thus, postfix expressions can be 
defined recursively, too.
E is a postfix expression when:

● E is a number, OR . . .
● E is two postfix expressions followed by a 

binary operator (+, -, *, /)

Algorithm to evaluate expression tree:
● bottom up
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left exp’n tree right exp’n tree +

1st operand 2nd operand



Tree Evaluation:  Traversals

Algorithm to evaluate a tree rooted at vertex x:  recursion
● If x has a number, then return that number
● If x has an operator, then:

○ evaluate the left subtree
○ evaluate the right subtree
○ return (left op right)
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left exp’n tree right exp’n tree

Known as a post-order traversal
● evaluate the children first, then yourself
● follows the order:  left → right → self
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30 7 / * 30 14 3

4

26

42

Q.  What is this sequence?

Other common traversals:
● self → left → right:
● left → self → right:

pre-order
in-order

Q.  What’s the in-order traversal?  



Use a Stack ADT to evaluate postfix.
Algorithm:

Create an empty stack S
while there is still input {

if next input token is a number
push the number to S

if next input token is an operator {
pop from S → b
pop from S → a
push (a op b) to S

}
}
pop from S → result

Stack-Based Postfix Calculator
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Algorithm:

Create an empty stack S
while there is still input {

if next input token is a number
push the number to S

if next input token is an operator {
pop from S → b
pop from S → a
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}
}
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Stack-Based Postfix Calculator

If any pop fails, then it’s 
invalid postfix.

If S ends nonempty 
then it’s invalid postfix.



Use a Stack ADT to evaluate postfix.
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Stack-Based Postfix CalculatorBuilding Expression Trees from Postfix

Adapt postfix calculator algorithm to build trees from postfix.

to S#

b

a
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op

9

S:

6

5

Example:
9 6 5 + 6 9 - * -
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Use a Stack ADT to evaluate postfix.
Algorithm:
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You can express the recursion 
using a grammar

Expression Grammars

Grammar for E:
● E → number
● E → E E operator

Production rules should be able 
to derive any valid expression, 
by stepwise substitution until no 
E’s remain. 

E is a postfix expression when:
● E is a number, OR . . .
● E is two postfix expressions 

followed by a binary operator

Q.  What’s the grammar for infix?

E.g.  Derive:  7 4 - 8 * 2 9 * +

E⇒ E E+
⇒ E E* E+
⇒ E E- E* E+
⇒ 7 E - E* E+
⇒ 7 4 - E* E+
⇒ 7 4 - 8 * E +
⇒ 7 4 - 8 * E E * +
⇒ 7 4 - 8 * 2 E* +
⇒ 7 4 - 8 * 2 9 * +
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