
Stack ADT

CMPT 125

Feb. 27

Lecture 21

Today:

● Stack ADT

● Algorithms that use a Stack

● Implementing a Stack (with a Linked List)

Abstract data type (ADT): a collection of data

and a set of allowed operations on that data.

Abstract Data Types (Review)

Data structure Data + operations

● Usage of the ADT● Implementation of

the ADT

Interact via an interface

● specifies data and operations, not how the data are

stored or how operations are carried out

● different from the data structure, which deals with

the implementation

Stack Interface:
● a sequence of

data (LIFO)

● push element

● pop element

● isEmpty?

Why use interfaces? (Review)

Algorithm that

requires a

Stack ADT

Algorithm that

implements a

Stack ADT

Stack Interface:
● a sequence of

data (LIFO)

● push element

● pop element

● isEmpty?

Why use interfaces? (Review)

Code that

instantiates and

uses a Stack

ADT

Stack ADT,

implemented

using arrays

Stack Interface:
● a sequence of

data (LIFO)

● push element

● pop element

● isEmpty?

Code independence

Why use interfaces? (Review)

Stack ADT,

implemented

using arrays

Stack ADT,

implemented

by linked lists

Algorithm that

requires a

Stack ADT

Code that

instantiates and

uses a Stack

ADT

Stack Interface:

Code re-usage

● a sequence of

data (LIFO)

● push element

● pop element

● isEmpty?

Code independence

Why use interfaces? (Review)

Other code that

instantiates and

uses a Stack

ADT

Stack ADT,

implemented

using arrays

Stack ADT,

implemented

by linked lists

Code that

instantiates and

uses a Stack

ADT

(

→ 4

You are accustomed to 24 + 6, which is infix.

No brackets are required in postfix

● operator always refers to last two numbers / results

● E.g. 24 6 * 15 3 - / → (24*6)/(15-3)

Q. Evaluate: 24 6 5 * 6 8 * - -

Postfix Calculation

A postfix operator comes after its operands

E.g. 24 6 +

→ 42

→ 30 24 6 * → 144

24 6 - → 18 24 6 /

()()())

Use a Stack ADT to evaluate postfix.

Algorithm:

Create an empty stack S

while there is still input {

if next input token is a number

push the number to S

if next input token is an operator {

pop from S → b

pop from S → a

push (a op b) to S

}

}

pop from S → result

Stack-Based Postfix Calculator

If any pop fails, then

it’s invalid postfix.

If S ends nonempty

then it’s invalid

postfix.

S:

24

6

Example:
24 6 5 * 6 8 * - -

5

* 56

30

486

8

*

-18

-

42

-

Balancing Brackets

Your compiler needs to be able to match pairs

of 3 different types of brackets: (), [], {}

● Each left one must have a matching right one.

● Nested brackets are OK, but mismatched brackets

are disallowed.

E.g. {[()]} is acceptable, but ([)] is not.

Neither is ()) nor {{}.

Your compiler uses a stack to solve this

problem too.

Use a Stack ADT to balance brackets.

Algorithm:

Create an empty stack S

while there is still input {

if next input token is a left bracket

push it to S

if next input token is a right bracket {

pop from S → left

if left doesn’t match right or failed pop then error

}

}

if S not empty then error

Example:
([{[]([]){}}[[]]])

Stack-Based Bracket Balancer

S:

(

(

([

[

([{

{

([{[

[

([{[]([{[](

(

([{[]([

[

([{[]([]([{[]([])([{[]([]){

{

([{[]([]){}([{[]([]){}}([{[]([]){}}[

[

([{[]([]){}}[[

[

([{[]([]){}}[[]([{[]([]){}}[[]]([{[]([]){}}[[]]]([{[]([]){}}[[]]])

[

(

[

[

[

[

{

{(

ADT implementations are tied to the data

structure you choose:

● the faster, the better

● the smaller, the better

For today’s implementation of a Stack, we

choose linked lists, i.e., 1 Stack ↔ 1 Linked List.

Q. What’s the running time of:

● create()?

● isEmpty(S)?

● push(S, x)?

Two options:

Implementation of Stack ADT

Can LLappend(x) to the tail OR

can LLprepend(x) to the head.

Both are O(1).

Big-O is the

measuring stick

Implementing pop(S)

Q. From which end should you remove an item?

26 33 NULLhead :

tail :

intlist :

5441

26 33 NULLhead :

tail :

intlist :

5441

From the tail?

From the head?

33

return tail->data;

free tail;

33 NULL

???????????

NULL

O(N) steps to update tail

return head->data;

free(head);

???????????newhead = oldhead->next;

2626

O(1) steps

Stack Implementation: Algorithms

create():

return LLcreate();

isEmpty(S):

return (S->head == NULL);

pop(S):

return LLremoveHead(S);

push(S, x):

LLprepend(S, x);

