Stack ADT

CMPT 125
Feb. 27

Lecture 21

Today:

e Stack ADT
e Algorithms that use a Stack
e Implementing a Stack (with a Linked List)

Abstract Data Types (Review)

Abstract data type (ADT). a collection of data

and a set of allowed operations on that data.

e specifies data and operations, not how the data are
stored or how operations are carried out

e different from the data structure, which deals with
the implementation

Data structure Data + operations
e Implementation of interact via an interface e Usage of the ADT

the ADT

Why use interfaces? (Review)

Algorithm that
implements a
Stack ADT

A

\ 4

Stack Interface:
e a sequence of
data (LIFO)
push element
pop element

ISEmpty?
-

)

\ 4

Algorithm that
requires a
Stack ADT

Why use interfaces? (Review)

Stack Interface:
e a sequence of
data (LIFO)
push element
pop element

\ ISEmpty? j

Why use interfaces? (Review)

Stack Interface:
e a sequence of
data (LIFO)
e push element
e pop element
[

\ ISEmpty? j

Code independence

Why use interfaces? (Review)

Stack Interface:
e a sequence of

data (LIFO)

push element

pop element

ISEmpty? j

Code independence

Code re-usage

Postfix Calculation

A postfix operator comes after its operands
Eg. 24 6 + - 30 24 6 * - 144
24 6 - - 18 24 6 / - 4
You are accustomed to 24 + 6, which is Infix.

No brackets are required in postfix

e operator always refers to last two numbers / results
e Eg. 24 6 * 15 3 - / - (24%6)/(15-3)

Q. Evaluate: (24(6 5 *)(6 8 *)-)-) - 42

Stack-Based Postfix Calculator

Use a Stack ADT to evaluate postfix.

Algorithm:

Create an empty stack S
while there is still input {
if next input token is a number
push the number to S

if next input token is an operator { 6 * 5

pop fromS — b
pop from S — a
push (aopb)to S

}

pop from S — result

Example:

24 6 5 * 6 8 *
N NN 1\

o) X OO

If any pop fails, then
it's invalid postfix.

If S ends nonempty
then it’s invalid

-18

postfix.

42

Balancing Brackets

Your compiler needs to be able to match pairs
of 3 different types of brackets: (), [1, {}

e Each left one must have a matching right one.
e Nested brackets are OK, but mismatched brackets
are disallowed.

E.g. {[()]} Isacceptable, but ([)] Is not.
Neitheris ()) nor {{}.

Your compliler uses a stack to solve this
problem too.

Stack-Based Bracket Balancer

Use a Stack ADT to balance brackets.

Algorithm: Example:
Create an empty stack S (L{LT (L) {I0110)
while there is still input {
if next input token is a left bracket
pushitto S S:
if next input token is a right bracket {

pop from S — left
if left doesn’t match right or failed pop then error

}

if S not empty then error

Implementation of Stack ADT

ADT implementations are tied to the data

structure you choose:

Big-O is the

e the faster; t% measuring stick
e the smaller; etter
For today’s implementation of a Stack, we

choose linked lists, i.e., 1 Stack <» 1 Linked List.
Q. What's the running time-of:

® create()?

° isEmpty(S)://///////
® push (S, x)

Two options:

Can LLappend (x) to the tail OR
can LLprepend (x) to the head.
Both are O(1).

Implementing pop (S)

Q. From which end should you remove an item?

From the tail?

intlist:

A 4

A\ 4

head: | e 26 | ®

41 | e > 54 jt NULL NULL
tail: __—S’ \\\\\\\\

—

return tail->data;

1
return head->data; free tai

From the head? [_cicoorr | ou)steps OW) steps to update tail

intlist: newklfead = oldhead->next;

)
head: :: ~\\\\§~—’////4 41 | e » 54 t::}f; 33 | e——— NULL

tail:

Stack Implementation: Algorithms

create () :

return LLcreate () ;

1sEmpty (S) :
return (S—->head == NULL) ;

pop (S) :
return LLremoveHead (S) ;

push (S, x):
LLprepend (S, x);

