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A Puzzle For You

Problem:  Write a program to output the 
first N cubes, but without using 
multiplication (only addition/subtraction).

Historically, CPUs are relatively slow at 
multiplication  vs  addition/subtraction.

● The differences can be small (3x) 
or large (20x).

N = 10

Output:

0
1
8
27
64
125
216
343
512
729



Lecture 13

Today:
● Assertions and Invariants
● Good Invariants and Post-Conditions
● Proving Programs Correct



Puzzle Solution
The Algorithm (Pseudocode):

For each i from 0 to N - 1:
● Compute the ith square by 

adding i to itself i times.
● Compute the ith cube by 

adding the ith square to 
itself i times.

● Output the ith cube.

Do you believe that at the end 
of this loop, the value of 
square will equal i*i?

//  Assertion:  square == 
j*i

Q.  What’s a good assertion?

Good assertions, also called 
loop invariants, are usually 
related to the post-condition.

int main () {

    int N = 10;

    for (int i = 0; i < N; i++) {

        //  Compute square = i*i

        int square = 0;

        for (int j = 0; j < i; j++) {

        

            square += i;

        }

//  Compute cube = i*i*i

        int cube = 0;

        for (int j = 0; j < i; j++) {

            cube += square;

        }

        printf("%d\n", cube);

    }

}



What makes a good loop invariant?

A loop invariant is a 
statement that is true 
every loop.
● usually asserted at the 

beginning of the loop
● usually parametrized by the 

loop index (j in this case)

//  Post:  square == i*i

int square = 0;

for (int j = 0; j < i; j++) {

    //  Assertion:  square == j*I

    square += i;

}

A good loop invariant should indicate the progress of the 
algorithm
● the invariant should carry all state information, loop to loop.
● the invariant should imply the post-condition (the goal of the algorithm) at 

the end of the last loop.



Use mathematical reasoning to 
capture the behaviour of an 
algorithm:

● State invariants at various checkpoints.
● Show that the invariant holds:

○ at the first checkpoint
○ during execution between checkpoints

● Conclude that the post-condition holds
○ the invariant holds at / after the last checkpoint 

Proving Correctness

Initialization Maintenance Termination

//  Post:  square == i*i

int square = 0;

for (int j = 0; j < i; j++) {

    //  Assertion:  square == j*i  

square += i;

}

true when j == 0
if true for loop j, then true for next j

true when j == i



Termination:

● Since the invariant holds for all j, it holds after the last loop.
○ Therefore, when j == i, square == i*i.

Proof
Initialization:

 

//  Post:  square == i*i

int square = 0;

for (int j = 0; j < i; j++) {

    //  Assertion:  square == j*i  

square += i;

}

● Is the invariant true on the first loop?
○ When j == 0, square has been initialized to 0.  These values 

satisfy square == j*i.

Maintenance:
● If the invariant holds at the beginning of loop j, does it also 

hold for the beginning of loop j+1?
○ At the beginning of loop j, square == j*i.  
○ After running the loop, square == j*i + i == (j+1)*i, which 

is the invariant of the next loop.



Yay - we proved it!                                  So what?

We honestly won’t care whether or not you can do a proof of 
correctness 5 years from now in your job.  And neither will:

● your boss
● your co-workers
● ♥♥♥ your secret crush ♥♥♥

You learn to do proofs to get better at reasoning about code.

The more practiced you are at thinking about invariants:
● the better your resulting code will be
● the easier it will be to figure out other people’s code

A computer won’t be able to verify your programs for you
● in general, this is an impossible problem.



What does it do?
int main () {

    int N = 10;

    int a = 6;

    int b = 1;

    int c = 0;

    for (int i = 0; i < N; i++) {

        printf("%d\n", c);

        c += b;

        b += a;

        a += 6;

    }

}

Output:

0
1
8
27
64
125
216
343
512
729

Two ways to get started:

1.  Simulate the execution on paper.
2.  Key in the program and run it!

Q.  Why is this program significant?



int main () {

    int N = 10;

    int a = 6;

    int b = 1;

    int c = 0;

    for (int i = 0; i < N; i++) {

        printf("%d\n", c);

        c += b;

        b += a;

        a += 6;

    }

}

//  Assertion: b == 3*i*(i+1) + 1

//  Assertion: c == i*i*i

Initialization:  When i = 0, the assertions are:

//  Assertion: a == 
6*(i+1)

● a = 6(0+1) = 6
● b = 3·0·(0+1) + 1 = 1
● c = (0)3 = 0

which are the 3 initial values for a, b, c.

//  Assertion: a  = 6(i + 1)
//  Assertion: b  = 3i(i + 1) + 1
//  Assertion: c  = i3

What are the invariants?

Since the assertion c = i3 holds on every 
loop, the algorithm is correct.

Maintenance:  At the start of loop i, the 
assertions are:

● a = 6(i + 1)
● b = 3i(i + 1) + 1
● c = i3

After c += b; the value of c changes to
● c = i3 + 3i(i + 1) + 1

  = i3 + 3i2 + 3i + 1
  = (i + 1)3

After b += a; the value of b changes to
● b = 3i(i + 1) + 1 + 6(i + 1)

  = (i + 1)(3i + 6) + 1
  = 3(i + 1)(i + 2) + 1

After a += 6; the value of a changes to
● a = 6(i + 1) + 6

  = 6(i + 2)
which are the values for a, b, c on loop i + 1.



int main () {

    int N = 10;

    int a = 6;

    int b = 1;

    int c = 0;

    for (int i = 0; i < N; i++) {

        printf("%d\n", c);

        c += b;

        b += a;

        a += 6;

    }

}

Initialization:  When i = 0, the assertions are:
● a = 6(0+1) = 6
● b = 3·0·(0+1) + 1 = 1
● c = (0)3 = 0

which are the 3 initial values for a, b, c.

//  Assertion: a  = 6(i + 1)
//  Assertion: b  = 3i(i + 1) + 1
//  Assertion: c  = i3

What are the invariants?

Since the assertion c = i3 holds on every 
loop, the algorithm is correct.

Maintenance:  At the start of loop i, the 
assertions are:

● a = 6(i + 1)
● b = 3i(i + 1) + 1
● c = i3

After c += b; the value of c changes to
● c = i3 + 3i(i + 1) + 1

  = i3 + 3i2 + 3i + 1
  = (i + 1)3

After b += a; the value of b changes to
● b = 3i(i + 1) + 1 + 6(i + 1)

  = (i + 1)(3i + 6) + 1
  = 3(i + 1)(i + 2) + 1

After a += 6; the value of a changes to
● a = 6(i + 1) + 6

  = 6(i + 2)
which are the values for a, b, c on loop i + 1.



Famous Bugs

In the early 1960s, one of the American spaceships in the 
Mariner series sent to Venus was lost forever at a cost of 
millions of dollars, due to a mistake in a flight control 
computer program.
In 1981, one of the television stations covering provincial 
elections in Quebec, was led by its erroneous computer 
programs into believe that a small party, originally thought 
to have no chance at all, was actually leading.  This 
information, and the consequent responses of 
commentators, were passed on to millions of viewers.



Famous Bugs

In a series of incidents between 1985 and 1987, several 
patients received massive radiation overdoses from 
Therac-25 radiation-therapy systems:  three of them died 
from resulting complications.  The hardware safety 
interlocks from previous models had been replaced by 
software safety checks, but all these incidents involved 
programming mistakes.



Famous Bugs

Some years ago, a Danish lady received, around her 107th 
birthday, a computerized letter from the local school 
authorities with instructions as to the registration procedure 
for first grade in elementary school.  It turned out that only 
two digits were allotted for the “age” field in the database.  
This is similar in nature, but miniscule in scale, in 
comparison to the “Y2K bug”, where millions were spent on 
correcting programs that used two digits for the year, 
assuming a “standard” 1900-prefix.



Computers Do Not Err

Algorithms for computer execution are written in a formal 
unambiguous programming language

● Cannot be misinterpreted by the computer
A hardware error is such a rarity in modern computers that 
when our bank statement is in error and the banker mumbles 
something to the effect that the computer made a mistake, we 
can be sure that it was not the computer that erred.  Either:

● incorrect data was input to a program; or
● the program itself contained an error



Compilers find syntax errors
Can also suggest common bug-fixes

What common warnings have you seen so 
far?



Testing and Debugging

The more you test your program, the more 
likely you are to find bugs.  Test sets can find:

● run-time errors
● logic errors
● infinite loops

But results are only as good as your test sets.
● Some bugs might never be discovered.



Proving Correctness

Use mathematical proof techniques to reason 
about algorithms/programs.
Can we automate this proof process?

Does there exist some sort of 
“super-algorithm” that would accept as inputs: a 
description of a problem P and an algorithm A 
and say “yes” or “no”?
In general, this is just wishful thinking:  no such 
verifier can be constructed



What about mathematical theorem proving?
4-color theorem

a proof of a theorem by a computer that 
could only ever be understood by a computer
Philosophically:  The proof is only as strong as 
human fallibility, because there might be bugs 
in the theorem prover!



Example: Reversing a String S

reverse(“stressed”) returns “desserts”
head(“stressed”) = “s”
tail(“stressed”) = “tressed”
X ←  S; Y ←  “”
while X not empty do:

Y ←  head(X) + Y
X ←  tail(X)

return Y

certainly for any nonempty S:

S = head(S) + tail(S)



Adding Invariants & Checkpoints

X <- S; Y <- “”
while X not empty do:

Y <- head(X) + Y
X <- tail(X)

return Y

What’s a good invariant?

S = reverse(Y) + X

checkpoint 1: before the first loop

checkpoint 2: at the end of each loop



Proving the Invariant

X <- S; Y <- “”
chkpt 1: // inv:  S = reverse(Y) + X
while X not empty do:

Y <- head(X) + Y
X <- tail(X)
chkpt 2: // inv:  S = reverse(Y) + X

return Y

Is it true at checkpoint 1?

Yes, because reverse(Y) + X 
= reverse(“”) + X = “” + X = X

Is it true at checkpoint 2?

Execute checkpoint to 
checkpoint:  If the invariant is 
true at the beginning of the 
loop, then is it true at the end 
of the loop.



Proving the Invariant

Suppose that S = reverse(Y) + X at the 
beginning of some loop.  Then after running the 
next loop Y’ = head(X) + Y and X’ = last(X)
So, just need to show that S = reverse(Y’) + X’.
reverse(Y’) + X’ = reverse(head(X) + Y) + 
last(X) = reverse(Y) + head(X) + last(X) = 
reverse(Y) + X = S.



One Last Detail

So, the invariant holds at the beginning of the 
first loops, and at the end of every successive 
loop.  Including the last loop!

● When X = “”, the loop terminates and S = 
reverse(Y) + X = reverse(Y).  Thus Y = 
reverse(S).

But does the loop terminate?
● Another invariant:  that |X| is natural and 

decreasing.


