
The Correctness of
Algorithms and Programs

CMPT 125
Feb. 1

A Puzzle For You

Problem: Write a program to output the
first N cubes, but without using
multiplication (only addition/subtraction).

Historically, CPUs are relatively slow at
multiplication vs addition/subtraction.

● The differences can be small (3x)
or large (20x).

N = 10

Output:

0
1
8
27
64
125
216
343
512
729

Lecture 13

Today:
● Assertions and Invariants
● Good Invariants and Post-Conditions
● Proving Programs Correct

Puzzle Solution
The Algorithm (Pseudocode):

For each i from 0 to N - 1:
● Compute the ith square by

adding i to itself i times.
● Compute the ith cube by

adding the ith square to
itself i times.

● Output the ith cube.

Do you believe that at the end
of this loop, the value of
square will equal i*i?

// Assertion: square ==
j*i

Q. What’s a good assertion?

Good assertions, also called
loop invariants, are usually
related to the post-condition.

int main () {

 int N = 10;

 for (int i = 0; i < N; i++) {

 // Compute square = i*i

 int square = 0;

 for (int j = 0; j < i; j++) {

 square += i;

 }

// Compute cube = i*i*i

 int cube = 0;

 for (int j = 0; j < i; j++) {

 cube += square;

 }

 printf("%d\n", cube);

 }

}

What makes a good loop invariant?

A loop invariant is a
statement that is true
every loop.
● usually asserted at the

beginning of the loop
● usually parametrized by the

loop index (j in this case)

// Post: square == i*i

int square = 0;

for (int j = 0; j < i; j++) {

 // Assertion: square == j*I

 square += i;

}

A good loop invariant should indicate the progress of the
algorithm
● the invariant should carry all state information, loop to loop.
● the invariant should imply the post-condition (the goal of the algorithm) at

the end of the last loop.

Use mathematical reasoning to
capture the behaviour of an
algorithm:

● State invariants at various checkpoints.
● Show that the invariant holds:

○ at the first checkpoint
○ during execution between checkpoints

● Conclude that the post-condition holds
○ the invariant holds at / after the last checkpoint

Proving Correctness

Initialization Maintenance Termination

// Post: square == i*i

int square = 0;

for (int j = 0; j < i; j++) {

 // Assertion: square == j*i

square += i;

}

true when j == 0
if true for loop j, then true for next j

true when j == i

Termination:

● Since the invariant holds for all j, it holds after the last loop.
○ Therefore, when j == i, square == i*i.

Proof
Initialization:

// Post: square == i*i

int square = 0;

for (int j = 0; j < i; j++) {

 // Assertion: square == j*i

square += i;

}

● Is the invariant true on the first loop?
○ When j == 0, square has been initialized to 0. These values

satisfy square == j*i.

Maintenance:
● If the invariant holds at the beginning of loop j, does it also

hold for the beginning of loop j+1?
○ At the beginning of loop j, square == j*i.
○ After running the loop, square == j*i + i == (j+1)*i, which

is the invariant of the next loop.

Yay - we proved it! So what?

We honestly won’t care whether or not you can do a proof of
correctness 5 years from now in your job. And neither will:

● your boss
● your co-workers
● ♥♥♥ your secret crush ♥♥♥

You learn to do proofs to get better at reasoning about code.

The more practiced you are at thinking about invariants:
● the better your resulting code will be
● the easier it will be to figure out other people’s code

A computer won’t be able to verify your programs for you
● in general, this is an impossible problem.

What does it do?
int main () {

 int N = 10;

 int a = 6;

 int b = 1;

 int c = 0;

 for (int i = 0; i < N; i++) {

 printf("%d\n", c);

 c += b;

 b += a;

 a += 6;

 }

}

Output:

0
1
8
27
64
125
216
343
512
729

Two ways to get started:

1. Simulate the execution on paper.
2. Key in the program and run it!

Q. Why is this program significant?

int main () {

 int N = 10;

 int a = 6;

 int b = 1;

 int c = 0;

 for (int i = 0; i < N; i++) {

 printf("%d\n", c);

 c += b;

 b += a;

 a += 6;

 }

}

// Assertion: b == 3*i*(i+1) + 1

// Assertion: c == i*i*i

Initialization: When i = 0, the assertions are:

// Assertion: a ==
6*(i+1)

● a = 6(0+1) = 6
● b = 3·0·(0+1) + 1 = 1
● c = (0)3 = 0

which are the 3 initial values for a, b, c.

// Assertion: a = 6(i + 1)
// Assertion: b = 3i(i + 1) + 1
// Assertion: c = i3

What are the invariants?

Since the assertion c = i3 holds on every
loop, the algorithm is correct.

Maintenance: At the start of loop i, the
assertions are:

● a = 6(i + 1)
● b = 3i(i + 1) + 1
● c = i3

After c += b; the value of c changes to
● c = i3 + 3i(i + 1) + 1

 = i3 + 3i2 + 3i + 1
 = (i + 1)3

After b += a; the value of b changes to
● b = 3i(i + 1) + 1 + 6(i + 1)

 = (i + 1)(3i + 6) + 1
 = 3(i + 1)(i + 2) + 1

After a += 6; the value of a changes to
● a = 6(i + 1) + 6

 = 6(i + 2)
which are the values for a, b, c on loop i + 1.

int main () {

 int N = 10;

 int a = 6;

 int b = 1;

 int c = 0;

 for (int i = 0; i < N; i++) {

 printf("%d\n", c);

 c += b;

 b += a;

 a += 6;

 }

}

Initialization: When i = 0, the assertions are:
● a = 6(0+1) = 6
● b = 3·0·(0+1) + 1 = 1
● c = (0)3 = 0

which are the 3 initial values for a, b, c.

// Assertion: a = 6(i + 1)
// Assertion: b = 3i(i + 1) + 1
// Assertion: c = i3

What are the invariants?

Since the assertion c = i3 holds on every
loop, the algorithm is correct.

Maintenance: At the start of loop i, the
assertions are:

● a = 6(i + 1)
● b = 3i(i + 1) + 1
● c = i3

After c += b; the value of c changes to
● c = i3 + 3i(i + 1) + 1

 = i3 + 3i2 + 3i + 1
 = (i + 1)3

After b += a; the value of b changes to
● b = 3i(i + 1) + 1 + 6(i + 1)

 = (i + 1)(3i + 6) + 1
 = 3(i + 1)(i + 2) + 1

After a += 6; the value of a changes to
● a = 6(i + 1) + 6

 = 6(i + 2)
which are the values for a, b, c on loop i + 1.

Famous Bugs

In the early 1960s, one of the American spaceships in the
Mariner series sent to Venus was lost forever at a cost of
millions of dollars, due to a mistake in a flight control
computer program.
In 1981, one of the television stations covering provincial
elections in Quebec, was led by its erroneous computer
programs into believe that a small party, originally thought
to have no chance at all, was actually leading. This
information, and the consequent responses of
commentators, were passed on to millions of viewers.

Famous Bugs

In a series of incidents between 1985 and 1987, several
patients received massive radiation overdoses from
Therac-25 radiation-therapy systems: three of them died
from resulting complications. The hardware safety
interlocks from previous models had been replaced by
software safety checks, but all these incidents involved
programming mistakes.

Famous Bugs

Some years ago, a Danish lady received, around her 107th
birthday, a computerized letter from the local school
authorities with instructions as to the registration procedure
for first grade in elementary school. It turned out that only
two digits were allotted for the “age” field in the database.
This is similar in nature, but miniscule in scale, in
comparison to the “Y2K bug”, where millions were spent on
correcting programs that used two digits for the year,
assuming a “standard” 1900-prefix.

Computers Do Not Err

Algorithms for computer execution are written in a formal
unambiguous programming language

● Cannot be misinterpreted by the computer
A hardware error is such a rarity in modern computers that
when our bank statement is in error and the banker mumbles
something to the effect that the computer made a mistake, we
can be sure that it was not the computer that erred. Either:

● incorrect data was input to a program; or
● the program itself contained an error

Compilers find syntax errors
Can also suggest common bug-fixes

What common warnings have you seen so
far?

Testing and Debugging

The more you test your program, the more
likely you are to find bugs. Test sets can find:

● run-time errors
● logic errors
● infinite loops

But results are only as good as your test sets.
● Some bugs might never be discovered.

Proving Correctness

Use mathematical proof techniques to reason
about algorithms/programs.
Can we automate this proof process?

Does there exist some sort of
“super-algorithm” that would accept as inputs: a
description of a problem P and an algorithm A
and say “yes” or “no”?
In general, this is just wishful thinking: no such
verifier can be constructed

What about mathematical theorem proving?
4-color theorem

a proof of a theorem by a computer that
could only ever be understood by a computer
Philosophically: The proof is only as strong as
human fallibility, because there might be bugs
in the theorem prover!

Example: Reversing a String S

reverse(“stressed”) returns “desserts”
head(“stressed”) = “s”
tail(“stressed”) = “tressed”
X ← S; Y ← “”
while X not empty do:

Y ← head(X) + Y
X ← tail(X)

return Y

certainly for any nonempty S:

S = head(S) + tail(S)

Adding Invariants & Checkpoints

X <- S; Y <- “”
while X not empty do:

Y <- head(X) + Y
X <- tail(X)

return Y

What’s a good invariant?

S = reverse(Y) + X

checkpoint 1: before the first loop

checkpoint 2: at the end of each loop

Proving the Invariant

X <- S; Y <- “”
chkpt 1: // inv: S = reverse(Y) + X
while X not empty do:

Y <- head(X) + Y
X <- tail(X)
chkpt 2: // inv: S = reverse(Y) + X

return Y

Is it true at checkpoint 1?

Yes, because reverse(Y) + X
= reverse(“”) + X = “” + X = X

Is it true at checkpoint 2?

Execute checkpoint to
checkpoint: If the invariant is
true at the beginning of the
loop, then is it true at the end
of the loop.

Proving the Invariant

Suppose that S = reverse(Y) + X at the
beginning of some loop. Then after running the
next loop Y’ = head(X) + Y and X’ = last(X)
So, just need to show that S = reverse(Y’) + X’.
reverse(Y’) + X’ = reverse(head(X) + Y) +
last(X) = reverse(Y) + head(X) + last(X) =
reverse(Y) + X = S.

One Last Detail

So, the invariant holds at the beginning of the
first loops, and at the end of every successive
loop. Including the last loop!

● When X = “”, the loop terminates and S =
reverse(Y) + X = reverse(Y). Thus Y =
reverse(S).

But does the loop terminate?
● Another invariant: that |X| is natural and

decreasing.

