Announcement

● Submit assignment 3 on CourSys
 ○ Do not hand in hard copy
 ○ Due Friday, 15:20:00

● Caution: Assignment 4 will be due next Wednesday
Recursion Examples and Simple Searching

CMPT 125
Jan. 28
Recursion Example 1

```c
int sum(int arr[], int len) {
    int total = 0;
    for (int i = 0; i < len; i++) {
        total += arr[i];
    }
    return total;
}
```
Recursion Example 1

- Now, do it using recursion
- Steps:
 - 1) Base case: when array has length 1, just return the only element
 - 2) Assume your function can sum an array that has length len-1, and call the function inside itself
- New interpretation of “len”: number of elements you want to sum
Recursion Example 1

int sum(int arr[], int len) {
 // returns sum of first len elements of arr

 // base case
 if (len == 1) {
 return arr[0];
 }

 // recursion
 return arr[len-1] + sum(arr, len-1);
}
Recursion Example 1

```c
int sum(int arr[], int len) {
    // returns sum of first len elements of arr
    // base case
    if (len == 1) {
        return arr[0];
    }
    // recursion
    return arr[len-1] + sum(arr, len-1);
}
```

The first `len-1` elements of array

Returns first `len-1` elements of array
Recursion Example 2: Tower of Hanoi

- Move tower to the right slot
- Move disks one by one
- Bigger disks must **always** be below smaller disks
Recursion Example 2: Tower of Hanoi

- Move tower to the right slot
- Move disks one by one
- Bigger disks must **always** be below smaller disks
Recursion Example 2: Tower of Hanoi

- Recursive solution:
 a. Base case: If N is 1, then move the disk from A to C
 b. Otherwise:
 - Move (smallest) N-1 disks from A to B
 - Move (largest) 1 disk from A to C
Recursion Example 2: Tower of Hanoi

● Recursive solution:
 a. Base case: If N is 1, then move the disk from A to C
 b. Otherwise:
 ■ Move (smallest) N-1 disks from A to B
 ■ Move (largest) 1 disk from A to C
 ■ Move (smallest) N-1 disks from B to C

● Organization:
 a. At any time, A, B, and C may be labeled as “source”, “spare”, and “destination”
Recursion Example 2: Tower of Hanoi

- **Recursive solution:** `solve_ToH(N, src, des)`
 a. Base case: If N is 1, then move the disk from A to C
 - `move(A,C);`
 b. Otherwise:
 - Move (smallest) N-1 disks from A to B
 - `solve_ToH(N-1, A, B);`
 - Move (largest) 1 disk from A to C
 - `move(A,C);`
 - Move (smallest) N-1 disks from B to C
 - `solve_ToH(N-1, B, C);`

- **Organization:**
 a. At any time, A, B, and C may be labeled as “source”, “spare”, and “destination”
Introduction to Search Algorithms

- Linear Search Algorithm
- Linear Search Analysis + Implementations
- Divide and Conquer
- Binary Search Algorithm
Searching Overview

- It is often useful to find out whether or not an array contains a particular item
 - E.g., “Is Alice among your Facebook friends?”
 - E.g., “Find Bob’s phone number.”

- Two possible specifications:
 - A search can either return true or false
 - OR . . . the position of the item in the array (-1 for fail)
Searching Variations

● There are many possible search algorithms
 ○ generally, want the one that finds the item the fastest

● Searching is one of those activities that can be done much more efficiently if the set is sorted ahead of time
 ○ Q. How does sorting make your searches easier?

● Best for unordered array is a linear search
Linear Search Algorithm

Strategy: Start with the first item and step through the array one element at a time, comparing each item with the target until either a match is found (return true / index) or all elements have been exhausted (return false / -1).

E.g., target = "Saturn":

```
Neptune Uranus Saturn Jupiter Mars Earth Venus Mercury
```

return true
or index=2

Q. What input results in the worst-case running time?

E.g., target = "Mercury":

```
Neptune Uranus Saturn Jupiter Mars Earth Venus Mercury
```

E.g., target = "Pluto":

```
Neptune Uranus Saturn Jupiter Mars Earth Venus Mercury
```
int LinearSearch(int arr[], int len, int target) {

 ● Repeat for all \(i \) from 0 to \(len-1 \)

 ● Check the next element, \(arr[i] \)

 ● Algorithm:
 ○ found if equal to \(target \), so return position

 ● Not found, so return fail
}

Linear Search in C
int LinearSearch(int arr[], int len, int target) {
 for (int i = 0; i < len; i++) {
 // What’s a good assertion?

 if (arr[i] == target) {
 return i;
 }
 }

 return -1;
}
Linear Search Analysis

Worst case for linear search is linear time $O(N)$
 • Intuition: You have to check all elements to confidently return false.

Best case?
 • You find the element at index 0

Q. What do you think is the average case?
Counting Comparisons

```c
int LinearSearch(int arr[], int len, int target) {
    for (int i = 0; i < len; i++) {
        if (arr[i] == target) {
            return i;
        }
    }
    return -1;
}
```

- Comparisons are *relatively* expensive elementary operations
- Use a *sentinel* to cut the comparisons in half
 - It’s still $O(N)$, but with half the leading constant

![Diagram showing the reduction in comparisons](image.png)

Total Comparisons = $2N + 1$
Optimized Linear Search

```c
int LinearSearch(int arr[], int len, int target) {
    arr[len] = target;
    int i = 0;
    while (arr[i] != target) {
        i++;
    }
    if (i != len) return i;
    return -1;
}
```

- Sentinel allows you to combine the element comparison and loop termination conditions

- Total Comparisons = \(N + 2 \)
But is it really an improvement?

Big-O methods say that leading constants don’t matter when comparing two algorithms

- they usually don’t if the two algorithms have different Big-O running times
- E.g., $50000N + 300$ vs $2N^2 - 3N + 1$

But they do matter when their Big-O growth rates are the same

- E.g., optimized program vs unoptimized
- E.g., fast machine vs slow machine
What if the array was ordered?

Think of searching a dictionary for a word?

- Strategy: *Not* one word at a time in sequential order starting from aardvark, etc.
- Strategy: Jump to where you estimate the word to be based on what you know about the alphabet.

 Refine your jumps + hone in on the correct page quickly.

This is the main idea behind *binary search*.
Divide and Conquer

Generic Strategy (Paradigm):

1. Divide: Cut the array into 2 or more roughly equally sized pieces

2. Conquer: Use what you know about the pieces to solve the original problem
Binary Search

Strategy: Divide and Conquer

1. Examine the *middle* element of the array of candidates. This divides the array into two [roughly] equal halves.
2. Compare the middle element with the target.
 ○ If middle < target then throw out the first half.
 ○ But if middle > target then throw out second half.
3. Repeat 1-3 until middle == target (found!) or no candidates remain (fail!).

E.g., target = 42:

```
-8 -7 -5 -2 0 4 6 7 17 20 28 29 42 49 64
```

return true
or index=12
Binary Search

Requirements (Pre-Conditions):
- Candidate array must be sorted

How to keep track of list of candidates?
- Use integers first and last for arr[first..last]
- Initially, first=0; last=len-1
- Middle element is at index \((first+last)/2\)
int BinarySearch(int arr[], int len, int target) {

 ● Search candidate array arr[first..last] while not empty

 ● Compare with the middle element
 ● Algorithm:
 ○ found if equal to target, so return position
 ○ throw out second half if greater than target OR
 ○ throw out first half if less than target

 ● Not found, so return fail
}
Binary Search Code

```c
int BinarySearch(int arr[], int len, int target) {
    int first = 0;
    int last = len-1;
    while(first <= last) {
        int mid = (first+last) / 2;
        if (target == arr[mid]) return mid;
        if (target > arr[mid]) last = mid-1;
        else first = mid+1;
    }
    return -1;
}
```

// Q. What’s a good assertion this time?

```c
int BinarySearch(int arr[], int len, int target) {
    int first = 0;
    int last = len-1;
    while(first <= last) {
        int mid = (first+last) / 2;
        if (target == arr[mid]) return mid;
        if (target <= arr[mid]) last = mid-1;
        else first = mid+1;
    }
    return -1;
}
```
Analysis of Binary Search

What’s the worst case on an array of length N?
- After one iteration, the possible candidates are [roughly] cut in half.

After k iterations, how many candidates remain?
- Roughly $N / 2^k$

When do you run out of candidates?
- $2^k \geq N$
- i.e., after $k \geq \log_2 N$ iterations

Thus binary search runs in $O(\log N)$.
Linear Search vs Binary Search

Even though the inner loop of binary search is more complex than linear search, we expect $O(\log N)$ to outperform $O(N)$ as N gets large.

<table>
<thead>
<tr>
<th>N</th>
<th>Linear Search $(3 + 4N)$</th>
<th>Binary Search $(4 + 12 \log_2(N+1))$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td>28</td>
</tr>
<tr>
<td>7</td>
<td>31</td>
<td>40</td>
</tr>
<tr>
<td>15</td>
<td>63</td>
<td>52</td>
</tr>
<tr>
<td>100</td>
<td>403</td>
<td>88</td>
</tr>
<tr>
<td>1000</td>
<td>4003</td>
<td>124</td>
</tr>
<tr>
<td>10^6</td>
<td>4000003</td>
<td>244</td>
</tr>
<tr>
<td>10^9</td>
<td>4×10^9</td>
<td>364</td>
</tr>
</tbody>
</table>
Linear Search vs Binary Search

- Binary search has a fast running time.

- Disadvantages?
 - Harder to code
 - Requires the array be sorted

- Keeping the array sorted can be expensive!
 - Significantly more searching than update? Keep list sorted (slow) and use (fast) binary search
 - Significantly more update than search? Keep array unsorted (fast) and use (slow) linear search