Shooting Methods

CMPT 419/983
Mo Chen

SFU Computing Science
2/10/2019

Direct methods

 Differential flatness
* Algebraic method for special system dynamics

* Direct shooting
* Parametrize control
* Numerical example with CasADi

e Collocation
e Parametrize both state and control

Single shooting

T

mirg{?ize [(x(T),T) +J c(x(t),u(t), t)dt

0
subjectto X = f(x,u)

g(x(t),u(t)) > 0, t €0,T]
where x(t) € R™",u(t) € R™, x(0) = x4

* Discretize: 0<t; < <ty=T
u(t) = q;fort € [t;, ti44]

* Numerically integrate dynamics and cost:
* Simple example:

Dynamics (Forward Euler): x(t;;1) = x(t;) + f(x(t;), q;)(t;41 — t;)
N-1

T
Cost: | G000 = Y et 0 1) Eisr —)

=0

Single shooting

T

mirbi(r.r)lize [(x(T),T) +J c(x(t),u(t), t)dt

0
subjectto x = f(x,u)

g(x(t),u(t)) > 0, t €0,T]
where x(t) € R™, u(t) € R™, x(ty) = x4

* Discretized problem:
N-1
minimize 1(x(ty), ty) + Z; et Girt) (v = 1)
subjectto vi e {0,1,..,N — 1},
x(tiy1) = x(t;) + f(x(t:), qi) (Eiv1 — t0)
g(x(t;),q;) =0

Introduction to CasADi

* Numerical optimization software
» Tailored towards transcription of optimal control problems into NLPs
* Eg. single shooting, multiple shooting, collocation

* Interfaces
* Matlab, Python, C++, etc.

* Tools:
* NLP solvers (eg. IPOPT, SNOPT, etc.)
* Convex solvers (eg. Gurobi, Cplex, etc.)
* Symbolic integrators

Introduction to CasADi

* Home page
* https://github.com/casadi/casadi/wiki

* |nstallation
* https://github.com/casadi/casadi/wiki/InstallationInstructions

e User guide
* http://casadi.sourceforge.net/v3.4.0/users_guide/casadi-users_guide.pdf

Example

10
minimize 0 (x? + x5 +u®)dt
subjectto X, = (1—x2)x; —x, +u
5(2 - xl
—-1<u<l
e Reformulation as nonlinear program (NLP)
e N = 100 with uniform time intervals
* Forward Euler integration for dynamics

* First-order integration

Adapted from example in casADi user manual

Example

10
mirllli(r.r)lize (xZ + x2 + u?)dt
0

subjectto X, = (1—x2)x; —x, +u
Xy = X1
x; = —0.25
—1<uc<l

Installation
Preliminary setup
Integrating dynamics
NLP formulation
Solve and plot

Adapted from example in casADi user manual

https://github.com/casadi/casadi/wiki/InstallationInstructions

Installing CasADi

Option 1: Binary installation (recommended)

Install CasADi 3.4.3
For Python users: pip install casadi (you must have pip --version >= 8.1!)

Grab a binary from the table (for MATLAB, use the newest compatible version below):

Windows Linux Mac

R2014b or later, R2015a or later,
R2014b or later,

R2014a, R2014b,
R2014a

R2013a or R2013b R2014a

Octave 4.2.2 (32bit / 64bit) 422 422

Py27 (32bit"? / 64bit?), Py27, Py27,
Python Py35 (32bit® / 64bit?), Py35, Py35,
Py36 (32bit? / 64bit?) Py36 Py36

10

migiglize (x? + x% + u?)dt
0

Import and preliminary setup [t =0 -xdn—x
x1 = —0.25
—-1<u<il

* sym command: symbolic variables

import casadi.*
. . . . $% Preliminaries
* Symbolic differentiation and -
integration inside casadi N

 Note that xdot and Jt are also
symbolic

xdot = [(1-x2"2)*x1l - x2 + u; x1];

) -y - . —
4 - = ._.\n

Jt = x172 + %272 + u"2;

Integrating Dynamics

$% Integrate dynamics

e ftakesasinput X and u, * Forward Euler
and outputs xdot and T/N;
Jt, as defined previously

f = Function('f', {x, u}, {xdot, Jt}):; %

One can replace Forward X0 = MX.sym('x0", 2);
Euler with for example X.sym('U");
RK4

* Code just shows Forward Jkl = £(X0, U);

Euler for one time step = + dt*Xdot;
xdt;

F takes as input an initial
condition X0, and a

vector of controls U, and
outputs the final state X

and total cost Q F('x0',
disp (Fk.xf)

disp (Fk.qgf)

NLP Formulation

*% Formulate the NLP

- S
= g - - - L Tip————
Staz with emptv NLE
LA A W vaa — ot S Y - —
- -

10
mirg(r_r)lize f (x% + x2 + u?)dt
0

w={}’
* Start with empty NLP | .o o= (1— 3D —x, +u | WO = 1
* Controls w, wo, with X, = x, = [1:
bounds 1bw, ubw x; = —0.25 ' [1:
 Jis the total cost —l=su=s1 '

e Will use loop to add up = [1:
(integrate) the cost . ’

))) =[]
* g Is constraint function
on x

* 1bg, ubg give bounds

— -
- - - el e =T
— - - -

Xk = [0; 1]:;
for k=0:N-1

NLP Formulation

e Control bounded
between —1 and 1

* Need a constraint at every

time step

 Compute next state and
add up cost at every time

step

* State constraints at every

time step

t Iterate through time Tt T
Xk = [0; 1];
for k=0:N-1

$ New NLP wvariable for the

minimize
u(:)

subject to

10
(xZ + x2 +u?)dt
0
%1 =1 —x3)x; —x, +u
XZ ==X1
X1 = —0.25
—-1<uc<l

- ¥ - "ot =
. - -d v - CA
o~ —
-l L -

Uk = MX.sym(['U ' num2str(k)]):

w = {w{:}, Uk}:;

lbw = [lbw, -1]; % Control is bounded betwee

ubw = [ubw, 1]:;

wo = [wO, 0]; $ Initial gu

t Integrate till the end of
Fk = F('x0',Xk, 'p', Uk):;
Xk = Fk.xtf;
J = J+Fk.qgf;
Add inequality constraint:

g = {g{:}, Xk(1)}:

1bg = [1bg:; -.25];

ubg = [ubg; inf];
end

- - - -
"= N =
— — . S
T o _—
- - -

Tt o
"

—rrEm I TS e p——
EYveY e Strey
=N A=t =T Clne STl

- 3

= T = =T — and

=gl ¥ - =ad - -

— — % - - -

= ~ T = = A= =

- - - L e 4 k4 L LT L

P, p— | | T R T . - ? 3 = - - | - - - .y

1,_. 1 2] = oF = = —] yo- _"1 8 l '8
- - A N W TV SN S na - . e NS L N — - B el |

Solve and Plot

* See comments and k% Solve the NLP
documentathn $ Create an NLP solver

prob = struct(...
* Code will be uploaded to CourSys 'z, 7, ...
'x', vertcat(w{:}), ...
'g', vertcat(g{:})):

* |IPOPT is a built-in NLP solver e ThopT moiues

e O -— vV o4

solver = nlpsol('solverxr'

e Bu o= - ——
mNne 9 TEY

e Online documentation has sol = solver(...
Python and Matlab examples e e

'‘l1bx', 1lbw, ...
'‘ubx', ubw, ...
el Eacy S |y
'ubg', ubg):

w_opt = full(sol.x);

10
minimmize [ek + xf + ude
0

Solve and Plot subjectto = (1- 3w, — x, +u
X, = X

xi2—10.25

—-1<u<l1

e See comments and
documentation

* Code will be uploaded to CourSys

e [IPOPT is a built-in NLP solver

* Online documentation has
python and Matlab examples

See also:

PDF version
C++ API
Python API

Example pack

Contents:

1. Introduction
1.1. What CasADi is and what it
is not
1.2. Help and support
1.3. Citing CasADi

1.4. Reading this document

[

Obtaining and installing

w

. Symbolic framework
3.1. The SX symbolics

3.2.DM

33.

3.4.

3.

3.6.

3.7.

3.8.

3.9.

o

The MX symbolics
Mixing SX and MX
The Sparsity class
Arithmetic operations
Querying properties
Linear algebra

Calculus - algorithmic

differentiation

4. Function objects
4.1. Calling function objects
4.2. Converting MX to SX
4.3. Nonlinear root-finding
problems
4.4. Initial-value problems and
sensitivity analysis
4.5. Nonlinear programming
4.6. Quadratic programming
4.7. For-loop equivalents

5. Generating C-code
5.1. Syntax for generating code
5.2. Using the generated code
5.3. AP| of the generated code

6. User-defined function objects

Welcome to CasADi’'s documentation!

1. Introduction

CasADi is an open-source software tool for numerical optimization in general and optimal control (i.e. optimization involving differential equations) in particular.
The project was started by Joel Andersson and Joris Gillis while PhD students at the Optimization in Engineering Center (OPTEC) of the KU Leuven under

supervision of Moritz Diehl.

This document aims at giving a condensed introduction to CasADi. After reading it, you should be able to formulate and manipulate expressions in CasADi's
symbolic framework, generate derivative information efficiently using algorithmic differentiation, to set up, solve and perform forward and adjoint sensitivity
analysis for systems of ordinary differential equations (ODE) or differential-algebraic equations (DAE) as well as to formulate and solve nonlinear programs (NLP)

problems and optimal control problems (OCP).

CasADi is available for C++, Python and MATLAB/Octave with little or no difference in performance. In general, the Python API is the best documented and is
slightly more stable than the MATLAB API. The C++ APl is stable, but is not ideal for getting started with CasADi since there is limited documentation and since it
lacks the interactivity of interpreted languages like MATLAB and Python. The MATLAB module has been tested successfully for Octave (version 4.0.2 or later).

1.1. What CasADi is and what it is not

CasADi started out as a tool for algorithmic differentiation (AD) using a syntax borrowed from computer algebra systems (CAS), which explains its name. While
AD still forms one of the core functionalities of the tool, the scope of the tool has since been considerably broadened, with the addition of support for ODE/DAE
integration and sensitivity analysis, nonlinear programming and interfaces to other numerical tools. In its current form, it is a general-purpose tool for gradient-

based numerical optimization — with a strong focus on optimal control — and CasADi is just a name without any particular meaning.

It is important to point out that CasADi is not a conventional AD tool, that can be used to calculate derivative information from existing user code with little to no

modification. If you have an existing model written in C++, Python or MATLAB/Octave, you need to be prepared to reimplement the model using CasADi syntax.

Secondly, CasADi is not a computer algebra system. While the symbolic core does include an increasing set of tools for manipulate symbolic expressions, these

capabilities are very limited compared to a proper CAS tool.

Finally, CasADi is not an "optimal control problem solver®, that allows the user to enter an OCP and then gives the solution back. Instead, it tries to provide the
user with a set of "building blocks” that can be used to implement general-purpose or specific-purpose OCP solvers efficiently with a modest programming effort.
1.2. Help and support

If you find simple bugs or lack some feature that you think would be relatively easy for us to add, the simplest thing is simply to write to the forum, located at
http://forum.casadi.org/. We check the forum regularly and try to respond as quickly as possible. The only thing we expect for this kind of support is that you cite

us, cf. Section 1.3, whenever you use CasADi in scientific work.

If you want more help, we are always open for academic or industrial cooperation. An academic cooperation usually take the form of a co-authorship of a peer

reviewed paper, and an industrial cooperation involves a negotiated consulting contract. Please contact us directly if you are interested in this.

1.3. Citing CasADi

If you use CasADi in published scientific work, please cite the following:

@Article{Andersson2018,

Single shooting

N-1

miniqmize [(x(ty), ty) + Z c(x(t;), qi, ti) (i — t;)
i=0
subjectto vie{0,1,..,N — 1},

x(ti41) = x(&) + f(x (&), q:) (41 — t;)
g(x(ti)r ql) =0

* Main disadvantage: integration error

>> Xk
Xk =

F(
2 v

Adapted from example in casADi user manual

Single Shooting

N-1
miniqmize [(x(ty), ty) + Z c(x(t), qp t)(tip1 — t;)
i=0

e Discretized problem: .
P subjectto vi € {0,1,..,N — 1},

x(tiv1) = x(t;) + f(x(t:), i) (tiv1 — ti)
L . , gx(t),q) =0
e Variations: Different numerical schemes

* For ODE constraint
e For cost function

* Main disadvantage
* |ntegration error
* Errorsin “earlier” controls can greatly affect final state
* |nitial guess matters a lot

Multiple shooting

N-1
LGt ty) +) Gt @) (tia —)
i=0

minimize
q

subject to

minimize
s,q

subject to

vie{0,1,..,N —1},
x(tiv1) = x(t;) + f(x(ti), i) (tivr — t;)
g(x(ti), ql) >0

!

N-1
h(sy, ty) + z c(si,qi i)t — t)
i=0

vie{0,1,..,N — 1},
Siv1 =8;+f(s;,q) (41 — t)
9(si,q;) =0

Multiple Shooting

N-1
. . minimize h(sy, ty) + Z c(si, g, ti) (tiyq — &)
* Discretized problem: i =0

subjectto vi e {0,1,...,N — 1},

Siv1 = Si + f (5, q) (41 —)
9(si,q;) =0
e Same variations as single shooting available (numerical schemes)

e State is now a decision variable

 State constraints do not necessarily need to be satisfied throughout
optimization process

* Improves numerical stability
e Reduces integration error

Inverted Pole on Cart

e State: (x,v,0,w)

* Position, speed of cart, angle of pole, angular speed of pole

e Equations of motion: (M + m)¥ + bx + mlf cos@ —mlf?sinf = F

(I + ml?»)6 + mglsin® = —ml¥ cos 6

* Parameters: M, m, 1,1, b, g — mass of cart and pole, length and moment of
inertial of pole, friction coefficient, acceleration due to gravity

e Control: F —force of pushing

* Constraints:

* Start from initial state (0,0,0,0), reach final state (0,0, 7, 0) attime T

e Maximum force limit

* Cost: Control effort: fOT F2(t)dt

Inverted Pole on Cart

10 — © ftarget 0
- =X
-~V
— 0

W

5

0

-d

Shooting Method Disadvantages

* Numerical integration
e Potentially slow
* Numerical errors

* Open-loop solution

