
Shooting	Methods
CMPT	419/983

Mo	Chen
SFU	Computing	Science

2/10/2019



Direct	methods

• Differential	flatness
• Algebraic	method	for	special	system	dynamics

• Direct	shooting
• Parametrize	control
• Numerical	example	with	CasADi

• Collocation
• Parametrize	both	state	and	control



Single	shooting

• Discretize:

• Numerically	integrate	dynamics	and	cost:
• Simple	example:

𝑢 𝑡 = 𝑞% for	𝑡 ∈ 𝑡%, 𝑡%()

Dynamics	(Forward	Euler):

Cost: ! 𝑐 𝑥 𝑡 , 𝑢 𝑡 , 𝑡 𝑑𝑡
*

+,
≈ ) 𝑐 𝑥 𝑡% , 𝑞% , 𝑡% 𝑡%() − 𝑡%

-.)

%/0

𝑥 𝑡%() ≈ 𝑥 𝑡% + 𝑓 𝑥 𝑡% , 𝑞% 𝑡%() − 𝑡%

𝑔 𝑥 𝑡 , 𝑢 𝑡 ≥ 0, 𝑡 ∈ 0, 𝑇

𝑙 𝑥 𝑇 , 𝑇 + ! 𝑐 𝑥 𝑡 , 𝑢 𝑡 , 𝑡 𝑑𝑡
*

0

�̇� = 𝑓 𝑥, 𝑢subject	to

where 𝑥 𝑡 ∈ ℝ1, 𝑢 𝑡 ∈ ℝ2, 𝑥 0 = 𝑥0

0 < 𝑡) < ⋯ < 𝑡- ≔ 𝑇

minimize
8 ⋅



Single	shooting

• Discretized	problem:

𝑔 𝑥 𝑡% , 𝑞% ≥ 0

𝑙 𝑥 𝑡- , 𝑡- + ) 𝑐 𝑥 𝑡% , 𝑞% , 𝑡% 𝑡%() − 𝑡%

-.)

%/0
subject	to

𝑥 𝑡%() = 𝑥 𝑡% + 𝑓 𝑥 𝑡% , 𝑞% 𝑡%() − 𝑡%

∀𝑖 ∈ 0,1, … , 𝑁 − 1 ,

𝑔 𝑥 𝑡 , 𝑢 𝑡 ≥ 0, 𝑡 ∈ 0, 𝑇

𝑙 𝑥 𝑇 , 𝑇 + ! 𝑐 𝑥 𝑡 , 𝑢 𝑡 , 𝑡 𝑑𝑡
*

0

�̇� = 𝑓 𝑥, 𝑢subject	to

where 𝑥 𝑡 ∈ ℝ1, 𝑢 𝑡 ∈ ℝ2, 𝑥 𝑡0 = 𝑥0

minimize
8 ⋅

minimize
8 ⋅



Introduction	to	CasADi

• Numerical	optimization	software
• Tailored	towards	transcription	of	optimal	control	problems	into	NLPs
• Eg.	single	shooting,	multiple	shooting,	collocation

• Interfaces
• Matlab,	Python,	C++,	etc.

• Tools:
• NLP	solvers	(eg.	IPOPT,	SNOPT,	etc.)
• Convex	solvers	(eg.	Gurobi,	Cplex,	etc.)
• Symbolic	integrators



Introduction	to	CasADi

• Home	page
• https://github.com/casadi/casadi/wiki

• Installation
• https://github.com/casadi/casadi/wiki/InstallationInstructions

• User	guide
• http://casadi.sourceforge.net/v3.4.0/users_guide/casadi-users_guide.pdf



Example

• Reformulation	as	nonlinear	program	(NLP)
• 𝑁 = 100 with	uniform	time	intervals
• Forward	Euler	integration	for	dynamics
• First-order	integration

Adapted	from	example	in	casADi user	manual

! 𝑥): + 𝑥:: + 𝑢: 𝑑𝑡
)0

0

�̇�) = 1 − 𝑥:: 𝑥) − 𝑥: + 𝑢subject	to
�̇�: = 𝑥)
𝑥) ≥ −0.25
−1 ≤ 𝑢 ≤ 1

minimize
8 ⋅



Example

1. Installation
2. Preliminary	setup
3. Integrating	dynamics
4. NLP	formulation
5. Solve	and	plot

Adapted	from	example	in	casADi user	manual

! 𝑥): + 𝑥:: + 𝑢: 𝑑𝑡
)0

0

�̇�) = 1 − 𝑥:: 𝑥) − 𝑥: + 𝑢subject	to
�̇�: = 𝑥)
𝑥) ≥ −0.25
−1 ≤ 𝑢 ≤ 1

minimize
8 ⋅



https://github.com/casadi/casadi/wiki/InstallationInstructions



Import	and	preliminary	setup

• sym command:	symbolic	variables

• Symbolic	differentiation	and	
integration	inside	casadi

• Note	that	xdot and	Jt are	also	
symbolic

! 𝑥): + 𝑥:: + 𝑢: 𝑑𝑡
)0

0
�̇�) = 1 − 𝑥:: 𝑥) − 𝑥: + 𝑢subject	to
�̇�: = 𝑥)
𝑥) ≥ −0.25
−1 ≤ 𝑢 ≤ 1

minimize
8 ⋅



Integrating	Dynamics

• f takes	as	input	x and	u,	
and	outputs	xdot and	
Jt,	as	defined	previously

• One	can	replace	Forward	
Euler	with	for	example	
RK4
• Code	just	shows	Forward	
Euler	for	one	time	step

• F takes	as	input	an	initial	
condition	X0,	and	a	
vector	of	controls	U,	and	
outputs	the	final	state	X
and	total	cost	Q



NLP	Formulation

• Start	with	empty	NLP
• Controls	w,	w0,	with	
bounds	lbw,	ubw
• J is	the	total	cost

• Will	use	loop	to	add	up	
(integrate)	the	cost

• g is	constraint	function	
on	𝑥
• lbg,	ubg give	bounds

! 𝑥): + 𝑥:: + 𝑢: 𝑑𝑡
)0

0

�̇�) = 1 − 𝑥:: 𝑥) − 𝑥: + 𝑢subject	to
�̇�: = 𝑥)
𝑥) ≥ −0.25
−1 ≤ 𝑢 ≤ 1

minimize
8 ⋅



NLP	Formulation

• Control	bounded	
between	−1 and	1
• Need a	constraint	at	every	
time	step

• Compute		next	state	and	
add	up	cost	at	every	time	
step

• State	constraints	at	every	
time	step

! 𝑥): + 𝑥:: + 𝑢: 𝑑𝑡
)0

0
�̇�) = 1 − 𝑥:: 𝑥) − 𝑥: + 𝑢subject	to
�̇�: = 𝑥)
𝑥) ≥ −0.25
−1 ≤ 𝑢 ≤ 1

minimize
8 ⋅



Solve	and	Plot

• See	comments	and	
documentation
• Code	will	be	uploaded	to	CourSys

• IPOPT	is	a	built-in	NLP	solver

• Online	documentation	has	
Python	and	Matlab examples



Solve	and	Plot

• See	comments	and	
documentation
• Code	will	be	uploaded	to	CourSys

• IPOPT	is	a	built-in	NLP	solver

• Online	documentation	has	
python	and	Matlab examples

! 𝑥): + 𝑥:: + 𝑢: 𝑑𝑡
)0

0

�̇�) = 1 − 𝑥:: 𝑥) − 𝑥: + 𝑢subject	to
�̇�: = 𝑥)
𝑥) ≥ −0.25
−1 ≤ 𝑢 ≤ 1

minimize
8 ⋅





Single	shooting

• Main	disadvantage:	integration	error

𝑔 𝑥 𝑡% , 𝑞% ≥ 0

𝑙 𝑥 𝑡- , 𝑡- + ) 𝑐 𝑥 𝑡% , 𝑞% , 𝑡% 𝑡%() − 𝑡%
-.)

%/0
subject	to

𝑥 𝑡%() = 𝑥 𝑡% + 𝑓 𝑥 𝑡% , 𝑞% 𝑡%() − 𝑡%

∀𝑖 ∈ 0,1, … , 𝑁 − 1 ,

Adapted	from	example	in	casADi user	manual

minimize
;



Single	Shooting

• Discretized	problem:

• Variations:	Different	numerical	schemes
• For	ODE	constraint
• For	cost	function

• Main	disadvantage
• Integration	error
• Errors	in	“earlier”	controls	can	greatly	affect	final	state
• Initial	guess	matters	a	lot

𝑔 𝑥 𝑡% , 𝑞% ≥ 0

𝑙 𝑥 𝑡- , 𝑡- + ) 𝑐 𝑥 𝑡% , 𝑞% , 𝑡% 𝑡%() − 𝑡%

-.)

%/0
subject	to

𝑥 𝑡%() = 𝑥 𝑡% + 𝑓 𝑥 𝑡% , 𝑞% 𝑡%() − 𝑡%

∀𝑖 ∈ 0,1, … , 𝑁 − 1 ,

minimize
;



Multiple	shooting

𝑔 𝒙 𝒕𝒊 , 𝑞% ≥ 0

𝑙 𝒙 𝒕𝑵 , 𝑡- + ) 𝑐 𝒙 𝒕𝒊 , 𝑞% , 𝑡% 𝑡%() − 𝑡%

-.)

%/0
subject	to

𝒙 𝒕𝒊(𝟏 = 𝒙 𝒕𝒊 + 𝑓 𝒙 𝒕𝒊 , 𝑞% 𝑡%() − 𝑡%

∀𝑖 ∈ 0,1, … , 𝑁 − 1 ,

𝑔 𝒔𝒊, 𝑞% ≥ 0

ℎ 𝒔𝑵, 𝑡- + ) 𝑐 𝒔𝒊, 𝑞% , 𝑡% 𝑡%() − 𝑡%
-.)

%/0
subject	to

𝒔𝒊(𝟏 = 𝒔𝒊 + 𝑓 𝒔𝒊, 𝑞% 𝑡%() − 𝑡%

∀𝑖 ∈ 0,1, … , 𝑁 − 1 ,

minimize
;

minimize
𝒔,;



Multiple	Shooting

• Discretized	problem:

• Same	variations	as	single	shooting	available	(numerical	schemes)
• State	is	now	a	decision	variable
• State	constraints	do	not	necessarily	need	to	be	satisfied	throughout	
optimization	process
• Improves	numerical	stability
• Reduces	integration	error

𝑔 𝑠% , 𝑞% ≥ 0

ℎ 𝑠-, 𝑡- + ) 𝑐 𝑠% , 𝑞% , 𝑡% 𝑡%() − 𝑡%
-.)

%/0
subject	to

𝑠%() = 𝑠% + 𝑓 𝑠% , 𝑞% 𝑡%() − 𝑡%

∀𝑖 ∈ 0,1, … , 𝑁 − 1 ,

minimize
@,;



Inverted	Pole	on	Cart

• State:	 𝑥, 𝑣, 𝜃, 𝜔
• Position,	speed	of	cart,	angle	of	pole,	angular	speed	of	pole

• Equations	of	motion:

• Parameters:	𝑀,𝑚, 𝑙, 𝐼, 𝑏, 𝑔 – mass	of	cart	and	pole,	length	and	moment	of	
inertial	of	pole,	friction	coefficient,	acceleration	due	to	gravity
• Control:	𝐹 – force	of	pushing

• Constraints:
• Start	from	initial	state	 0,0,0,0 ,	reach	final	state	 0,0, 𝜋, 0 at	time	𝑇
• Maximum	force	limit

• Cost:	Control	effort:	∫ 𝐹: 𝑡 𝑑𝑡*
0

𝑀 +𝑚 �̈� + 𝑏�̇� + 𝑚𝑙�̈� cos 𝜃 − 𝑚𝑙�̇�: sin 𝜃 = 𝐹
𝐼 + 𝑚𝑙: �̈� + 𝑚𝑔𝑙 sin 𝜃 = −𝑚𝑙�̈� cos 𝜃



Inverted	Pole	on	Cart



Shooting	Method	Disadvantages

• Numerical	integration
• Potentially	slow
• Numerical	errors

• Open-loop	solution


