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Outline

• Configuration	space

• Probabilistic	road	maps	(PRM)
• PRM*

• Rapidly-exploring	random	trees	(RRT)
• RRT*

• Robust	real-time	planning	(FaSTrack)



Configuration	Space	(C-Space)

• Similar	to	state	space,	but	considers	reachability
• Usually	state	space	does	not	consider	the	set	of	states	that	a	system	can	reach
• Configuration	space	is	the	subset	of	the	state	space	reachable	by	the	system

• Example:	mechanical	joints

• Rigid	bodies	in	2D:	
• 2D	position	and	one	rotation	angle

• Rigid	bodies	in	3D:	
• 3D	position	and	three	rotation	angles

• Connected	rigid	bodies
• Concatenate	positions	and	angles	(but	not	every	position	and	angle	is	reachable)



Planning	in	C-Space

• Reduce	objects	to	a	point,	and	augment	obstacles
• Example:	Sliding	rectangular	block	to	goal
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Planning	in	C-Space

• Reduce	objects	to	a	point,	and	augment	obstacles
• Example:	Sliding	and	rotating rectangular	block	to	goal
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Probabilistic	Road	Map

• Draw	N	samples
• Keep	points	outside	of	obstacles

• Choose	a	disk	radius

• For	each	kept	point,	draw	edge	between	it	and	all	other	points	within	
the	disk
• Keep	edges	that	are	collision	free	(expensive)

• Use	graph	search	algorithm	(e.g.	A*,	Dijkstras)	on	the	resulting	graph	
to	find	a	path



Probabilistic	Road	Map



Probabilistic	Road	Map

• Draw	N	samples
• Keep	points	outside	of	obstacles

• Choose	a	disk	radius

• For	each	kept	point,	draw	edge	between	it	and	all	other	points	within	
the	disk
• Keep	edges	that	are	collision	free	(expensive)

• Use	graph	search	algorithm	(e.g.	A*,	Dijkstras)	on	the	resulting	graph	
to	find	a	path



Tuning	Parameters

• Sampling	distribution

• Deterministic	samples	are	possible

• Collision	checker	– determines	type	of	obstacles	that	can	be	
considered



Rapidly-Exploring	Random	Tree

• Draw	a	sample
• Connect	to	nearest	neighbour

• Continue	until	path	is	found



Rapidly-Exploring	Random	Tree



Rapidly-Exploring	Random	Tree

• Draw	a	sample
• Connect	to	nearest	neighbour

• Continue	until	path	is	found



RRT*

• Draw	a	sample
• Connect	to	nearest	neighbour
• Rewire	paths	in	a	cheaper	way

• Look	within	some	radius
• Can	we	get	to	the	sample	in	a	cheaper	way?
• Is	there	a	cheaper	way	to	get	to	the	samples	within	the	radius?

• Continue	until	path	is	found



RRT*



Tuning	Parameters

• Sampling	distribution
• Deterministic	samples	are	possible

• Nearest	sample	vs.	nearest	point	covered	by	the	tree

• Collision	checker	– determines	type	of	obstacles	that	can	be	
considered

• Number	of	trees
• Having	more	than	one	tree	may	decrease	time	needed	to	find	a	feasible	path



Comments

• PRM
• Could	be	slow
• May	need	many	samples

• RRT	
• Incrementally	draw	samples	à has	potentially	fewer	samples
• Quality	of	solution	may	be	very	poor	à RRT*

• Inherently,	complexity	is	still	exponential
• Hope:	obtain	feasible	(potentially	bad)	solution	quickly



A	Difficult	Case

• Narrow	gaps



Analysis

• Potential	computational	bottlenecks
• Collision	checking
• Nearest-neighbour	finding

• Optimality
• Asymptotic,	as	number	of	samples	goes	to	infinity

• Convergence	rate:	suboptimality	bound	is	𝑂 𝑛&'
(

• 𝑛 – number	of	samples
• 𝑑 – number	of	dimensions



System	Dynamics

• RRT	and	PRM,	as	presented,	is	a	geometric	planner
• Cannot	account	for	system	dynamics

• Incorporating	system	dynamics
• Make	sure	edges	between	nodes	are	dynamically	feasible
• Difficult	in	general,	but	has	been	done	for	special	cases
• Backward	and	forward	reachability	concepts	are	useful
• Some	references

• LaValle,	Kuffner.	“Randomized	Kinodynamic Planning,”	2001.
• Webb,	Van	Den	Berg.	“Kinodynamic RRT*:	Asymptotically	optimal	motion	planning	for	robots	
with	linear	dynamics,”	2013.

• Schmerling,	Janson,	Pavone.	“Optimal	Sampling-Based	Motion	Planning	under	Differential	
Constraints:the Drift	Case	with	Linear	Affine	Dynamics,”	2015.



• Optimal	control
• Guarantees	on	safety	and	goals
• Handles	external	disturbances	

(e.g.	wind)
• Slow	to	compute

• Very	fast	with	simple	dynamics
• May	not	capture	all	system	behavior
• Not	necessarily	robust	to	disturbances

• Precompute	a	tracking	error	bound	
based	on	relative	state	between	the	true	
system	and	the	planned	path

• Make	it	modular	&	easy	to	incorporate	
in	all	sorts	of	real-time	path/trajectory	
planners

Slow	and	Accurate	Planning:
Goal

Fast	(but	less	accurate)	Planning:
Goal

FaSTrack:
Goal

Slide	courtesy	of	Sylvia	Herbert

Herbert,	et	al.	“FaSTrack:	a	modular	framework	for	fast	and	guaranteed	safe	motion	planning,”	2017.

Robustness



Precomputed	Tracking	Bound

Tracking	System

Planning	System
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Slide	courtesy	of	Sylvia	Herbert
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• Tracking	system	(car)	pursues	
planning	system	(runner)

• Planning	system	tries	to	evade	
tracking	system

• What	will	be	the	maximum	relative	
distance	over	time?

Note:	
Maximum	relative	distance	over	time

≡ Worst	possible	tracking	error	over	time
≡ Tracking	error	bound

22

Precomputed	Tracking	Bound
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Precomputed	Tracking	Bound

Goal:	Map	initial	relative	state	to	worst	possible	tracking	error	over	time

Slide	courtesy	of	Sylvia	Herbert



Precomputed	Tracking	Bound

Keep	track	of	maximum cost	over	time

Planning	system	tries	to	maximize	error

Tracking	system	tries	to	minimize	error
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Goal:	Map	initial	relative	state	to	worst	possible	tracking	error	over	time

Slide	courtesy	of	Sylvia	Herbert

𝑉 𝑡, 𝑥 𝑡 = max
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𝑙 𝑥 𝑠
• Take	𝑡 → −∞ for	infinite	time	horizon	case
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10D	near-hover	quadrotor	model

3D	single	integrator

Example:	10D	Tracking	3D	Single	Integrator	using	RRT
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